Generator and Area Real Power Control

- Scaling Case Load and Generation
- Control of generator real power
- Generator cost models
- Area interchange control
- Modeling MW transactions
- Areas the belong to multiple islands

Generator MW Control

- Real power output of generator can be changed either
 - manually
 - Generator dialog
 - Case information displays
 - Generator fields
 - System Scaling display
 - automatically
 - Participation factor AGC
 - Economic dispatch
 - Area slack bus control
 - Injection group area slack control
 - Optimal power flow (OPF)

System Scaling Display

- Permanently changes load, generation and shunts at a user specified set of buses.
- Buses are selected either by
 - entering a range of values
 - entering a range of areas
 - individually on a list display
- Both real and reactive load can be scaled.
- To Display: **Tools** ribbon tab → **Scale Case**

System Scaling Display

Scaling by Area, Zone, Injection Group, and Owner

- Scaling by Area or Zone
 - This can be different than just selecting all the buses in an area/zone.
 - Generators, Loads, and Shunts may be in a different area/zone than their terminal bus.
- Can also scale according to Injection Group or Owner

Generator Dialog (Run Mode)

©2008 PowerWorld Corporation

Generator Dialog (Run Mode)

	Generator Information for Current Case	
Can also use piecewise linear cost model	Bus Number Image: Status Open Bus Name One Find By Name Open ID I Find Image: Status Open ID I Find Image: Status Open ID I Find Image: Status Open ID I Find By Name Open ID I Find By Name Open ID I Find Image: Status Open ID I Find By Name Ocosed ID Image: Status Open Ocosed Introduction Image: Status One Ocosed Introduction Costs OPF Faults Owners, Area, etc. Custom Output Cost Model Bid Scale/Shift OPF Reserve Bids Cubic Cost Model Open Output Cost Model Bid Scale/Shift OPF Reserve Bids Cubic Input/Output Model (MBtu/h) A (Enter as Fixed Cost) B 7.62 Unit Fuel Cost (\$/MBtu) 0.000 Convert Cubic to Linear Cost Number of 0 0 0 0 0 0 0 0 0 0	Cubic cost model
	✓ OK Save X Cancel ? Help Print	

Oneline Generator MW Control

Generator Records

• Fields on the dialog are also available on the Generator Case Information Displays

	Number	Name	ID	Status	Gen MW	Gen Myar	Set Volt	AGC	AVR	Min MW	Max MW	Min Myar	Max Myar	Pa
L	1	1	1	Closed	120.81	-0.41	1.05	YES	YES	100.00	400.00	-9900.00	9900.00	1
2	2	2	1	Closed	150.00	40.05	1.04	YES	YES	150.00	500.00	-9900.00	9900.00	1
3	4	4	1	Closed	120.81	10.81	1.00	YES	YES	50.00	200.00	-9900.00	9900.00	1
4	6	6	1	Closed	150.94	9.99	1.04	YES	YES	150.00	500.00	-9900.00	9900.00	1
5	7	7	1	Closed	225.15	42.06	1.04	YES	YES	0.00	600.00	-99999.00	99999.00	1

Change Gen MW field from this dialog to get change to occur in simulation; AGC field will change automatically when Gen MW field is changed manually.

Generator Cost Model, Cubic

• Total generator operating cost is modeled using cubic function

Generator Cubic Cost Curves in the Case Information Display

- Go to the Model Explorer and choose Network →
 Generators → Cost Curves Cubic
 - F, A, B, C, D Coefficients, Fuel Cost, and Variable
 O&M

	Number	Name	Area Name of Gen	ID	Status	AGC			Fixed Cost(Mbtu/hr	IOB	IOC	IOD	Fuel Cost	Variable O&M	uel Type	Unit Type
1	1	One	Тор	1	Closed	YES	101.8	0.00	373.50	7,620	0.0013	0.00000	2,040	0.000	nknown	UN (Unknown
2	2	Two	Тор	1	Closed	YES	170.0	0.00	403.61	7.519	0.0014	0.00000	2.061	0.000	nknown	UN (Unknown
3	4	Four	Тор	1	Closed	YES	95.0	0.00	253.24	7.836	0.0013	0.00000	2.093	0.000	nknown	UN (Unknow
4	6	Six	Left	1	Closed	YES	200.3	0.00	388.93	7.573	0.0013	0.00000	2.139	0.000	nknown	UN (Unknown
5	7	Seven	Right	1	Closed	YES	200.6	0.00	194.28	7.771	0.0019	0.00000	2.574	0.000	nknown	UN (Unknow

Generator Cost Model Piecewise Linear

Note: When you change the fuel cost, Simulator will prompt you asking you whether you want to change the bid curve points

Piecewise Linear Cost Curve Input

Input variables are highlighted and bold

Piecewise Linear Load Benefit Input

Input variables are highlighted and bold

©2008 PowerWorld Corporation

Generator Linear Cost Curves in the Case Information Display

In the Model Explorer go to Network →
 Generators → Cost Curves Linear

- Fuel Cost, Fixed Cost, Bid Curve Points

	Number	Name	Area Name of	ID					MWh Price1	MW Break2	MWh Price2	MW Break3	MWh Price3	MW Bre
1	1	One	Gen	1	1.300	Cost(\$)nr) 0.00	Cost(Mbtu/hr 0.00	100.00	16.34	200.00	16.87	300.00	17.40	
1			Top	1								300,00	17,40	
		Two	Top	1	2.061	0.00	403.61	150.00		300.00	16.50			
3		Four	Тор	1	2.093	0.00				100.00	19.00			
4			Left	1	2.139	0.00				300.00	<u> </u>			
5	7	Seven	Right	1	2.574	0.00	194.30	0.00	7.77	100.00	12.00			

- Note: when you change the Fuel Cost value, Simulator will prompt you asking if you want to change the bid curve points as well
 - If you double the fuel cost, it will double the bids

Generator Cost Curves

- Four curves derived from generator operating cost model and fuel-cost
 - Input-Output (IO) Curve: MW versus Mbtu/hr
 - Fuel Cost Curve: MW versus \$ / hr (IO curve multiplied by fuel-cost)
 - Incremental Cost Curve: MW versus \$/MWhr (fuel-cost curve differentiated w.r.t. MW)
 - Heat Rate Curve: MW versus average Mbtu/MWhr

Generator Cost Curves

©2008 PowerWorld Corporation

Saving Generator Cost Curves in Text Files

- Similar to generator reactive capability curves, generator cost curves can also be stored in external text files.
- Text files allow easy transfer of cost data between cases.
 - In the Model Explorer select Network →
 Generators
 - Right-Click and choose Save As → Auxiliary
 File (only fuel cost information)
 - Choose the filename to save and Click **OK**

- the *.aux file can then be manually edited ©2008 PowerWorld Corporation

Area Interchange Control

- Interchange of power between areas can be controlled so area export is set equal to the scheduled value.
- Generator MW outputs are modified either by
 - Participation factor AGC
 - Area slack control
 - Injection group area slack control
 - Economic dispatch
 - Optimal power flow (OPF)

Area Interchange Control

For Area Interchange Control, Disable Automatic
 Generation Control (AGC) must NOT be
 checked on Simulator Options dialog, Power Flow
 Solution page, Common Options tab.

Disable Automatic Generation Control (AGC)

- Area Interchange is set for each area on either the Area Records display or on the Area dialog.
- To view Area dialog, either right-click on area on Area Records display, or use oneline local menu.

Area Records

- In the Model Explorer select Aggregations \rightarrow Areas to view the Area Records display.
- Display shows summary information about all areas in case.
- Entries can be sorted by clicking on the column labels.
- Right-click in the row of a desired area and select Show Dialog to view the area's information

Area Interchange Control

Economic Dispatch Example

• For B7FLAT Case, verify that all three areas are on economic dispatch control.

Аге	a Records											
	Area Num	Area Name	AGC Status	Gen MW	Load MW	Tot Sched MW	Int MW	ACE MW	Lambda	Loss MW	Auto Shunts	Auto XF
1	1	Тор	ED	366.96	360.00	0.00	0.00	0.00	16.90	6.96	YES	YES
2	2	Left	ED	200.33	200.00	0.00	0.00	0.00	17.22	0.33	YES	YES
3	3	Right	ED	200.65	200.00	0.00	0.00	0.00	22.01	0.65	YES	YES

- Open load at bus 2; notice how only generators in TOP area change. Place load back in service.
- Change generator 1 fuel cost to 1.5. Restart simulation. Notice how other generators in area are set to their lower limits.

Economic Dispatch Example

Participation Factor Example

- On B7FLAT case, set participation factors for all three TOP area generators to 1.0.
- Place TOP area on participation factor control.
- Verify that as load is modified, generator outputs all change proportionally

– cost information is not used.

Participation Control Example

Area Slack Bus Control

- An "Area Slack Bus" is *NOT* the same as the "Island Slack Bus". This is bad nomenclature, but is commonly used throughout the power industry
 - Area Slack Used in *MW Control Loop (see earlier section)* of Power flow to meet ACE of an area
 - Island Slack Used in the *Inner Power Flow loop (see earlier section)* to actually solve a set of equations
- Area slack bus control simply means that all change in generator/load/losses in the area is made up by the generators at a Single bus.
 - Equivalent to setting participation factors at all generators to zero and then giving a value only to the generators at the Area Slack buses

©2008 PowerWorld Corporation

Injection Group Area Slack Control

- Allows precise specification of how ACE should be maintained for an area
- Specify group of generators and/or loads that should vary for an area to make up for changes in generation, load, and losses
- Participation factors defined with the injection group determine how each element will respond to MW changes in the area

Area Transactions

- MW Transactions are typically used in static power flow studies
 - list only one amount
 - Accessed in the Model Explorer through Aggregations → MW Transactions
- Multiple transactions may be entered for each set of areas, and transaction may be enabled by economics of OPF (covered in later section)

Area Transactions

- Used to quickly set up transactions between an area and
 - another specific area
 - unspecified areas
- Cost and start/stop times are not specified
- Transaction areas must be on area control (Participation Factor, OPF, ED, Area Slack)

Area Transaction Example

- Open B7FLAT, making sure all three areas are on economic dispatch control.
- Right-click near (but not on bus 1) to display the oneline local-menu. Select Area Information Dialog... to display Area Dialog for area TOP.
- In Base Interchange by Area table, set 50 as exports to area 2 and to area 3.

Area Transaction Example

Use the	C Top Area Informa	ation for Cu	rrent Case					
spin	Number 1		Find By Number	Area MW Control Options				
•	Name Top		Find By Name	Participation Factor Col O Economic Dispatch Con Area Slack Bus				
button	Super Area	<u> </u>	Find	O Injection Group Area S O Optimal Power Flow Co				
to view	Info / Interchange Opti	ions Area MW	/ Control Options	OPF Tie Lines Buses 0				
other	-Area Summary Totals-	MW 360.0	Mvar 130.0	Unspecified MW 0.0	AGC Tolerance 0.50			
areas	Generation	367.0	58.5	Transaction MW 0.0	Area Control Error (ACE) 0.0			
	Fixed Bus Shunts Switched Bus Shunts	0.0	0.0		₩ ∰ Records - Set - Columns - 🖅			
	Line Shunts		0.0	Number Name	50.0 YES 1			
	Interchange	0.0	-58.0	3 Right	50.0 YES 1			
	Hourly Cost (\$/hr)	8035						
	🗸 ок	Save	X	Cancel ? Help	Print			
· · · · ·								
Load + losse	es +	Alg	ebraic	sum of	Schedules are also			
interchange	is equal	actu	al flo	w is	Automatically set for			
to generation	n Corporation	equ	al to s	cheduled	areas LEFT and RIG			

Case Information, MW Transactions

• You can also bring up a summary of all the transactions in the case

- Can show in a Matrix or in a List

🕽 Stud	dy MV	/ Transa	ictions								
Matrix o	f Study	/ Transact	ions	dy Transact	ions						
	Area	Num	Area Name	1 (Top)		2 (Left)	3 (Righ	:) /			
1		1	Тор			50.00		50.00			
2		2	Left	-5	0.00						
3		3	Right	-5	0.00						
							/		-		
		💭 Stu	dy MW Tran	saction	s						
		Matrix (of Study Trans	actions L	List of	Study Transa	tions				
			Export Area	a Number	r Exp	port Area Na	me Otl	ner Area	Number	Other Area Name	MW Transfer (Study)
		1		1	l] Top	p			2	Left	50.00
		2		1	l Top	p			3	Right	50.00
			-								,

©2008 PowerWorld Corporation

۹. M

Area Transaction Dialog

- Right-click on the list of transactions and choose Show Dialog
- Transaction MW Amount
- All other options on this dialog only affect the Optimal Power Flow and will be discussed in the OPF section later.

Area control across multiple islands

- Prior to Simulator 13, any Area that spanned multiple islands was always automatically set to AGC = Off
- Simulator 13 and after however does a more extensive error check to allow for more complex situations (this was previously only available in the OPF solution)
 - An area that belongs to multiple islands can be placed on control only if at most one of these islands contains multiple areas.

Multiple Island Area Control : Example for Area #1 Control

This situation occurs for WAPA and ERCOT in Eastern Interconnect cases ©2008 PowerWorld Corporation Multiple Island Area Control : Why control is NOT Allowed

- Not allowed because Simulator doesn't have enough information to know which generation should respond when transactions are specified
 - For example: Area 1 Area 2 transfer
 - Should transfer occur in Island A or Island B?
 - Because Simulator doesn't know, control is NOT allowed

Converting Heat Rate Data into Cost Information in PowerWorld Simulator

•Input Information:

-Average Heat Rate Curve Points [MBtu/(MWhr) vs. MW]-Fuel Cost [\$/MBtu]

Output Information

-Total Cost Curve [\$/hr vs. MW]

Input Data

• Example Heat Rate Curve Points

													Full
		Unit	Cap	Cap	Cap	Cap	Cap	Heat	Heat	Heat	Heat	Heat	Load
ID #	Unit Name	No	Level 1	Level 2	Level 3	Level 4	Level 5	Rate 1	Rate 2	Rate 3	Rate 4	Rate 5	HR
50003	A.B. Paterson	3	14	28	42	56	0	17099	14216	13536	13400	0	13400
50004	A.B. Paterson	4	21.7	43.5	65.2	87	0	14828	12327	11738	11620	0	11620
50005	A.B. Paterson	5	8	12	16	0	0	17916	15532	14800	0	0	14800
50008	Agrilectric	1	2.7	5.5	8.2	11	0	13943	11592	11038	10927	0	10927
50049	Buras GT	8	4.7	9.5	14.2	19	0	25479	18375	16214	15442	0	15442
50146	Gypsy	2	216.9	249.6	360	436		10664	10175	9820	10032		10032
50147	Gypsy	3	325.7	361	412.1	573		10881	10505	10315	10179		10179
50148	Gypsy	1	56.6	103.4	196.9	244		13581	11253	10195	9978		9978
50168	Houma	15	7.65	10.2	11.7	24		14357	11510	11131	12215		12215
50169	Houma	16	14	18.4	20.6	39		14357	11510	11131	12215		12215

Average Heat Rate Curve Graphically

- Average heat rate represents the "efficiency" of the plant at particular operating levels.
 - MBtu = amount of energy or fuel put in
 - MWhr = amount of energy coming out of plant
 Average Heat Rate

Convert To Input-Output Curve by multiplying by the Output

- Input-Output shows the power going into the generator versus the power coming out
 - MBtu/hr = Input Power = fuel being used per hour
 - MW = Output Power

Convert to Cost Curve

- Multiply by the fuel cost in \$/MBtu and add multiple of Variable O&M and Output to convert the inputoutput curve to the cost curve
 - Note slopes are noted below have the equations

Entering Cost Data in Simulator using a cubic cost model

- Enter six parameters:
 - fc = fuel cost
 - $-V_{OM} = variable O&M$
 - -a, b, c, d = coefficients
- The generation cost is then defined as

Generation Cost = $fc * (a + bx + cx^2 + dx^3) + V_{OM}x$

• In order to do this, you would need to curve-fit the input-output curve to determine the coefficients

Entering Cost Data in Simulator using a Piecewise Linear Model

- Because you have individual points on the cost curve, the piecewise linear model is the easiest and most logical to use
 - Note: Simulator OPF uses linear programming to optimize the generation dispatch, therefore it converts cubic curves into piecewise linear models anyway
- To enter a piecewise linear curve, you specify a fixed cost, and then pairs of points corresponding to the slope of the cost curve at various output levels
 - This mimics a "bid" or "offer" curve from a market model

Example Piecewise Linear Data

- Fixed Cost = $x1(fc*hr1+V_{OM})$
 - Cost at lowest output specified by the pairs entered
- Enter pairs of (output, slope) as follows

Minor Change to Set minimum "bid" to a specified output

- From looking at your data, it appears that you have a minimum output in mind for each generator.
- Call this minimum output x0
- To model this assume the first slope stays the same, therefore you must only change the output of the first bid to x0, and change the fixed cost

Fixed Cost [/hr] x1(fc*hr1+V_{OM}) - s1*(x1-x0)

Output [MW]	Slope [\$/MWhr]
x0	s1
x2	s2
x3	s3
x4	s4

Convex Requirement

- Cost curves must be "convex"
 - Required in markets as well
 - You can't sell you "second" block before your first.
 - Required for mathematical reasons
- Convexity for a Piecewise Linear cost model (generator) means that as the output increases, the slopes (or prices) must increase
- Convexity for a Piecewise Linear benefit model (load) means that as the load increases, the slopes must decrease

Example – Generator Cost

Acceptable Curve

Output	Slope
[MW]	[\$/MWhr]
100 MW	20 \$/MWhr
200 MW	24 \$/MWhr
300 MW	26 \$/MWhr
400 MW	28 \$/MWhr

Unacceptable Curve

I8-48

Example – Load Benefit

Acceptable Curve

Output	Slope
[MW]	[\$/MWhr]
100 MW	28 \$/MWhr
200 MW	26 \$/MWhr
300 MW	24 \$/MWhr
400 MW	20 \$/MWhr

Unacceptable Curve

