Transformer Modeling Using Simulator

PowerWorld Program Users Work Group August 23, 2011 Presented by John Gross Phone: 509-495-4591 Email: john.gross@avistacorp.com

General Purpose and Operation

- •Maintain near constant secondary voltage with a variable primary voltage
- • N_1 and N_2 are fixed turns ratios determined by connected positions (N_2 can be changed with transformer out of service)
- • N_T represents the LTC which adds or subtracts windings to the N_1 turns ratio
- •Avista's typical LTC on Autotransformers has 17 positions; range 247.5 kV to 225.5 kV with nominal at 236.5 kV

$$V_1 = \frac{N_1 + N_T}{N_2} V_2 = a \cdot V_2$$

Mechanical Operation

- Various methods/devices are used for LTC
- •Example at right:
 - Tap selector switches numbered 1 to 8
 - Diverter resistors A and B prevent high circulating current
 - Change from tap position 2 to 3
 - Close switch 3 under no load
 - Rotary switch causes load current to flow through resistor A, then momentarily through both resistor A and B with switches 2 and 3 closed
 - Once resistor B is shorted, load current flows through switch 3
 - Switch 2 now opens under no load

SCADA vs. Modeling Labeling Convention

SCADA Convention

•Positive tap position **increases** secondary voltage, total tap ratio is **decreased**

•Negative tap position **decreases** secondary voltage, total tap ratio is **increased**

Modeling Convention

•Positive tap position **decreases** secondary voltage, total tap ratio is **increased**

•Negative tap position **increases** secondary voltage, total tap ratio is **decreased**

Other Labeling Conventions

Any labeling convention works so long as it is consistent and documented!

LTC Discussion

•LTC Advantages:

- Voltage control
- Added flexibility

•LTC Disadvantages:

- Costs: Adds ~15-18%
- Maintenance issue:
 - Moving parts
 - Increased outages
- Failure probability higher with LTC
- LTCs generally not utilized today (confirm with PI data)

LTC Discussion Cont.

•PJM has analyzed and recommends NO LTC on 500/230 kV banks •Alternatives to LTC's:

- Capacitor banks: distribute MVAR to optimum location
 - Approximately 3 tap positions is equivalent to one cap bank:
 - 22 MVAr at 115 kV or
 - 67.1 MVAr at 230 kV
 - No flexibility for high voltages
- Move generation (not likely for Avista)
- Specify LTC's on lower voltage transformers
- Specify LTC for special situations

Taps vs Caps

LTC

Initial cost: ~\$390k

Assume 250 MVA transformer

15-18% of total transformer cost
 Maintenace: \$20k, 5-7 years

70,000 operations

Requires outage coordination
 Life expectancy: 50 years
 Total life cycle costs:

~\$500k

Capacitors

Initial cost: ~\$750k

- 3 70 MVAr banks at 230 kV
- Land acquisition will add to cost Maintenance: \$20k, 5-6 years
 - 4000 operations

Life expectancy: 14 years for CB

 Circuit breaker mechanism will require parts: \$300k

Total life cycle costs (50 years):

~\$2 million

Where do you start?

□ Transformer test reports and other company records

- □ Collect the following data:
 - 1. Impedance (%Z and full load loss)
 - 2. Primary nominal voltage
 - 3. Secondary nominal voltage
 - 4. MVA rating
 - 5. NLTC fixed tap position
 - 6. LTC min & max tap
 - 7. LTC step size

What base values should you use?

System MVA base (100 MVA) & system voltage base

• i.e. 500 kV, 230 kV, 115 kV

□ System MVA base & transformer voltage base

□ Transformer MVA base & system voltage base

- □ Transformer MVA base & transformer voltage base
 - Read directly from test report
 - Less calculations!

The Transformer Model

Transformer Base Model

Example Test Report

	L Comonti I	Packard d	la México	S.A. DE C	.V							Page 1	
VATECI	H Ferranu-	rachaiù u		, e									
Customer:	AVISTA CORPORATION			Cust. Order #:		030413		FPT Order #		luid: OIL	FP S/N: Temp rise:	TP - 543 55°C // 65°C	
st Date:	JULY 10 - 26, 2 00	6	Cooling:	ONAN / ONAF	1 / ONAF2	Hz: 60	Phases:	3					
	HIGH VOLTAGE			LOW VOLTAGE		TERTIARY VOLTAGE							
Winding	150 / 200 / 250 // 280.0		150 / 200 / 250 // 280.0		33.3 / 44.4 / 55.5 // 62.2								
MVA IVV	236.5 / 136.543 (Y)			112.75 / 65.096 (Y)		13.80 (Δ)							
Tans OC	±4.65 % in 16 Steps			+4.88 - 5.23	3 % in 4 Steps				J				
Resista Based o	ance, Exciting on normal ratir	Current, Lo ng, unless oth	esses and linerwise state	npedance ed. Losses and	l regulation are	based on wattm	eter measu	rements.					
For thre	ee-phase trans	formers the r	resistances	are the sum of	No load	HV: 23	HV: 236.5 KV		36.5 KV L		112.75 K	V	
	Resi	Resistance in ohms at			kW at	LV: 112.75 KV		TV: 13.8 KV		TV: 13.8 KV		,	
SERIAL	75°C			- 100% 100%		250.0 MVA		250.0 MVA		250.0 MVA			
NUMBER	R HV	LV	T.V.	rated voltage	rated voltage	Load loss	% IZ	Load loss	% IZ	Load	loss %	ız	
	(H-X)	(X - H0X0)		@MVA: 150	20°C	kW, 75°C		KVV, 75 C					
TP-543	0.42667	0.12843	0.040498	0.0544	75.977	276.71	7.06	1944.78	48.05	1864	.31 39	.00	
						202.08	7 13	2136 60		2098	3.04		
	Calculated		0.16	73.5	241.11	6.8	7	45.0		37	7.0		
		Guarantee			100	74.0 311.11		90 % PF		1	80 % PF		
	% Regu	150 / 250 Nation at 150	°C, H.V. TAF MVA, Laggi	N, L.V. TAP 3 100 19 0.15		5 / 0.35		1.97 / 3.36		2.65 / 4.47			
Temp	perature Rises	Average r was reac	ise in degre hed.	es C, corrected	to instant of sh	utdown, with wir	ndings conn	nected and loa	aded as follo	ows, unt	il constant	temperature ris	Pounds
													TA

Example Data Entry

Bus View for BOULDER	48524			
: <> → +> → Bus BOULDER (2	230 kV] (48524) 🖨 Find Full Topology 🔹 🔹 Options 👻 Views	• History •		
Image: Source of the second	Branch Options Options * Views Branch Options Transformer From Bus To Bus Circuit Number 48524 48522 2 Name BOULDER BOULDERE BOULDERE Area Name NORTHWEST (40) NORTHWEST (40) Inonial kV Display Parameters Transformer Control Fault Info Owner, Area, Zo Transformer Information Off-nominal Turns Ratio 1.01188 Transformer Control is Voltage Regulation (AVR) Voltage Regulation (AVR) 0.0 Voltage Regulation (AVR) Voltage Regulation (AVR)	 History • Find By Numbers Find By Names Transformer Parameters Transformer Base Parameters Transformer Base Parameters The values at the right are derived from The values at the right are derived from Asystem bases (system MVA base, and bus nom kV) A corresponding value stored on the system bases 	M test report System Model Conversion Equations By changing these values along with the bases on this dialog, you will modify the values stored on the system bases Data Specified on the Transformer Bases R 0.001115 X 0.070584	0.00 MW
	(Note, tap and/or phase shift is always on the From Bus side) Specify Transformer Bases and Impedances	Transformer Base Values and Fixed Taps Fixed Tap From Bus 1.000000 Fixed Tap To Bus 1.024400 Nominal kV From Bus 236.50 Nominal kV To Bus 112.75 MVA Base: 250.00	B 0.000000 G 0.000000 Magnetizing B 0.000000 Magnetizing G 0.000000 Current Tap Ratio 0.988357 Minimum Tap Ratio 0.953500 Maximum Tap Ratio 1.046500 Step Size 0.005810	
System State	✓ OK Save X Ca	ancel ? Help	K Cancel Pelp 48522 1.0115 pu 116.32 KV]

Modeling Assumptions

□Magnetizing impedance is neglected

- Magnetizing current ~ 0.5% of rated current
- Less than 20% xfmrs in WECC cases model B and G

Impedance is proportional to number of turns squared

- If NLTC is off nominal (i.e. + 2.44%), $Z = Z_{nom}(1.0244)^2$
- Measured impedance may differ by ~ $\pm 8\%$ or ~ 0.5 ohms

Conversion to System Base

Conclusions

□ Hand Calculations should be avoided

- Computers excel at repetitive mathematical operations
- IF a bug exists that causes a math error when fixed all of the errors will be corrected
 - This is NOT the case with hand calculations
- □ Data needs to be easily traced back to a proper source
 - If you enter data off the test sheets (as much as possible) then there is NO DOUBT as to the accuracy of the data.

Avista Procedure

