NERC Compliance & PWS

- Tracy Rolstad
 - tracyrolstad@useconsulting.com
 - 360 513 4227
NERC Compliance Issues

- Compliance isn’t new…
 - but the fines are!
 - up to $1 million a day

- Are you compliant?
 - can you PROVE it?

- If it isn’t written down it never happened!
 - the “Gold Standard” for compliance efforts
An Aside about Compliance

- **Submarine Safety (SUBSAFE)**
 - Created after the USS Thresher (SSN-593) was lost
 - She represented the leading edge of US Submarine technology
 - Lost 10 April 1963
 - 117 crew & 17 civilians died

- **Investigation focus areas**
 - Documentation, processes, design, etc
 - No compliance program was in place at the time!
Investigation Results

- Deficient Specifications
- Deficient Shipbuilding and Maintenance Practices
- Incomplete or Non-Existent Records
 - Work Accomplished
 - Critical Materials
 - Critical Processes
- Deficient Operational Procedures
SUBSAFE Program Success

1915 – 1963
16 submarines lost to non-combat causes

1915: USS F-4 (SS-23)
1917: USS F-4 (SS-20)
1920: USS H-1 (SS-28)
1923: USS O-5 (SS-66)
1926: USS S-51 (SS-162)
1927: USS S-4 (SS-109)
1939: USS SQUALUS (SS-192)
1941: USS O-9 (SS-70)
1942: USS S-26 (SS-131)
1943: USS R-12 (SS-89)
1944: USS S-28 (SS-133)
1949: USS COCHINO (SS-345)
1958: USS STICKLEBACK (SS-415)
1963: USS THRESHER (SSN-593)

1963 - Present
1 submarine lost to non-combat causes

1968: USS SCORPION (SSN-598)
- SCORPION was not SUBSAFE certified
- Loss would not have been prevented by the SUBSAFE Program
- Lost due to weapon malfunction

NO SUBSAFE-CERTIFIED SUBMARINE HAS EVER BEEN LOST

SUBSAFE Program inception after THRESHER was lost
Objective Quality Evidence (OQE)

- Compliance is strictly based on OQE
 - OQE is any statement of fact pertaining to the quality of a product or service based on observations, measurements, or tests which can be verified.
 - either quantitative or qualitative
 - OQE is defined from technical requirements
 - Based on the integrity & responsibility of individuals
 - OQE provides verifiable evidence that deliberate steps were taken to comply with requirements
System Performance Following Loss of Two or More Bulk Electric System Elements

- Not just common mode outages
 - In the past only double circuits were examined
- “Be supported by a current or past study…”
- “[provide] rationale for contingencies selected for evaluation…”
- Studies need to be conducted annually

OUCH!
Avista

■ Recent audit
 • “Dinged” on TPL-003
 • Past experience deemed to be “not good enough”
 • Auditors wanted to see study plans and study reports
 • In other words, DOCUMENTATION
 • They were looking for N-1-1 studies
 • This included non Avista transmission outages (i.e. BPA)

■ The solution?
 • PowerWorld contingency and sensitivity tools
 • Mitigation plan…
Get Smart—Document!

Review all possible WECC N-2 contingencies?

- **How?**
 - Contingency Analysis tool
 - Using 07HS2a WECC operating case
 - 15,032 buses
 - 17,434 lines
 - Auto insert N-2 (lines only…)

- **NO WAY!**
Ok, our first run at this is nuts, but…

- Write it down!
 - You did write or are writing a study plan, correct?
 - Step 1: Examine all possible N-2 ctgs
 - Reject this because 83,547,200 ctgs will take:
 - 1.23 years using DC load flow
 - 3.87 years using AC load flow
 - Step 2: Be smart, use filters and sensitivity tools
 - Look at just AVA N-2
 - Still reject at 38,266 ctgs…
 - Bound the problem
Sensitivity Tools

- Line Outage Distribution Factors
- High voltages affect lower
 - Usually anyway
- Power Transfer Distribution Factors
- Flow and Voltage Sensitivity Tools
- Geography Matters
 - Usually—electrically close is the true measure
 - Overbuilt 500 kV is BPA’s stuff…
Use Advanced LODF Tool

- Setup contingencies
 - All BPA 500 kV
- Monitor only AVA
- Run Advanced LODF
- Get Results
Down to nine BPA 500 kV

- MONITORED BRANCH 48025 40090 5 ! FLOW = -241.8753 MW LODF = 13.0443 "BEACON N-BELL S3"
- MONITORED BRANCH 48031 40092 4 ! FLOW = -245.8484 MW LODF = 15.3067 "BEACON S-BELL S4"
- MONITORED BRANCH 48463 41275 1 ! FLOW = -126.5984 MW LODF = 13.2479 "WEST-WESTBPA1"
- MONITORED BRANCH 48463 41276 1 ! FLOW = -17.2859 MW LODF = 14.1433 "WEST-WESTBPA2"
- MONITORED BRANCH 48524 48031 1 ! FLOW = -212.7717 MW LODF = 18.7463 "BOULDER-BEACON S"
- MONITORED BRANCH 48524 48037 1 ! FLOW = 185.0494 MW LODF = -19.1694 "BOULDER-BENEWAH"
- CONTINGENCY
 40091 40092 1 ! Flow = -324.3445 MW "BELL BPA-BELL S4"
- END
- !
- MONITORED BRANCH 48463 41276 1 ! FLOW = -17.2859 MW LODF = 11.3221 "WEST-WESTBPA2"
- CONTINGENCY
 40091 40287 6 ! Flow = 114.9703 MW "BELL BPA-COULEE"
- END
- !
- MONITORED BRANCH 48025 40090 5 ! FLOW = -241.8753 MW LODF = -10.6887 "BEACON N-BELL S3"
- MONITORED BRANCH 48031 40092 4 ! FLOW = -245.8484 MW LODF = -12.0318 "BEACON S-BELL S4"
- MONITORED BRANCH 48524 48031 1 ! FLOW = -212.7717 MW LODF = -16.0771 "BOULDER-BEACON S"
- MONITORED BRANCH 48524 48037 1 ! FLOW = 185.0494 MW LODF = -15.5627 "BOULDER-BENEWAH"
- CONTINGENCY
 40091 41060 1 ! Flow = 209.3742 MW "BELL BPA-BELTAF11"
- ctc
Use PWS to generate numbers

Explain the process

- Evaluated ALL N-2’s—rejected these
 - 83,547,200 possible contingencies (noncompliant due to time required to study!)

- Used sensitivity tools to get down to 9 foreign lines that need to be accounted for
 - Still a chunk of studies, but it is tractable enough

Write this DOWN. Write a study plan and a study report.
Write to the Standard

- Name your studies using the Standards
 - Make it EASY to audit!

- Example Report Titles
 - System Performance Under Normal Conditions
 - System Performance Following Loss of a Single BES Element
 - System Performance Following Loss of a Two or More BES Elements
 - System Performance Following Extreme BES Events
CIP-002 Critical Cyber Asset

- Critical “Cyber(?)” Assets
 - Ha! There is nothing cyber about critical assets…

- CIP-002, R1
 - Critical Asset Identification Method — The Responsible Entity shall identify and document a risk-based assessment methodology to use to identify its Critical Assets.
 - What are you using?
 - Probably voltage, size, and a panel of expert staff…
 - Not easily quantified is it?
Use PWS to ID Critical Assets

- Not to pick on our host...

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Area</th>
<th>Nom kV</th>
<th>MW Throughflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>98537</td>
<td>6WATFRD</td>
<td>EES</td>
<td>230</td>
<td>2008.81672</td>
</tr>
<tr>
<td>99486</td>
<td>8ANO 50</td>
<td>EES</td>
<td>500</td>
<td>1899.19586</td>
</tr>
<tr>
<td>99340</td>
<td>8WH BLF</td>
<td>EES</td>
<td>500</td>
<td>1656.12831</td>
</tr>
<tr>
<td>98606</td>
<td>69MILE</td>
<td>EES</td>
<td>230</td>
<td>1350.48656</td>
</tr>
<tr>
<td>98954</td>
<td>GGULF</td>
<td>EES</td>
<td>21</td>
<td>1322.00003</td>
</tr>
<tr>
<td>98952</td>
<td>8G.GULF</td>
<td>EES</td>
<td>500</td>
<td>1321.99831</td>
</tr>
<tr>
<td>99742</td>
<td>8DELL 5</td>
<td>EES</td>
<td>500</td>
<td>1213.96589</td>
</tr>
<tr>
<td>98235</td>
<td>8MCKNT</td>
<td>EES</td>
<td>500</td>
<td>1210.65931</td>
</tr>
<tr>
<td>98538</td>
<td>WAT U3</td>
<td>EES</td>
<td>25</td>
<td>1197.00012</td>
</tr>
<tr>
<td>99027</td>
<td>8FRKLIN</td>
<td>EES</td>
<td>500</td>
<td>1124.6314</td>
</tr>
</tbody>
</table>
Critical Facilities for Entergy?

- Facilities
 - 6WATRFRD—Waterford
 - 8ANO 50—Arkansas Nuclear One
 - 8WH BLF—White Bluff (fossil)
 - 69MILE—Nine Mile Point (fossil)
 - 8G.GULF—Grand Gulf
 - 8DELL 5—Dell
 - 8MCKNT—McKnight
 - 8FRKLIN—Franklin
Conclusions

- Compliance means documentation
- Documentation is good!
 - Aids in training
 - Corporate memory
 - Brings rigor and review to study processes
 - Feeds the compliance “monster”
 - This monster is a most unique form of herbivore
 - Lives on paper or its digital equivalent
- PWS WILL help feed the monster…
Questions

- Tracy Rolstad
 - tracyrolstad@useconsulting.com
 - 360 513 4227