Transient Stability Analysis with PowerWorld Simulator

T1: Transient Stability Overview, Models and Relationships

2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330

support@powerworld.com http://www.powerworld.com

PowerWorld and Transient Stability

- PowerWorld has been working on transient stability since 2006, with a very simple implementation appearing in Version 12.5 (Glover/Sarma/Overbye book release).
- Some reasons for adding transient stability to PowerWorld
 - Growing need to perform transient stability/short-term voltage stability studies
 - There is a natural fit with PowerWorld we have good expertise in power system information management and visualization and transient stability creates lots of data
 - Fills out PowerWorld's product line

Models and Model Relationships

- Overview of power system modeling in general
- Overview of the different model types supported by Simulator
 - Generator Models
 - Relationships between the different types of generator models
 - Wind Generator Models
 - Relationships for them
 - Also some discussion of Load Models

Time Scale of Dynamic Phenomena

P. Sauer and M. Pai, *Power System Dynamics and Stability*, Stipes Publishing, 2006.

Power Flow vs. Transient Stability

- The power flow is used to determine a quasi steady-state operating condition for a power system
 - Goal is to solve a set of algebraic equations
 - g(y) = 0 [y variables are bus voltage and angle]
 - Models employed reflect the steady-state assumption, such as generator PV buses, constant power loads, LTC transformers.

Power Flow vs. Transient Stability

- Transient stability is used to determine whether following a contingency the power system returns to a steady-state operating point
 - Goal is to solve a set of differential and algebraic equations,
 - dx/dt = f(x,y) [y variables are bus voltage and angle]
 - g(x,y) = 0 [x variables are dynamic state variables]
 - Starts in steady-state, and hopefully returns to a new steady-state.
 - Models reflect the transient stability time frame (up to dozens of seconds)
 - Some values assumed to be slow enough to hold constant (LTC tap changing)
 - Others are still fast enough to treat as algebraic (synchronous machine stator dynamics, voltage source converter dynamics)

PowerWorld Transient Stability Training Philosophy

- In teaching transient stability there are three main areas in which we could focus
 - Theory
 - The theory underlying transient stability, including the models
 - Practice
 - The practical application of transient stability tools
 - Mechanics
 - The mechanics of using the PowerWorld Simulator Transient Stability Add-on
- Obviously some knowledge is needed in all of these areas, but the focus of this training is on the third, then somewhat on the second, with a small amount of coverage of the first.

Physical Structure Power System Components

P. Sauer and M. Pai, *Power System Dynamics and Stability*, Stipes Publishing, 2006.

Transient Stability Models in the Physical Structure

P. Sauer and M. Pai, *Power System Dynamics and Stability*, Stipes Publishing, 2006.

Generator Models

- Generators can have several classes of models assigned to them
 - Machine Models
 - Exciter
 - Governors
 - Stabilizers
- Others also available
 - Excitation limiters, voltage compensation, turbine load controllers, and generator relay model

Generator Models

 P_{elec} = Electrical Power

 Q_{elec} = Electrical Reactive Power

V = Voltage at Terminal Bus

 $\frac{dV}{dt}$ = Derivate of Voltage

 $V_{comp} =$ Compensated Voltage

 P_{mech} = Mechanical Power

 ω (speed) = Rotor Speed (often it's deviation from nominal speed)

 P_{accel} = Accelerating Power

 $V_{stabilizer} =$ Output of Stabilizer

 V_{ref} = Exciter Control Setpoint (determined during initialization)

 P_{ref} = Governor Control Setpoint (determined during initialization)

Machine Models

 P_{elec} = Electrical Power

 Q_{elec} = Electrical Reactive Power

V = Voltage at Terminal Bus

 $\frac{dV}{dt}$ = Derivate of Voltage

 $V_{comp} =$ Compensated Voltage

 P_{mach} = Mechanical Power

 ω (speed) = Rotor Speed (often it's deviation from nominal speed)

 P_{accel} = Accelerating Power

 $V_{stabilizer} = \text{Output of Stabilizer}$

 V_{ref} = Exciter Control Setpoint (determined during initialization)

 P_{ref} = Governor Control Setpoint (determined during initialization)

Machine Models

- The Classical Model (GENCLS)- very simplified
- Represents the machine dynamics as a fixed voltage magnitude behind a transient impedance R_a + jX_d'.

 Used in academic settings because of its simplicity but is not recommended for actual power system studies

More Realistic Models

- PowerWorld Simulator has many more realistic models that can be easily used
 - Many books and papers discuss the details
- Salient pole GENSAL machine model
- Round rotor GENROU model
- Generator with Transient Saliency GENTPF and GENTPJ models
 - These models are becoming required in WECC (Western US and Canada)

GENROU Model

The GENROU model provides a very good approximation for the behavior of a synchronous generator over the dynamics of interest during a transient stability study (up to about 10 Hz). It is used to represent a solid rotor machine with three damper windings.

More than 2/3 of the machines in the 2006 North American Eastern Interconnect case (MMWG) are represented by GENROU models.

Exciter Models

 P_{elec} = Electrical Power

 Q_{elec} = Electrical Reactive Power

V = Voltage at Terminal Bus

 $\frac{dV}{dt}$ = Derivate of Voltage

 V_{comp} = Compensated Voltage

 P_{mech} = Mechanical Power

 ω (speed) = Rotor Speed (often it's deviation from nominal speed)

 P_{accel} = Accelerating Power

 $V_{stabilizer} = \text{Output of Stabilizer}$

 V_{ref} = Exciter Control Setpoint (determined during initialization)

 P_{ref} = Governor Control Setpoint (determined during initialization)

Excitation System Models

- Models must be suitable for modeling severe disturbances as well as large perturbations
- Generally, these are reduced order models that do not represent all of the control loops
- Some model structures were intended to facilitate the use of field test data as a means of obtaining the model parameters
- These models do not generally represent delayed protective and control functions that may come into play in long-term dynamic performance studies

IEEE Standard 421.5, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, Aug. 1992

Excitation System Models

 Excitation subsystems for synchronous machines may include voltage transducer and load compensator, excitation control elements, exciter, and a power system stabilizer

Exciter Models in General

- V_{REF} is the voltage regulator reference signal and is calculated to satisfy the initial operating conditions.
 - In Simulator this will be called the Exciter Setpoint (Vref)
- E_{fd} is the field voltage. Adjusting the field voltage changes the field current and thus the terminal voltage.
- If E_{fd} were a constant, the machine would not have voltage control.
- The exciter systematically adjusts E_{fd} in attempt to maintain the terminal voltage equal to the reference signal.

Typical Exciter Block Diagram

Comments on Typical Exciter

- E_c is the "compensated voltage"
 - Typically this is just the generator terminal voltage
 - Could regulate a point some impedance away (such as half way through the stepup transformer)
 - $E_c = V_t X_{comp} * I_t$
- V_{ref} is the voltage reference
 - Think knob that the generator operator turns to move the voltage higher or lower
- Typical optional feedback signals
 - $-V_s$ is from the stabilizer
 - $-V_{IJFI}$ is from an under excitation limiter
 - $-V_{OFI}$ is from an over excitation limiter

Governor Models

 P_{oloc} = Electrical Power

 Q_{elec} = Electrical Reactive Power

V = Voltage at Terminal Bus

 $\frac{dV}{dt}$ = Derivate of Voltage

 V_{comp} = Compensated Voltage

 ω (speed) = Rotor Speed (often it's deviation from nominal speed)

 P_{accel} = Accelerating Power

 $V_{stabilizer} = \text{Output of Stabilizer}$

 V_{ref} = Exciter Control Setpoint (determined during initialization)

 P_{ref} = Governor Control Setpoint (determined during initialization)

22

Prime Movers and Turbine Models

- Steady-state speed of a synchronous machine determined by the speed of the prime mover that drives its shaft
- Prime mover thus provides a mechanism for controlling the synchronous speed
 - Diesel engines
 - Gasoline engines
 - Steam turbines
 - Hydroturbines
- Prime mover output affects the mechanical torque to the shaft (T_M)

What is a Governor?

- A governor senses the speed (or load) of a prime mover and controls the fuel (or steam) to the prime mover to maintain its speed (or load) at a desired level
- Essentially, a governor ends up controlling the energy source to a prime mover so that it can be used for a specific purpose
- Consider driving a car

 you act as a governor to control the speed under varying driving conditions

Woodward, "Governing Fundamentals and Power Management," Technical Manual 26260, 2004. [Online]. Available: http://www.woodward.com/pubs/pubpage.cfm

Speed Governor Models

- To automatically control speed and hence frequency, need to be able to sense speed or frequency in such a way that it can be compared with a desired value to take a corrective action.
- This is what a speed governor does.
- For example, if a load is removed from the generator, excess power is being supplied to the turbine and the generator will speed up. The steam valve position P_{SV} will decrease and eventually stop the increase in speed.

Droop

- Droop is a decrease in speed setting as load increases.
- Without droop, a load increase causes the engine to slow down. The governor will increase its fuel until the speed has recovered.
- However, there will be an overshoot in speed as it corrects. The governor will then respond and decrease the speed.
- This becomes inherently unstable
- Multiple generator operation
 - Can not allow them all to try to maintain a specified frequency.
 - Also unstable

Return to Nominal Frequency

- Transient Stability Simulations normally do NOT bring the frequency back to nominal (60 Hz)
- The AGC control which act on the order of minutes normally do this
- LCFB1 model is a special model which can also do this

Stabilizer Models

 P_{elec} = Electrical Power

 Q_{elec} = Electrical Reactive Power

V = Voltage at Terminal Bus

 $\frac{dV}{dt}$ = Derivate of Voltage

 V_{comp} = Compensated Voltage

 ω (speed) = Rotor Speed (often it's deviation from nominal speed)

 P_{accel} = Accelerating Power

 $V_{stabilizer} = \text{Output of Stabilizer}$

 V_{ref} = Exciter Control Setpoint (determined during initialization)

 P_{ref} = Governor Control Setpoint (determined during initialization)

Power System Stabilizers (PSS)

- Stabilizing signals are derived from machine speed, terminal frequency, or power
- Should be activated only when low-frequency oscillations develop
- The design is still done on the basis of a Single Machine Infinite Bus (SMIB) system
- Then, the model parameters are tuned on-line in order to suppress local and inter-area modes
- Output signal goes into exciter

Stabilizer Feedback to Exciter

Wind Generator Models

- Wind Turbines do not have an "exciter", "governor", or "stabilizer" built in
- However, modeling is very analogous
 - Wind Machine Model = Machine Model
 - Wind Electrical Model = Exciter
 - Wind Mechanical Model = Governor
 - Wind Pitch Control = Stabilizer
 - Wind Aerodynamic Model = Stabilizer
- Simulator will show wind models listed as though they are Exciters, Governors, and Stabilizers
 - Obviously you should use a synchronous machine exciter in combination with a wind machine model and wind governor!

Load Characteristic Models

- Load fall into two categories in a transient stability
 - Static Load Model
 - Normally a function of voltage and/or frequency

$$P = P_{load} \left(a_1 v^{n_1} + a_2 v^{n_2} + a_3 v^{n_3} \right) \left(1 + a_7 \Delta f \right)$$

$$Q = Q_{load} \left(a_4 v^{n_4} + a_5 v^{n_5} + a_6 v^{n_6} \right) \left(1 + a_8 \Delta f \right)$$

- Discharge Lighting (Fluorescent Lights)
 - Voltage Dependent.
- Dynamic Load Models
 - Induction Motors
- Load Characteristic Models end up being combinations of all these
 - "Complex" load models include all of them in various proportions.