Wind Turbine Models in PowerWorld Simulator

WECC MVWG Workshop
June 17, 2014
Jamie Weber, Ph.D.
Director of Software Development
weber@powerworld.com
217 384 6330 ext 13

2001 South First Street
Champaign, Illinois 61820
+1 (217) 384.6330

support@powerworld.com
http://www.powerworld.com
Power Flow Models of Renewable Generation Plants

• Abe presented this morning
 – Build out the equivalent of the collector system
 – Represent the plant as a generator

• For a software user, the only difference is the reactive capability curve
 – Users can enter a piecewise linear curve
 – Users can also specify a “wind control mode”
 • Boundary control
 • Constant power factor
Mvar Capability Curves: Piecewise Linear Curve
Mvar Capability Curves: Wind Control Mode = Boundary
Modular Approach to Generator Modeling in Transient Stability

• Industry has always used a modular approach for generator models
 – Machine
 – Exciter
 – Governor
 – Stabilizer
 – Under Excitation Limiter
 – Over Excitation Limiter
 – Relay Model
 • GP1, LHFRT, LHVRT
 – Compensator Model
 • Often is part of the machine model, but can also be a separate model
 • The old BPA IPF program models included this in the Exciter model
“Traditional”
Synchronous Machine Modules

Network

- Over/Under Excitation Limiter
- Voltage Compensation

Exciter

- Vref
- UEL/OEL
- Efield

Machine

- Iq
- Ip

Stabilizer

- Vs

Governor

- Pref

- ActualPmech

Relay Models
Modular Approach to Generator Modeling

• First generation wind turbine models stuck with this structure
 – Added additional signals to pass between modules
 – Don’t get hung up on nomenclature “Exciter” just means the electrical control

• Unrelated to wind turbine modeling, another module was added for better modeling of large steam plants
 – LCFB1 – extra controller feeding the governor allowing control of Pref
LCFB1 model: Controller for Pref
First Generation Type 3 Wind Turbine (WT3G, WT3E, WT3T, WT3P)

2nd Generation will add more control features up here!

2 Machine Model inputs now. They are current orders requested of the voltage source converter.

Several new signals passing around.
Limitations of First Generation Wind Models

• First Generation model had few mechanisms to provide control features of
 – Real Power or Torque Control
 – Reactive Power
 – Voltage Control
 – For First Generation models, the wind turbine basically tried to bring values back to the initial condition
 • Pref bring power back to initial Power
 • Qref or Vref or PowerFactorRec
Comparing First and Second Generation Models

• Many parts actually change very little
 – “Machine”: Voltage Source Converter model of the generator is nearly identical
 • REGC_A is pretty much the same as WT3G/WT4G
 – “Governor”: Mechanical Model of wind turbine is identical
 • Combination of WTGT_A and WTGAR_A is identical to WT3T
 – “Stabilizer”: Pitch Control model has only a small addition
 • WT3P is pretty much same as WTGPT_A

• What’s Different – Control System Models
 – The WT3E and WT4E models essentially embedded voltage control and power control inside the model
 – This is now split into separate models
 • REEC_A: models only control with setpoints are as inputs to this model. Control features a little more flexible than the WT3E and WT4E models
 • WTGTRQ_A: control system resulting in the output of PRef
 • REPC_A: control system resulting in output of both a P and V/Q signal
2nd Generation will add more control features up here!

2 Machine Model inputs now. They are current orders requested of the voltage source converter.

Several new signals passing around.
2nd Generation Type 3 Wind Turbine
(REGC_A, REEC_A, WTGT_A, WTGAR_A, WTGPT_A, WTGTRQ_A, REPC_A)

2nd Generation adds the Aero, PRef and Plant Controllers

Plant Level Controller REPC_A

PRef Controller WTGTRQ_A

Pref

Pref0

ωref

Stabilizer WTGPT_A

Exciter REEC_A

wref

Vcomp

Network

Voltage Compensation

Pref

Qref/Vref

Governor WTGT_A

Aero WTGAR_A

Pm

Pord

Iqord

Iq

Ip

Iq

Ip
First Generation Type 4 Wind Turbine (WT4G, WT4E, WT4T)

2nd Generation will add more control features up here!

Legacy “Governor” WT4T
This really acts like the new PRef controller

We will leave it in the toolbox as a “Governor” anyway
2nd Generation Type 4 Wind Turbine (REGC_A, REEC_A, WTGT_A, REPC_A)

Note: If REEC_A parameter Pflag = 0, then WTGT_A really doesn’t do anything so it can be omitted completely.
Software Implementation

• PowerWorld has kept the existing general classes of generator models
 – Machine (Generator/Converter Model)
 – Exciter (P and Q controller)
 – Governor (Drive Train)
 – Stabilizer (Pitch Control)
 – Relay Model
 – Under Excitation Limiter
 – Over Excitation Limiter
 – Compensator Model

• Added 3 new types of generator modules
 – Aerodynamic Model
 – Pref Controller
 – Plant Controller
Scope of new Modules

• Aerodynamic Model
 – Can only be used with Type 3 wind turbine

• Pref Controller
 – Can be used with any type of generator
 – Existing model LCFB1 is now a Pref Controller
 – Pref Signal Output
 • Feeds into Governor if governor accepts Pref
 • Else feeds into Exciter if exciter accepts Pref

• Plant Controller
 – Can be used with any type of generator
 – Existing model PLAYINREF is now a Plant Controller
 – Vref/Qref Signal Output
 • Vref/Qref signal will feed into Exciter if the exciter accepts it
 – Pref Signal Output
 • Pref feeds into Pref Controller if it exists
 • Else feeds into Governor if governor accepts Pref
 • Else feeds into Exciter if exciter accepts Pref
Error Checking

• Error checking is performed when validation is done
 – Ensure there is only 1 Pref controller defined
 – Ensure there is only 1 Plant controller defined
 – Ensure there is only 1 Aerodynamic model
 • Also note, if an aerodynamic model is required between the stabilizer and the governor (WTGPT_A and WTGT_A), but one is not defined, Simulator assumes a WTGAR_A exists with $K_a = 0.007$ and $\Theta = 0$

• General error checking is done to make sure the model mix makes sense
 – GENTPF can’t have a REEC_A “exciter”
Initialization Notes

• Because of the way these various blocks connect together, the initialization order of the blocks important
 – Example: the “initial speed” of the wind turbine is calculated in different places
 • For 1st Gen Type 3 \(\rightarrow \) WT3E (Exciter)
 • For 2nd Gen Type 3 \(\rightarrow \) WTGTRQ_A (PRef controller)
 • For 2nd Gen Type 4 \(\rightarrow \) WTGT_A (Governor)
 – This is all handled internally by Simulator so the user does not need to be concerned with the order
Where does it appear in GUI

- Machine, Exciter, Governor, and Stabilizer remain prominent
- *Other Models* contain the other categories of modules
- You see it in the Model Explorer
- When inserting a new *Other Model* from the generator dialog
- Plot Designer in Transient Stability Dialog
Model Explorer
Plot Designer
Implementation Status: PowerWorld Simulator 18

• All of the following models were released in Version 18 of PowerWorld Simulator

• New Renewable Models
 – Type 3 Wind Turbine
 • REGC_A, REEC_A, WTGT_A, W TGPT_A, WTGAR_A, REPC_A, WTGTRQ_A
 – Type 4 Wind Turbine
 • REGC_A, REEC_A, WTGT_A, REPC_A
 – Solar PV Models
 • REGC_A, REEC_B, REPC_A
 – REEC_B is just a variation of REEC_A with less parameters and features
 – New Pitch Control for Type 1 and 2 Wind Turbines
 • WT1P_B
Demonstration

• Pouyan Pourbeik created a small system to test these models in October 2013

Model the wind turbine on the left and then an infinite bus on the right

Testing is showing agreement among all software treatment of the new models
Sample Results

Set1, Type 4 Torsion.pwb
Fault 4 X=0.100

October 14, 2013 12:43:20
Sample Simulations

• Ryan Elliot from Sandia National Labs made some more sample simulation results to compare to for this meeting
 – RenewableDemo.epc
 – pv_plant_generic.dyd
 – wtg_generic_type3.dyd
 – wtg_generic_type4.dyd

• You can open these directly in PowerWorld Simulator
 – File>Open Case>
 – File>Load Transient Stability Data>
Demonstration in Simulator

- A Knowledge Base article is available on the PowerWorld Corporation website which goes through this example.