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ABSTRACT

In this thesis, a Newton-based optimal power flow (OPF) is developed for implementation

into a power system simulation environment.  The OPF performs all system control while

maintaining system security.  System controls include generator megawatt outputs, transformer

taps, and transformer phase shifts, while maintenance of system security ensures that no power

system component’s limits are violated.  Special attention is paid to the heuristics important to

creating an OPF which achieves solution in a rapid manner.  Finally, sample applications of the

OPF are discussed.  These include transmission line overload removal, transmission system

control, available transfer capability calculation (ATC), real and reactive power pricing,

transmission component valuation, and transmission system marginal pricing.
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NOTATION

Throughout this thesis, variables that do not have a subscript next to them may be considered

vectors or matrices, while all variables that refer to a scalar will have a subscript next to them.

Vk Magnitude of voltage at bus k.

δ k Angle of voltage at bus k.

tkm Transformer tap ratio between buses k and m.

α km Transformer phase shift between buses k and m.

PGk The real power generated at bus k.

bkm Element of the imaginary part of the network admittance matrix.

gkm Element of the real part of network admittance matrix.

ykm Magnitude of an element of the network admittance matrix.

δ km Phasor angle of an element of the network admittance matrix.

Pk Real power injection at bus k.

Qk Reactive power injection at bus k.

Pkm The real power flow from bus k to bus m.

Qkm The reactive power flow from bus k to bus m.

Skm The MVA flow from bus k to bus m.

Pint The real power interchange for an area.

Psched The scheduled real power interchange for an area.

f(• ) The objective function.

g(• ) Equality constraints.

h(• ) Inequality constraints.

L(•) The Lagrange function or Lagrangian.

H(•) The Hessian of the Lagrangian.

∇L(•) The gradient of the Lagrangian.

ai, bi, and ci, Coefficients for the quadratic cost curve of a generator

Xmax Signifies a maximum bound on a variable.
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Xmin Signifies a minimum bound on a variable.

µ In general, this is a Lagrange multiplier for an equality constraint.

λ In general, this is a Lagrange multiplier for an inequality constraint.

List of Lagrange multipliers

µ Pk For Pk, the real power injection at bus k.

µ Qk For Qk, the reactive power injection at bus k.

µ viset For generator voltage set point.

µ int For generator voltage set point.

λ Skm For MVA constraint on line from bus k to m.

λ PGih For generator maximum power output constraint at bus i.

λ PGil For generator minimum power output constraint at bus i.

λ Vih For maximum bus voltage constraint at bus i.

λ Vil For minimum bus voltage constraint at bus i.

λ tkm max For maximum transformer tap ratio constraint .

λ tkm min For minimum transformer tap ratio constraint.

λ αkm max For maximum transformer phase shift constraint.

λ αkm min For minimum transformer phase shift constraint.
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1. INTRODUCTION

1.1 Motivation

Throughout the entire world, the electric power industry has undergone a considerable change

in the past decade and will continue to do so for the next several decades.  In the past the electric

power industry has been either a government-controlled or a government-regulated industry

which existed as a monopoly in its service region.  All people, businesses, and industries were

required to purchase their power from the local monopolistic power company.  This was not only

a legal requirement, but a physical engineering requirement as well.  It just didn’t appear feasible

to duplicate the resources required to connect everyone to the power grid.

Over the past decade, however, countries have begun to split up these monopolies in favor of

the free market.  Numerous papers and articles have been written on this topic with a good

overview of the topic found in a series of articles written for IEEE Spectrum in July and August

of 1996 [1 - 6].  In the United States, the change from the regulated monopoly to the free market

system has become known as restructuring.  For the remainder of this thesis, it will be referred to

as restructuring.

One of the cornerstones of any restructuring plan is the ability to operate the transmission

system in a manner which is fair to all participants in the industry.  In the United States, the

Federal Energy Regulatory Commission (FERC) oversees issues involving the transmission

system.  FERC presently believes that the only manner in which everyone will be on an equal

playing field is to create open access to all.  As stated in [7], “participants in wholesale power

markets will have non-discriminatory open access to the transmission systems of public utilities.”
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In order to achieve the ideal of open access, many outstanding engineering problems will need to

be investigated and tools created for their solution.

It is very important that these problems be addressed early in the restructuring process.  If

these engineering problems become overshadowed by short term economic concerns, then the

result could be decreased electricity reliability.  In the past year, the western United States has

seen the consequences of pushing the transmission system too hard on two separate occasions.

The two multistate blackouts in the Western States Coordinating Council (WSCC) system in the

last several months may be destined to repeat themselves [8].

In a presently unpublished report from a joint PSERC/EPRI workshop, many of these tools

were identified [9].  A partial list of problems that can be addressed from the work done in this

thesis follows:

 Control Problems
• Computation of real-time available transfer capability (ATC)
• Real-time control of power flows
• Tools to relieve congestion in fair, justifiable and economic manner
• Tools for congestion management (including congestion pricing)
• Tools for determining the ISO action before the contingency occurs
 
 Economic Problems
• Real-time pricing and price risk management services
• Tools for operating the power system in the most economical manner
• Transaction evaluation tools that enable players to evaluate their own costs
• Methodologies for determining the value (cost) of ancillary services in improving

efficiency and flexibility
 
 User-Interface and Simulation Problems
• Market simulation models
• Better tools for communication and display of information will permit the better

operation of the min ISO scenario
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The work presented in this thesis utilizes an optimal power flow program, OPF, as the tool

for solving these problems.  The OPF is a natural choice for addressing these concerns because it

is basically an optimal control problem.  The OPF utilizes all control variables to help minimize

the costs of the power system operation.  It also yields valuable economic information and insight

into the power system.  In these ways, the OPF very adeptly addresses both the control and

economic problems.

After creating the OPF program, the user-interface and simulation problems may also be

addressed by implementing the OPF into a power system simulator.  In this way, the results of

the economic and control operations of the OPF can easily be utilized by the user of the program.

1.2 Literature Survey

The optimal power flow problem has been discussed since its introduction by Carpentier in

1962 [10].  Because the OPF is a very large, non-linear mathematical programming problem, it

has taken decades to develop efficient algorithms for its solution.  Many different mathematical

techniques have been employed for its solution.  The majority of the techniques discussed in the

literature use one of the following five methods [11, p.517]:

• Lambda iteration method  -  Also called the equal incremental cost criterion (EICC)

method.  This method has its roots in the common method of economic dispatch used

since the 1930s.   See [11, p. 39 ]

• Gradient method  - See paper written by Dommel and Tinney [12]

• Newton’s method  -  See paper by Sun et al. [13]

• Linear programming method  -  See paper by Alsac et al. [14]

• Interior point method  -  See paper by Wu, Debs, and Marsten [15]
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An excellent literature survey of the different techniques can be found in a paper by Huneault and

Galieana published in 1991 [16].  Though it does not discuss the interior point method, it does

make reference to over 150 papers on the optimal power flow problem covering all the other

methods for solving the OPF.

This thesis will explore the application of Newton’s method to the OPF problem.

Specifically, it will explore the implementation of a Newton’s method based OPF in the power

system simulator POWERWORLD [17].

1.3 Goals of the OPF

Before beginning the creation of an OPF, it is useful to consider the goals that the OPF will

need to accomplish.  The primary goal of a generic OPF is to minimize the costs of meeting the

load demand for a power system while maintaining the security of the system.  The costs

associated with the power system may depend on the situation, but in general they can be

attributed to the cost of generating power (megawatts) at each generator.  From the viewpoint of

an OPF, the maintenance of system security requires keeping each device in the power system

within its desired operation range at steady-state.  This will include maximum and minimum

outputs for generators, maximum MVA flows on transmission lines and transformers, as well as

keeping system bus voltages within specified ranges.  It should be noted that the OPF only

addresses steady-state operation of the power system.  Topics such as transient stability, dynamic

stability, and steady-state contingency analysis are not addressed.
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To achieve these goals, the OPF will perform all the steady-state control functions of the

power system.  These functions may include generator control and transmission system control.

For generators, the OPF will control generator MW outputs as well as generator voltage.  For the

transmission system, the OPF may control the tap ratio or phase shift angle for variable

transformers, switched shunt control, and all other flexible ac transmission system (FACTS)

devices.

A secondary goal of an OPF is the determination of system marginal cost data.  This marginal

cost data can aid in the pricing of MW transactions as well as the pricing ancillary services such

as voltage support through MVAR support.  In solving the OPF using Newton’s method, the

marginal cost data are determined as a by-product of the solution technique.  This will be

discussed later in Section 2.4 on page 22.

1.4 Overview

The OPF program written in conjunction with this thesis uses Newton’s method as its

solution algorithm.  It will tackle all of the goals set forth for an OPF except the control of

switched shunts and other FACTS devices.  The control of these may be added at a later time as

desired.

The remainder of this thesis will discuss the development of the OPF.  Chapter 2 of this

thesis will discuss the theory of the Newton-based optimal power flow.  It will lay a framework

for the mathematics and engineering behind the OPF computer source code.  Chapter 3 will

discuss some special heuristics important to creating an OPF which achieves solution in a rapid

manner.  Chapter 4 will show several sample applications of the OPF.  The sample applications
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discussed will include transmission line overload removal, transmission system control, available

transfer capability (ATC) calculations, real and reactive power pricing, transmission component

valuation, and transmission system marginal pricing.  Finally, Chapter 5 will conclude with a

summary and several improvements which would aid in creating a truly useful OPF.
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2. DEVELOPMENT OF NEWTON-BASED OPTIMAL POWER FLOW

2.1 Background on Newton’s Method

Newton’s method is well-known in the area of power systems.  It has been the standard

solution algorithm for the power flow problem for decades [18].  A good reference for the theory

of Newton’s method is a book by Luenberger [19], which  describes Newton’s method as well as

its quadratic convergence properties.  The detailed explanation in [19] is left to the interested

reader.  This thesis will only cover the process of applying Newton’s method to a minimization

problem such as the OPF.

Newton’s method is a very powerful solution algorithm because of its rapid convergence near

the solution.  This property is especially useful for power system applications because an initial

guess near the solution is easily attained.  System voltages will be near rated system values,

generator outputs can be estimated from historical data, and transformer tap ratios will be near

1.0 p.u.

2.1.1 Problem statement

A general minimization problem can be written in the following form.

Minimize (the objective function)

subject to: (equality constraints)

(inequality constraints)

f(x)

h (x) = , i = , , . . . , m

g (x)  , j = , , . . . , n
i

j

0 1 2

0 1 2≤

There are m equality constraints and n inequality constraints and the number of variables is equal

to the dimension of the vector x.
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2.1.2 Development of Lagrangian, gradient and Hessian

The solution of this problem by Newton’s method requires the creation of the Lagrangian as

shown below.

( ) ( ) ( ) ( )L z f x h x g xT T= + + =µ λ   the Lagrangian

where [ ]z x
T

= µ λ , µ and λ are vectors of the Lagrange multipliers, and g(x) only

includes the active (or binding) inequality constraints.

A gradient and Hessian of the Lagrangian may then be defined.

Gradient = ∇L(z) = 
∂

∂










L z

zi

( )
 = a vector of the first partial derivatives of the Lagrangian

Hessian = ∇2L(z) = H =
∂
∂ ∂













2 L z

z zi j

( )
=

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂
∂
∂ ∂

























2 2 2

2

2

0 0

0 0

L z

x x

L z

x

L z

x

L z

x

L z

x

i j i j i j

i j

i j

( ) ( ) ( )

( )

( )

µ λ

µ

λ

 =

Note the extremely sparse structure of the Hessian matrix shown.  This sparsity will be exploited

in the solution algorithm.

From this, according to optimization theory, the Kuhn-Tucker necessary conditions of

optimality are [19, p. 314]:

∇x L(z*) = ∇x L([x *, λ*, µ*]) = 0;
∇λ L(z*) = ∇λ L([x *, λ*, µ*]) = 0;
∇µ L(z*) = ∇µ L([x *, λ*, µ*]) = 0;

λ i
* ≥ 0  if g(x*) = 0 (i.e., the inequality constraint is active)

λ i
 * = 0 if g(x*) ≤ 0 (i.e., the inequality constraint is not active)

µ i
 * = Real

where z* = [x*, λ*, µ*] is the optimal solution.

Thus solving the equation ∇z L(z*) = 0 will yield the optimal problem solution.

a matrix of the
second partial
derivatives of
the Lagrangian
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2.1.3 Application of inequality constraints

It should be noted that special attention must be paid to the inequality constraints of this

problem.  As noted, the Lagrangian only includes those inequalities that are being enforced.  For

example, if a bus voltage is within the desired operating range, then there is no need to activate

the inequality constraint associated with that bus voltage.  For this Newton’s method

formulation, the inequality constraints will be handled by separating them into two sets:  active

and inactive [19, p. 326].  For efficient algorithms, the determination of those inequality

constraints that are active is of utmost importance.  While an inequality constraint is being

enforced, the sign of its associated Lagrange multiplier at solution determines whether continued

enforcement of the constraint is necessary.  Essentially the Lagrange multiplier is the negative of

the derivative of the function that is being minimized with respect to the enforced constraint (see

Appendix A for a derivation of this fact).  Therefore, if the multiplier is positive, continued

enforcement will result in a decrease of the function, and enforcement is thus maintained.  If it is

negative, then enforcement will result in an increase of the function, and enforcement is thus

stopped.  The outer loop of the flow chart in Figure 2.1 performs this search for the binding or

active constraints.

2.1.4 Solution method

Considering the issues discussed above, the solution of the minimization problem can be

found by applying Newton’s method to ∇z L(z) = 0.  A flowchart of this process is shown in

Figure 2.1.  This flowchart will be useful for any generic minimization problem.  A more detailed
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discussion of this flowchart will be reserved for the following section.  There the application of

Newton’s method to the optimal power flow problem will be discussed.

Make initial guess of
vector z = [ x µ λ ]T

and which inequality
constraints to enforce.

Calculate the Hessian
and gradient of the
Lagrangian

Create the Lagrangian
given the active
inequality constraints.

Solve the equation
[H] ∆z = ∇L(z)

for ∆z

Calculate new z
 znew = zold - ∆z

Check
tolerance

||∆z||< ε

Are correct
inequalities
enforced?

Problem Completed

YES

NO

YES

Determine new set of
inequalities to
enforce using
Lagrange multipliers

NO

Figure 2.1  Newton's Method Flowchart
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2.2 Application of Newton’s Method to OPF

As discussed in Section 1.3, the goal of the OPF is to minimize the costs of meeting the load

demand for a power system while maintaining the security of the system.  This section of the

thesis will discuss the application of Newton’s method in a manner that will achieve this desired

goal.

First, the objective function, f(x), will be introduced.  It will reflect the desire to minimize the

costs of the system.  Then the equality and inequality constraints will be discussed.  These

constraints model the physical laws of the power system as well as the need to maintain system

security.  At this point, the concept of soft constraints using penalty functions will be introduced.

Penalty functions also model the need to maintain system security.  Finally, all terms in the

Lagrangian, gradient, and Hessian will be summarized.

2.2.1 The objective function

The objective function for the OPF reflects the costs associated with generating power in the

system.  The quadratic cost model for generation of power will be utilized:

C a b P c PP i i Gi i GiGi
= + + 2

where PGi is the amount of generation in megawatts at generator i.  The objective function for the

entire power system can then be written as the sum of the quadratic cost model at each generator.

( )f x a b P c Pi i Gi i Gi
i

( ) = + +∑ 2

This objective function will minimize the total system costs, and does not necessarily minimize

the costs for a particular area within the power system.
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2.2.2 Equality constraints

The equality constraints of the OPF reflect the physics of the power system as well as the

desired voltage set points throughout the system.  The physics of the power system are enforced

through the power flow equations which require that the net injection of real and reactive power

at each bus sum to zero.

( ) ( )[ ][ ]
( ) ( )[ ][ ]

P V V g b P P

Q V V g b Q Q

k k m km k m km k m
m

N

Gk Lk

k k m km k m km k m
m

N

Gk Lk

= = − + − − +

= = − − − − +

=

=

∑

∑

0

0

1

1

cos sin

sin cos

δ δ δ δ

δ δ δ δ

For a derivation of the power flow equations see Grainger and Stevenson [20, p. 330].  For an

explanation of forming the network admittance matrix see Grainger and Stevenson [20, p. 33].

It is also common for the power system operators to have voltage set points for each

generator.  In this case, an equality constraint for each generator is added.

V VGi Gi setpo− =int 0

Finally, for multiarea power systems, a contractual constraint requires that the net power

interchange be equal to the scheduled power interchange.  This adds an equality constraint for all

but one area.

[ ]P P P Pkminterchange sceduled interchange
tie lines

sceduled interchange− = − =∑ 0

This last area must not have the equality constraint and essentially becomes a “slack area.”

Consider a simple three-area system with scheduled interchanges as shown in  Figure 2.1.  With

the loads given and the interchanges constrained for two areas, the last area will be forced to have

its interchanges set as planned.  Thus, adding another constraint is not needed.  Indeed, it will
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cause numerical problems if added because the equations associated with this constraint are

dependent on the other interchange constraints and would thus lead to a singular Hessian matrix.

AREA
ONE

AREA
TWO

AREA
THREE

P12intP13int

P23int

Load1

Load2
Load3

Figure 2.1  Multiarea System with Scheduled Interchanges

2.2.3 Inequality constraints

The inequality constraints of the OPF reflect the limits on physical devices in the power

system as well as the limits created to ensure system security.  Physical devices that require

enforcement of limits include generators, tap changing transformers, and phase shifting

transformers.  This section will lay out all the necessary inequality constraints needed for the

OPF implemented in this thesis.

Generators have maximum and minimum output powers and reactive powers which add

inequality constraints.

P P P

Q Q Q

Gi Gi Gi

Gi Gi Gi

min max

min max

≤ ≤

≤ ≤
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Load tap changing transformers have a maximum and a minimum tap ratio which can be

achieved and phase shifting transformers have a maximum and a minimum phase shift, which

can be achieved.  Both of these create inequality constraints.

t t tkm km km

km km km

min max

min max

≤ ≤

≤ ≤α α α

For the maintenance of system security, power systems have transmission line as well as

transformer MVA ratings.  These ratings may come from thermal ratings (current ratings) of

conductors, or they may be set to a level due to system stability concerns.  The determination of

these MVA ratings will not be of concern in this thesis.  It is assumed that they are given.

Regardless, these MVA ratings will result in another inequality constraint.  To make the

mathematics less complex, the constraint used in the OPF will limit the square of the MVA flow

on a transformer or transmission line.

S Skm km

2 2

0− ≤max

To maintain the quality of electrical service and system security, bus voltages usually have

maximum and minimum magnitudes.  These limits again require the addition of inequality

constraints.

V V Vi i imin max≤ ≤

2.2.4 Soft constraints by using penalty functions

One issue sometimes encountered when trying to solve a minimization problem is the non-

existence of a feasible solution.  Essentially this means that too many constraints have been

added to the problem and no solution exists which obeys all of the constraints.  One way to avoid
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this issue is to implement soft inequality constraints in the form of penalty functions.  The word

“soft” signifies that the constraint is not absolutely enforced.  The soft constraint only encourages

the solution to meet the constraint by enforcing a penalty if the constraint is not met.  In the OPF

problem, soft equality constraints are not used, because of the nature of the equality constraints in

the OPF problem.  The power flow equations can not be violated as they are imposed by physics,

and the generator set points of a power system are normally not moved around frequently.  For

the inequality constraints, the penalty functions offer a viable option.

Penalty functions are added to the objective function of the minimization problem.  Ideally, a

penalty function will be very small near a limit and increase rapidly as the limit is violated more.

A well-suited penalty function for use in Newton’s method is the quadratic penalty function [19,

p. 443] which meets the requirements of a penalty function and is also easily differentiated for

use by Newton’s method.  In the OPF presented in this thesis, soft inequality constraints are

available for transmission line MVA limits as well as bus voltage limits.
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min min
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max max

;

;

;

Figure 2.1 and Figure 2.2 show the graphs of these penalty functions used in the OPF.
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Vi min Vi max Vi

Voltage Penalty
Function Value

Figure 2.1  Penalty Function for Bus Voltage

|Skm max|
2 |Skm|2

Transmission Line
MVA Flow  Penalty
Function Value

Figure 2.2  Penalty Function for Line MVA Flow Limit

Note that these penalty functions fit the requirements perfectly.  While the inequality

constraint is not violated, the penalty function has a value of zero.  As the constraint begins to be

violated, the penalty function quickly increases.  Another advantage of the quadratic penalty

function is the ability to control how hard or soft to make the constraint.  For very large values of

k, the quadratic penalty function behaves much like a hard constraint.  By adjusting it to smaller

values, one can control the importance given to the limit.

After doing trial and error experimentation, values for k were chosen for use in the OPF of

this thesis.  For soft bus voltage constraints, k was chosen to be $200/V2.  For soft transmission

line constraints, k was chosen to be $100/MVA4.
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2.2.5 Treatment of discrete variables

In all the discussions thus far, all variables have been assumed to be continuous.  For

example, the constraint V V Vi i imin max≤ ≤  allows Vi to take on all values within the specified

range.  The OPF algorithm as presented in this thesis also assumes this for the tap ratios and

phase shift angles of variable transformers, although this is not true for them.  Variable

transformers have a fixed number of discrete tap positions at which they may operate.  For

example, a typical tap changing transformer has 33 discrete positions (nominal, 16 above and 16

below).  This problem should be addressed in future work.

One possible solution for this problem is to round the optimal setting found assuming a

continuous tap to the nearest discrete tap.  This could be done for all transformers.  However,

three problems arise from this methodology.  First, there is no guarantee that the rounded

solution is the optimal solution.  Second the solution may become infeasible after rounding, i.e.,

some constraints may be violated. Finally, this methodology will not work well for discrete

variables that have very large step sizes such as switched capacitor banks.  This final problem is

addressed in references [21, 22].

2.2.6 Summary of optimal power flow problem

In summary, the optimal power flow problem can be written in the following form.
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It should be noted that the constraints on the reactive power at each generator are not included in

the problem as stated above.  These constraints will be taken care of by treating a generator bus at

a Q limit as a load bus.  This is commonly done in a power system when modeling generator

reactive power  limits [23, p. 228].

2.2.7 Summary of Lagrangian terms

Given the problem statement for the OPF as shown in Section 2.2.5, the Lagrangian can be

written as a summation of several terms.  These terms are summarized as follows:
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Note:  The terms with an asterisk (*) next to them are only included when the corresponding

constraints are being enforced

2.2.8 Calculation of gradient and Hessian

Given the terms of the Lagrangian, calculation of the gradient and Hessian is a very

straightforward process, albeit an extremely tedious one.  For completeness, details on

calculating the gradient and Hessian are found in Appendices B, C, and D.
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2.2.9 Solution of the optimal power flow

Once an understanding of the calculation of the Hessian and gradient is attained, the solution

of the OPF can be achieved by using the Newton’s method algorithm.  The Newton’s method

algorithm is summarized in the flowchart in Figure 2.1 on page 10.  The application of Newton’s

method to the OPF algorithm used in this thesis is summarized as follows:

Step 1. Initialize the OPF solution.

a. Initial guess at which inequalities are violated.

b. Initial guess z vector (bus voltages and angles, generator output power,

transformer tap ratios and phase shifts, all Lagrange multipliers).

Step 2. Evaluate those inequalities that have to be added or removed using the

information from Lagrange multipliers for hard constraints and direct evaluation

for soft constraints.

Step 3. Determine viability of the OPF solution.  Presently this ensures that at least one

generator is not at a limit.

Step 4. Calculate the gradient and Hessian of the Lagrangian.

Step 5. Solve the equation [H]∆z = ∇L(z).

Step 6. Update solution znew = zold - ∆z.

Step 7. Check whether ||∆z|| < ε.  If not, go to Step 4, otherwise continue.

Step 8. Check whether correct inequalities have been enforced.  If not go to Step 2.  If so,

problem is solved.
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2.3 A Sample Case Illustrating OPF Algorithm Process

In order to gain insight into the process which the OPF algorithm undergoes while

determining the optimum solution, a test was run on a 118-bus system.  The details of this system

are not included in this thesis because this case is only shown to demonstrate the solution process

described in the flowchart of Figure 2.1 on page 10.

The output to a message file during the solution of the 118-bus system is shown in the

following.

1. Case OPF Case initialized
2. Starting OPF solution at  15:15:19
3. OPFitr   0 MaxMis: Controls:   25.7240  Voltages: 3113.4475  Angles: 3216.6133  Constraints:    5.8894
4. OPFitr   1 MaxMis: Controls:    0.0000  Voltages:   73.2151  Angles:   29.0626  Constraints:    0.1888
5. OPFitr   2 MaxMis: Controls:    0.0000  Voltages:    0.3480  Angles:    0.1868  Constraints:    0.0067
6. OPFitr   3 MaxMis: Controls:    0.0000  Voltages:    0.0025  Angles:    0.0007  Constraints:    0.0000
7. OPFitr   4 MaxMis: Controls:    0.0000  Voltages:    0.0001  Angles:    0.0002  Constraints:    0.0000
8. Adding Hard MVA Constraint from bus 64 to 65
9. Adding Soft Voltage (high) Constraint at bus 9
10. Adding BusQ Constraint for bus     12
11. Adding Soft Voltage (low) Constraint at bus 53
12. Bus    40 Gen at Max MW Limit
13. OPFitr  5 MaxMis: Controls:   10.0000  Voltages:  571.4009  Angles:  896.2391  Constraints:    1.6602
14. OPFitr  6 MaxMis: Controls:    0.0000  Voltages:   21.5599  Angles:  183.7967  Constraints:    0.3324
15. OPFitr  7 MaxMis: Controls:    0.0000  Voltages:    1.5178  Angles:   19.1469  Constraints:    0.0393
16. OPFitr  8 MaxMis: Controls:     0.0000  Voltages:    0.0233  Angles:    0.3324  Constraints:    0.0009
17. OPFitr   9 MaxMis: Controls:    0.0000  Voltages:    0.0005  Angles:    0.0003  Constraints:    0.0000
18. OPFitr 10 MaxMis: Controls:    0.0000  Voltages:    0.0001  Angles:    0.0004  Constraints:    0.0000
19. OPFitr 11 MaxMis: Controls:    0.0000  Voltages:    0.0001  Angles:    0.0003  Constraints:    0.0000
20. Successful OPF - Final Cost   51324.70 at  15:15:20

This output file can help in the understanding of the Newton’s method solution process.

Lines 1 and 2 initialize the OPF variables and assume a Lagrangian that contains no constraints.

Lines 3 to 7 then perform the inner loop of Newton’s method, which continuously solves [H]∆z

= ∇L(z) until convergence.  After having reached convergence here, the inequality constraints are

checked to ensure that none are violated.  As can be seen from lines 8 to 12, several inequality

constraints are found to be violated:  a transmission line has exceeded its MVA capacity, a
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generator has exceeded its MVAR limit, a generator has exceeded its MW limit, and two buses

are outside their desired ranges.  With these violations noted, the Lagrangian is recalculated and

the inner loop is begun again.  Lines 13 to 19 show the inner loop process proceeding

successfully again.  After convergence is achieved again, the inequality constraints are again

checked.  Line 20 shows that new violations were found and the successful final cost is shown.

2.4 Information Gained from the OPF Solution

The solution of the OPF, while difficult, has many great advantages over the classical

economic dispatch [11] of a power system.  The OPF is capable of performing all of the control

functions necessary for the power system.  While the economic dispatch of a power system does

control generator MW output, the OPF controls transformer tap ratios and phase shift angles as

well.  The OPF also is able to monitor system security issues including line overloads and low or

high voltage problems.  If any security problems occur, the OPF will modify its controls to fix

them, i.e., remove a transmission line overload.

Besides performing these enhanced engineering functions, probably the greatest advantage of

the OPF is the great wealth of knowledge it yields concerning the economics of the power

system.  In studying the Lagrange multipliers associated with each constraint, one can show that

they can be interpreted as the marginal costs associated with meeting the constraint.  A derivation

of this fact can be found in Appendix A.  Therefore, the Lagrange multipliers, µ PK and µ QK,

can be seen as the marginal cost of real and reactive power generation at bus k in 
$

MW hr






and

$

MVAR hr






, respectively.  These prices could then be used to determine electricity prices at bus
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k.  On a larger level, the Lagrange multiplier, µ int, associated with the area interchange

constraint, can be seen as the marginal cost of allowing an area to break its interchange.  If this

cost is positive, then the area would benefit from buying electricity, while if it is negative, the

area would benefit from selling electricity.  These costs may be of use in determining the price

which an area would charge for a megawatt transaction with another area.

While these economic data are very helpful for real-time pricing algorithms, other data could

be used to help with transmission system planning.  Consider the Lagrange multiplier associated

with a hard transmission line MVA constraint, λ Skm.  This can be interpreted as the cost savings

per hour for each additional 1 MVA increase in a line’s rating.  This information may be of use in

planning where new transmission lines will have the greatest economic impact on the power

system.

Much more information can be gained from a single OPF solution, but a great potential also

lies in the simulation of a power system over time using a power system simulator with an OPF

as its solution engine.  This will be discussed in Chapter 4.
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3. HEURISTICS OF THE OPTIMAL POWER FLOW SOLUTION

3.1 Classification of OPF Variables

While writing software to perform an OPF solution, a primary concern is identification of

variables during the process.  Because of this, in order to handle the variables in the OPF

problem efficiently, it is convenient to separate them into three categories:  controls, states, and

constraints.  The control variables correspond to quantities that can be arbitrarily manipulated,

within their limits, in order to minimize the costs.  These include generator MW outputs,

transformer tap ratios, and transformer phase shift angles.  The states correspond to quantities

that are set as a result of the controls, but must be monitored.  They are also of interest at the

solution.  The states include all system voltages and angles.  Finally, the constraint variables are

variables associated with the constraints.  These include all the Lagrange multipliers.  The

variables in the OPF problem are summarized in Table 3.1.

Table 3.1  OPF problem variables

Variable Classification Variables in Classification

Control PGk, tkm, and α km

State Vk and δ k

Constraint µ Pk, µ Qk, µ viset, µ int, λ Skm, λ PGih,
λ PGil, λ Vih,

λ Vil, λ tkm max, λ tkm min, λ α km max, and
λ α km min

In addition to the OPF variables, it is also important to keep track of any added soft constraints.

For hard constraints, the Lagrange multiplier is monitored, but for soft constraints, a fourth
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variable classification is added:  penalty.  No variable data are stored for this classification.  It

simply serves as a place holder for the penalty function.

3.2 Implementation of Sparse Matrix Techniques

At the heart of the solution of the OPF using Newton’s method is the solution of the linear

system of equations, [H]∆z = ∇L(z).  During the Newton’s method solution process, this system

of equations is solved repeatedly.  Because of this, and because one of the primary objectives of

an OPF is to find its solution in a short amount of time, the speed of the solution of this linear

system of equations is essential to a successful OPF solution.  Fortunately, as is the case with

many power system matrices, the Hessian matrix is extremely sparse.  By implementing sparse

matrix routines, the equations can be quickly solved.

Much of the structure of the Hessian matrix for the OPF problem is known prior to any

calculation.  In general, for any Newton’s method routine, the Hessian takes the following form

as discussed in Section 2.1.2:

H =  
W J

J

T

0











Already, it is seen that the lower right quadrant of the matrix has entries of zero.  By a closer

examination of the Hessian structure for the OPF problem, advantage can be taken of this

sparsity.

The first step was to reorder the variables to include the generator megawatt controls first,

followed by the remaining controls, states, and then constraints.  This resulted in the following

structure.
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H =  

W n

W J

n J

PG PG
T

remaining remaining
T

PG remaining

0

0

0

















where WPG is a purely diagonal matrix with entries of 2ci, nPG is a matrix with a (-1) entry in each
column corresponding to the net power injection constraint, and possibly an entry of (±1)
in a column corresponding to a generator with a maximum or a minimum MW constraint
being enforced, and Wremaining and Jremaining are the remaining parts of the Hessian matrix.

Due to this structure, the sparse LU factorization up to the rows of Wremaining, using Gauss’s

method [24], will result in the following matrix.

Hmodified =  

W W n

W J

n J n W n

PG PG PG
T

remaining remaining
T

PG remaining PG PG PG
T

0

0

1

1

−

−−

















Wremaining and Jremaining are unaffected by these steps and fills are only created by the term

n W nPG PG PG
T−1 .  In order to determine the fills created by this matrix, consider only its zero/non-

zero structure.  One will find that most fills created by this term are actually desired.

Because WPG is a diagonal matrix, it will not affect the zero/non-zero structure of the

resulting matrix; therefore, only consider the matrix n nPG PG
T .  If no generators are at a megawatt

limit, then each column of nPG will have only a single entry of (-1).  In this situation, the matrix

will result in only diagonal entries in the rows corresponding to the Lagrange multipliers µ Pk.

The diagonal entries are needed for factorization anyway, so this is a desired event.  If, however,

some generators are at a megawatt limit, then the matrix n nPG PG
T  will have some off-diagonal

entries.  These entries will occur in off-diagonal pairs such as (row λ PGih ,column µ Pk), and

(row µ Pk, column λ PGih) .



27

Because generators will not be normally at their limits, and because only two non-diagonal

fills are created for each generator at a limit, this ordering can help speed the solution.  This

ordering is what is presently done in the OPF source code written for this thesis.

In studying the Hessian matrix structure further, one can see that the Hessian rows

corresponding to the Lagrange multipliers corresponding to the voltage set points contain only

one entry, a (+1).  In order to exploit this structure, consider ordering the variables in the

following manner:  generator MW outputs first, voltage states corresponding to generators

second, Lagrange multipliers corresponding to generator voltages (in same order as the states)

third, and finally the remaining states and constraints.  This results in the following structure for

the Hessian matrix

H = 

W n

W I W J

I

W W J

n J J

PG PG
T

vset rvset
T

rvset
T

rvset r rr
T

PG rvset rr

0 0 0

0

0 0 0 0

0 0

0 0























where I  is the identity matrix.

Given this ordering, switching the second- and third-row partitions around yields the following.

H = 

W n

I

W I W J

W W J

n J J

PG PG
T

vset rvset
T

rvset
T

rvset r rr
T

PG rvset rr

0 0 0

0 0 0 0

0

0 0

0 0























Given this ordering, the sparse LU factorization up to the rows of Wr, using Gauss’s method [24],

will result in the following matrix.
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Hmodified =

W W n

I

W I W J

W W J

n J J n W n

PG PG PG
T

vset rvset
T

rvset
T

rvset r rr
T

PG rvset rr PG PG PG
T

0 0 0

0 0 0 0
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0 0

0
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1

−

−−























The fills created by this method would be identical to those created by the previous ordering.

However, in addition, the sparse matrix routines could also take advantage of simply “skipping”

over the processing of the second- and third-row partitions because the only operations required

by Gauss’s method would be divisions by 1.

This ordering could be implemented and would result in increased solution speed; however, it

does require row pivoting to be done by the sparse matrix solution routines.  At present, the

implementation of this ability into the OPF source code has not been done, but it can be added at

a later time.  Presently, the OPF source code does ordering with generator megawatt output

controls first.

3.3 Determination of the Set of Binding Inequality Constraints

When reading any paper written about the application of Newton’s method to the OPF

problem, one runs into discussions of finding the binding set of inequalities [13].  The reason for

this emphasis is the role this process has in determining the speed of an OPF solution, and thus

ultimately its usefulness.  In referring to Figure 2.1 showing the Newton’s method solution

algorithm, one sees that this determination of the binding set makes up the outer loop of the

flowchart.  In a typical OPF problem, this outer loop will be executed about three or four times.

Therefore, even removing one of these iterations could save 25 - 33% of the execution time

assuming that the inner loop time remains relatively constant.
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For the OPF source code written for this thesis, the following process was used to determine

if the correct inequalities had been enforced.

Step 1. Check if any inequality constraints can be removed.  An inequality constraint can

be removed if the Lagrange multiplier associated with it is negative.

a.  Hard line MVA constraints

b.  Hard bus voltage constraints

c.  Maximum and minimum generator megawatt outputs

d.  Maximum and minimum transformer tap ratios

e.  Maximum and minimum transformer phase shifts.

Step 2. Determine if any line MVA limits are violated.  If they are, add a hard constraint

or soft penalty function depending on user’s preference.

Step 3. Determine if any generator reactive power limits are being violated.  For those

that are violated, change the generator bus to a load bus [23, p. 228].

Step 4. Check if any bus voltage limits are being violated.  If they are, add a hard

constraint or soft penalty function depending on user’s preference.

Step 5. Check all control variables to see if they are operating within their limits.  If they

are not, add a constraint.

 a. Maximum and minimum generator MW outputs

 b. Maximum and minimum transformer tap ratios

c.  Maximum and minimum transformer phase shifts.

Using this process, the OPF will determine which inequality constraints to enforce.
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3.4 Searching Algorithms

While performing the OPF solution, it is often necessary to search through the list of controls,

states, and constraints for a particular variable.  While for small systems the use of a simple

linked list is adequate, when the system becomes large, this searching can begin to dominate the

CPU time spent, because with a linked list, the average search time is proportional to half of the

number of elements in the list (N/2).  It is therefore very useful to take advantage of a data

structure suited for repeated searches.  One such data structure is the binary tree.  A sample

binary tree is shown in Figure 3.1.

8

5 12

3 107 13

1 4 6

Figure 3.1  Sample Binary Tree

A binary tree obeys very simple rules which make searching for an individual element of the

tree a very quick process.  At each node, all values to the left of the node are smaller, and all

values to the right of the node are larger.  In this way, it can be shown that the maximum search

time for an element of the tree is proportional to the base two logarithm of the number of

elements (log2N).  The saving in time is substantial when the number of nodes becomes very
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large.  Consider a system which has 1024 elements:  1024/2 = 512  and  log21024 = 10.  The

binary tree results in an average search which is 50 times faster.

Applying this thinking to OPF variables requires that they be given an ordering so that

“smaller than” and “larger than” comparisons can be made.  In the OPF source code, the

variables are separated, as discussed in Section 3.1, into controls, states, and constraints.  For  the

ranking in this thesis, precedence order is controls, states, and then constraints.  Within each

variable type precedence is defined as follows:

Controls
1. Bus number (from bus for transformer tap or phase shift)
2. (To bus number for transformer tap or phase shift)
3. Type of control with ranking: PGk, tkm, and α km.

States
1. Bus number
2. Type of state with ranking: Vk and δ k.

Constraints
1. Bus number (or area number for interchange constraints)
2. (To bus number for line constraints)
3. Type of constraint with ranking: µ Pk, µ Qk, µ viset, µ int, λ Skm, λ Pgih, λ PGil,

λ Vih, λ Vil, λ tkm max, λ tkm min, λ α km max, and λ α km min.

The binary tree structure can then be applied to these structures with this ranking.  Using the

binary tree data structure greatly aids in reducing the amount of time spent searching.

3.5 Solution of an OPF Repeatedly Over Time

One of the great opportunities of an OPF solution is the ability to simulate a power system

over time while keeping it at its optimal solution.  This will be discussed in the next section, but

heuristics for increasing the computational speed of this process will be discussed here.
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As mentioned in Section 2.1, the convergence of Newton’s method algorithm is very rapid

near the solution.  Because of this, the initial guess for the variables is very important.  It was

also mentioned in the previous section that the speed of the OPF is greatly influenced by how

quickly the binding set of inequalities is found.  Both of these important parameters for solving

the OPF quickly can be met when simulating a power system over time.

By assuming that the power system will not undergo drastic change over the next time step,

the output of one OPF solution (the Hessian, gradient, voltages, angles, Lagrange multipliers, as

well as which inequalities are binding) can be fed as the initial guess for the next OPF solution.

At present, however, the Hessian and gradient of the Lagrangian are recalculated from scratch at

each time step of the simulation.  The search for the binding inequalities is also done from

scratch for each time step.  By keeping the solved OPF solution, the speed of solution in the

simulation environment will be greatly increased.  These modifications will greatly enhance the

power system simulation over time.

In calculating the Hessian a time step, further advantage could be gained by implementing

partial re-factorization schemes for the Hessian as seen in [25].  These schemes only update those

elements of the L and U factors of the Hessian that are affected by changes to the Hessian.  While

this holds great promise for future work, these schemes have not yet been implemented into the

OPF written for this thesis.
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4. USES OF AN OPTIMAL POWER FLOW IN A POWER SYSTEM
SIMULATION ENVIRONMENT

While a single OPF solution yields valuable information regarding a power system, the

implementation of the OPF into a power system simulation environment holds even greater

promise.  In this environment, simulation of a system over time can be done while maintaining it

at its optimal condition.  In this way, a vast amount of economic data can be gleaned from the

simulation.  This chapter will give several examples of the use of the OPF code as implemented

into the power system simulator, POWERWORLD [17].

4.1 Example Line Overload Removal

A simple power system not operating under the OPF control is shown in Figure 4.1.  For

details concerning this power system see Appendix E.
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Figure 4.1  Six-bus, Single-Area System Not on OPF Control
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In order to remove the line constraint, the OPF control is turned on, and the line overload is

removed as shown in Figure 4.2.
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  76 MVR
 100 MW
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  0.65 $/MVRH

  0.00 $/MVRH

  0.12 $/MVRH

  0.00 $/MVRH

  0.00 $/MVRH

100%

Figure 4.2  Six-bus, Single-Area System on OPF Control

As can be seen, the generators have redispatched themselves in order to remove the line

overload.  Further analysis of this process from an economic viewpoint will be discussed in the

next section.

4.2 Use for Bus Real and Reactive Power Pricing

To illustrate the real and reactive power pricing potentials of the OPF solution, the same

system shown in Figure 4.1 is placed on OPF control with its line limit raised.  See Figure 4.1.

Note that the OPF results in the same dispatch seen in Figure 4.1 now that the line limit has been

removed.



35

  91 MW

  92 MVR
 100 MW

 100 MW

  20 MVR

 196 MW
 -27 MVR

1.00 PU

1.00 PU

1.00 PU

Bus 3

Bus 2 Bus 4

 100 MW
  20 MVR

  20 MVR

  20 MVR  100 MW

  86 MW

 237 MW
  23 MVR

  60 MVR

1.00 PU

Bus 5

Bus 6

0.97 PU

0.97 PU

 100 MW
  50 MVR

Bus 1

 100 MW
  10 MVR

 14.85 $/MWH

 14.19 $/MWH

 13.37 $/MWH

 13.85 $/MWH

 15.25 $/MWH

 15.18 $/MWH

  0.00 $/MVRH

  0.23 $/MVRH

  0.00 $/MVRH
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Figure 4.1   Line Limit from Bus 5 to 4 Raised to 100 MVA

Comparison of the OPF solutions in Figure 4.2 and Figure 4.1 yield valuable insight.  The

total system cost without the line limited as in Figure 4.1 is $7824/hr.  With the line limited as in

Figure 4.2 this costs increases, as would be expected, to $7895/hr. Also note the differences

between the bus MW marginal costs in Figure 4.2 and Figure 4.1.  Because the generators at

buses 2 and 4 were forced to decrease their output in order to remove the overload, their bus MW

marginal costs also decreased.  Conversely, the bus MW marginal costs at buses 1, 3, and 5

increased.  As might be expected, the largest changes occurred at the ends of the limited line,

buses 4 and 5.
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4.3 Use for Area Real Power Pricing

The OPF solution method may also be used with multiarea power systems.  The OPF will

enforce the scheduled area interchange in these systems.  In Figure 4.1, the simple six-bus system

from before is split into two areas as shown.
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  0.00 $/MVRH

  0.00 $/MVRH

Area Two

Area One

Figure 4.1   Six-bus, Two-Area System on OPF Control

As can be seen, for this case the generation in Area Two is less expensive than in Area One;

therefore, it would be advantageous for both areas if Area One were to purchase some power

from Area Two.  Using the capabilities of the POWERWORLD Area Transactions/Information

display [17], scheduled transactions can be set up between the two areas to optimize their costs.

Table 4.1 summarizes several possibilities.
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Table 4.1  Sample transaction scenarios

Transaction
[MW]

Area-One Cost
[$/hr]

Area-Two Cost
[$/hr]

Sum of Both Areas
[$/hr]

None 4564 3496 8060
50.0 4489 3423 7912
65.5 4482 3413 7895
70.0 4481 3415 7896
80.0 4481 3428 7909

As can be seen, the least expensive scenario for the sum of the areas is when an interchange of

65.5 MW is undertaken.  This transaction scenario is shown in Figure 4.2.
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Figure 4.2  Transaction of 65.5 MW Undertaken

Comparing the OPF solution in Figure 4.2 and Figure 4.2 one can see that they show the

same solution.  This is of course not unexpected, because the two-area economic negotiations

should yield the same solution that an OPF solution disregarding areas would.  This must happen

so that all areas are at their optimal solution.
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4.4 Example Transformer Tap Control

In order to test the transformer tap control, a more complex power system was used as in

Figure 4.1.  This system has 23 buses, 10 generators, 23 transmission lines, and 5 transformers.

Three of these transformers are load tap changing (LTC) transformers:  buses 5 to 25, 204 to 224,

and 102 to 122.  For further details, see Appendix F.  The system as shown in Figure 4.1 is on

OPF control, but the ability to control the tap ratios is turned off and all tap ratios are set at 1 p.u.

The system as in Figure 4.2 has activated the tap ratio control functions of the OPF, and the tap

ratios have been manipulated so as to minimize the objective function.
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Figure 4.1   Twenty-Three Bus System on OPF Control with Tap Control Off
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Figure 4.2  Twenty-Three Bus System with Tap Control On

A summary of the tap ratios and resulting total system costs are shown in Table 4.1.

Table 4.1   Summary of tap ratio control experiment

With tap ratio control OFF With tap ratio control ON
Tap ratio from bus 5 to 25 1.000 p.u. 1.012 p.u.

Tap ratio from bus 102 to 122 1.000 p.u. 0.965 p.u.
Tap ratio from bus 204 to 224 1.000 p.u. 1.010 p.u.

Total System Cost $ 50333.25 per hour $ 50330.55 per hour

As expected, the ability to control tap ratios has lowered the total system cost.  It should be

noted, however, that the control of the tap ratios will normally not drastically reduce the system

costs.  In reality, tap ratio control allows control of the reactive power flow thus reducing losses.

Even given perfect reactive power control, system losses will only be reduced a small amount;

therefore, tap ratio control will not have a huge effect.
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4.5 System MVAR Control Using Transformer Taps   [26]

As previously mentioned, a tap changing transformer is a reactive power controller.  It is this

ability which allows it to help control system voltages.  Because it controls reactive power, it is

also able to reduce system losses by directing the reactive power in a manner which reduces

system currents. Because reactive power and real power are not completely decoupled,

controlling reactive power can also help with real power control.  In this way, a tap changing

transformer can help lower generation costs both by reducing system losses and by allowing less

expensive generation to operate when it could not have without tap changing control.  In this

thesis, the OPF has been configured to allow continuous tap values although in reality one

encounters discrete tap values (often 33 steps).  While modelling the tap as continuous is much

easier to implement, it also is better for analyzing the potential abilities of tap changing

transformers without the complication of the discrete jumps which would normally occur.

In order to demonstrate a transformer’s ability to control the system, consider the seven-bus,

one-area system shown in Figure 4.1 (data in Appendix G).
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Figure 4.1   Seven-Bus, One-Area System with Taps Inactive
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The tap changing ability of the transformers in this system has been deactivated and the OPF

solution is shown.  This system has a total system cost of $8,059/hr and system losses of 16.22

MW.

Now consider the system with the tap changing abilities activated.  The OPF solution is

shown in Figure 4.2, and a comparison of the two systems is shown in Table 4.1.  Comparing the

data in this table, it can be seen that by utilizing  the  variable tap settings,  the  system  is  able to
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Figure 4.2.   Seven-Bus, One-Area, System with Taps Active

Table 4.1  Comparison of two systems
Without Taps With Taps

Bus 1 Generation 431 MW
59 MVAR

439 MW
105 MVAR

Bus 7 Generation 136 MW
81 MVAR

127 MW
32 MVAR

System Costs $8,059/hr $8,032/hr.
System Losses 16.22 MW 15.73 MW
Tap at bus 2-4 1.000 p.u. 0.9447 p.u.
Tap at bus 3-5 1.000 p.u. 0.9497 p.u.
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increase the cheaper generation at bus 1 and ship it towards the bottom of the system while

decreasing system losses.  This has been done at the expense of greater variability of system

voltages.  However, all voltages are still within 5% of nominal.

While this example displays the use of the tap changing transformer as a reactive power

controller, greater insight can be gained by considering the same system divided into two areas as

shown in Figure 4.3.  The generation in area one is much less expensive than generation in area

two.  Therefore it would be beneficial to both parties to undergo a megawatt transaction.  Various

transactions were undertaken both with the TCUL ability active and with it inactive.  Summaries

of these results are shown in Table 4.2 and Table 4.3.
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Figure 4.3. Seven-Bus, Two-Area System with Tap-Changing Transformers



Table 4.2  Results for various interchanges with transformer taps left inactive

Interchange
Area 1- 2 [MW

at $/MWhr]

Bus 1
Gen

[MW]

Bus 1
Gen

[MVAR]

Bus 7
Gen.

[MW]

Bus 1
Gen

[MVAR]

Tap
Bus 2-4
[p.u.]

Tap
Bus 3-5
[p.u.]

Cost at
Area 1
[$/hr]

Cost at
Area 2
[$/hr]

Total
Cost
[$/hr]

Losses
Area 1
[MW]

Losses
Area 2
[MW]

Total
Losses
[MW]

none 253 145 314 -4 1.0000 1.0000 2,949 6,308 9,257 3.45 14.16 17.61
+50 at 18.84 304 114 258 17 1.0000 1.0000 2,718 5,923 8,641 4.19 7.88 12.07
+50 at 18.46 357 88 204 42 1.0000 1.0000 2,582 5,667 8,249 6.80 4.14 10.94
+50 at 18.12 411 66 153 71 1.0000 1.0000 2,543 5,529 8,072 11.27 2.84 14.11
+19 at 17.84 432 58 134 82 1.0000 1.0000 2,555 5,504 8,059 13.46 2.98 16.44
+31 at 17.84 468 48 104 103 1.0000 1.0000 2,603 5,500 8,103 17.60 3.96 21.56
+50 at 17.37 526 34 58 139 1.0000 1.0000 2,779 5,559 8,338 25.83 7.51 33.34

Table 4.3  Results for various interchanges with transformer taps active

Interchange
Area 1- 2 [MW

at $/MWhr]

Bus 1
Gen

[MW]

Bus 1
Gen

[MVAR]

Bus 7
Gen.

[MW]

Bus 1
Gen

[MVAR]

Tap
Bus 2-4
[p.u.]

Tap
Bus 3-5
[p.u.]

Cost at
Area 1
[$/hr]

Cost at
Area 2
[$/hr]

Total
Cost
[$/hr]

Losses
Area 1
[MW]

Losses
Area 2
[MW]

Total
Losses
[MW]

none 253 104 314 36 1.0432 1.0466 2,938 6,299 9,237 2.60 13.79 16.39
+50 at 18.83 304 98 258 34 1.0137 1.0209 2,716 5,921 8,637 4.01 7.84 11.85
+50 at 18.45 357 97 204 32 0.9851 0.9933 2,584 5,664 8,248 6.86 4.04 10.90
+50 at 18.12 411 101 152 32 0.9578 0.9645 2,542 5,514 8,056 11.15 2.14 13.29
+25 at 17.83 439 105 127 32 0.9448 0.9499 2,557 5,475 8,032 13.84 1.86 15.70
+25 at 17.83 467 105 102 38 0.9340 0.9411 2,593 5,462 8,055 16.91 1.99 18.90
+50 at 17.31 524 99 54 60 0.9265 0.9280 2,754 5,491 8,245 24.19 3.73 27.92
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A comparison of Table 4.2 and Table 4.3 shows reduced costs at every step for the system

with the tap changing transformer active. From a total system cost point of view, the two areas

should stop undergoing transactions after having reached the transactions shown in bold type

(minimum total cost).  This is after a transaction of 169 MW for the system with taps inactive,

and a transaction of 175 MW for the system with taps active.  Note that after undergoing these

transactions, the systems are at the same state found by running the OPF with no area constraints

enforced.

The information in these tables illustrates the concept that the tap changing transformer is a

reactive power controller.  With taps inactive as in Table 4.2, the only elements of the system that

have control over the reactive power flows are the two generators.  As a result, the variation in

the injected reactive power from the generators is extremely large.  With the taps active as in

Table 4.3, the transformers take over as the reactive power controllers, and as a result, the

generators’ reactive power injections are able to remain relatively constant.

It should be noted that if a generator were to be treated as an MVA limited machine, as

opposed to an MW and MVAR (separately) limited machine, then this reactive power control by

the tap changing transformers would free up the generator for more megawatt production.

4.6 Transmission Line Valuation by Time-Domain Simulation

One of the most intriguing potential uses of an OPF is its use as a pricing tool by doing time-

domain simulations of a power system.  As a simple example, consider again the six-bus, one-

area power system of Appendix E again.  Assume that the loads of the system vary as shown in
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Figure 4.1.  The load at a given bus is then equal to its base value shown in Appendix D

multiplied by the load factor.
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Figure 4.1  Load Factor Curve for six-bus System

Entering this load factor curve into the POWERWORLD simulation software and simulating the

power system for a full 24 hours yield a total cost in dollars for operating the power system over

that period of time.  By re-simulating the system repeatedly with variations in system structure,

one can gain useful economic insights from the comparison of total system costs.  Note that the

case was simulated at 600 times real time for the first 23 hours and at 60 times real time for the

last hour.  The POWERWORLD simulation software utilizes trapezoidal rule integration to

calculate the total system cost from the incremental costs at each time point.

Using this technique, the six-bus system was simulated with various transmission lines

removed.  The results are summarized in Table 4.1.

Table 4.1  Simulation data for six-bus system with transmission lines removed

System Configuration
Total Cost

for 24 Hour
Simulation

Difference from
No Change

Configuration

Percent Increase
from No Change

Configuration
No Changes $ 148,240 N/A N/A
Line from Bus 3 to Bus 5 Removed $ 148,377 $137.00 0.09%
Line from Bus 3 to Bus 4 Removed $ 148,632 $392.00 0.26%
Line from Bus 1 to Bus 2 Removed $ 149,311 $1,071.00 0.72%
Line from Bus 4 to Bus 5 Removed $ 150,309 $2,069.00 1.40%

Time Load
Factor

Time Load
Factor

0:00 0.6 13:15 1.1
2:30 0.4 16:30 1.2
5:30 0.4 19:15 1.1
8:00 0.6 22:00 0.8
10:30 0.8 23:59 0.6
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By comparing the total system cost with all lines connected to the cost with a line removed, one

can find the approximate cost a company would incur per day while taking a line out for

maintenance.  It is very important to note, however, that this does in no way take into account the

possibility that another line may unexpectedly go out, in which case all lines may be needed to

take up the slack.  In other words, the pricing of redundancies in the transmission system is not

considered in this methodology.  Regardless of this, the information is very valuable and could

be used to help with maintenance scheduling, or even possibly in helping to determine where to

build new transmission lines in the future.

4.7 Capacitor Bank Valuation by Time-Domain Simulation

The technique discussed in Section 4.5 can also be applied to the valuation of any

transmission system component.  As an example, consider capacitor bank valuation for the

twenty-three bus, one-area power system of Appendix E.  Assume that the loads of the system

vary as shown in Figure 4.1.

Load Factor vs Time
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Figure 4.1  Load Factor Curve for Twenty-Three Bus System

Time Load
Factor

Time Load
Factor

0:00 1.000 13:15 1.275
2:30 0.800 16:30 1.350
5:30 0.800 19:15 1.275
8:30 0.950 22:00 1.100
10:30 1.100 23:59 1.000
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Again, entering this load factor curve into the POWERWORLD simulation software and

simulating the power system for a full 24 hours yield a total cost in dollars for operating the

power system over that period of time.  Following the technique as shown before, the twenty-

three bus system was simulated with various capacitor banks removed.  The results are

summarized in Table 4.1.  This simulation was run at 60 times real time for the entire simulation.

Table 4.1  Simulation data for six-bus system with transmission lines removed

System Configuration
Total Cost

for 24 Hour
Simulation

Difference from
No Change

Configuration

Percent Increase
from No Change

Configuration
No Changes $ 1,358,423 N/A N/A
Capacitor Bank at bus 103 Removed $ 1,359,609 $1,186.00 0.0873%
Capacitor Bank at bus     2 Removed $ 1,359,222 $799.00 0.0588%
Capacitor Bank at bus 104 Removed $ 1,359,626 $1,203.00 0.0886%

Again, from this information, the approximate cost a company would incur per day while

removing the capacitor bank can be inferred from these calculations.

4.8 Limit on Available Transfer Capability (ATC) Due to a Voltage Constraint  [26]

Another use for the OPF algorithm is for the calculation of the available transfer capability

for a system.  The OPF is able to take into account system security concerns including voltage

limits and transmission line limits while calculating the ATC.

The  three-bus system of Figure 4.1 (data in Appendix H) can be used to illustrate and

examine the value of reactive power support at a system load bus.  Area one consists only of the

generator and load at bus 1 plus two tie lines.  Area two consists of the generator and load at bus

3 plus the load at bus 2, and the line from bus 2 to bus 3.  Area one has expensive generation,
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while area two has cheaper generation.  For the indicated loads and no area transfers the cost of

operation for the total system is $25,799/hr.  For this study, the loads at all buses remain fixed at

the values shown.

The base case shown in Figure 4.1 has each area providing its own load plus a portion of the

system losses.  The unfilled pie charts on each line indicate that the lines are loaded at less than

their MVA ratings.  This base case has zero scheduled megawatt transfer between the two areas,

but 73 MW of area two’s generation flows through area one.

1.04 PU
0.9710 PU

504 MW
193 MVR

411 MW
 70 MVR

300 MW

 75 MW

Bus 1

Bus 2

100 MW

1.04 PU
Bus 3

100 MVR

Area Two

Area One

 14 MVR500 MW
100 MVR

 30 MVR

50.18 $/MWH
 0.00 $/MVRH

20.22 $/MWH
 0.00 $/MVRH

22.85 $/MWH
 0.94 $/MVRH

 -72 MW
  21 MVR

 72 MVR

  73 MW
 -15 MVR

 238 MW
  55 MVR

 -73 MW

 -64 MVR

-227 MW
 -22 MVR

Figure 4.1  Three-Bus Base Case with No Area Power Transfer

Note that the incremental cost for reactive power at a generator bus is $0.00.  This is true as

long as no MVAR limits are reached because no cost is associated with generation of MVARs by

a generator in the OPF formulation of this thesis.

Consider the situation where area one wants to purchase power at considerable savings from

area two.  Similarly, area two wants to sell power to area one.  We first examine the available
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transfer capability of this system for transfer from area two to area one.  An OPF solution with

bus voltage constraints is used to find the maximum power which can be transferred from area

two to area one.  The voltage constraint for power quality used in this example is

0.96 ≤  Vi  ≤ 1.04.

Both generators have their excitations set to give 1.04 p.u. voltage for serving their local area

load within the voltage constraints.   A global OPF solution which minimizes the total cost of

providing the total load will attempt to increase area-two generation and decrease area-one

generation.  This power transfer will change the voltage at bus 2.  When the transfer is such that

the voltage reaches its lower limit (0.96), the OPF solution will stop at that constraint.  The

solution and associated marginal costs for both real and reactive power at each bus are shown in

Figure 4.2 for the case in which a nominal 15 MVAR capacitor bank is installed at bus 2 for

reactive power support.  The available transfer capability for these constraints is 244 MW.  The

cost of operation for the total system is $21,341/hr.  Thus this maximum power transfer has

resulted in a reduction of total cost by $4,458/hr.  Additional transfers are not possible without

violation of the voltage constraint at bus 2.

Note that the incremental cost for MVARs is

almost the same as for MWs at bus 2.

When the capacitor bank at bus 2 is

increased from a nominal 15 MVAR rating to

a nominal 30 MVAR rating, the OPF solution

is given in Figure 4.3.  The available transfer

capability for these constraints is increased to

1.04 PU
0.9600 PU

271 MW
290 MVR

668 MW
 59 MVR

300 MW

-28 MW

Bus 1

Bus 2

100 MW

1.04 PU
Bus 3

100 MVR

Area Two

Area One

 14 MVR500 MW
100 MVR

 30 MVR

38.55 $/MWH
 0.00 $/MVRH

25.36 $/MWH
 0.00 $/MVRH

55.09 $/MWH
54.40 $/MVRH

-201 MW
  78 MVR

112 MVR

 214 MW
 -26 MVR

 354 MW
  55 MVR

  30 MW

-102 MVR

-330 MW
  16 MVR

Figure 4.2 Three-Bus Example at Maximum
Power Transfer (15 MVAR Capacitor
Support)
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325 MW.  The cost of operation for the total

system is $20,890/hr.  Thus the increase in

available power transfer capability has

resulted in an additional reduction of total

cost by $451/hr.  Again, additional transfers

are not possible without violation of the

voltage constraint at bus 2.  Note that the

incremental cost for MVARs has reduced as

the OPF approaches a more economical

dispatch.

When the capacitor bank at bus 2 is

increased from a nominal 30 MVAR rating to

a nominal 45 MVAR rating, the OPF solution

is given in Figure 4.4.  The available transfer

capability for these constraints is increased to

355 MW.  The cost of operation for the total

system is $20,849/hr.  Thus the increase in available power transfer capability has resulted in a

further reduction of total cost by $41/hr.  Note that the OPF has reached an optimal dispatch

schedule without hitting the bus 2 voltage constraint (0.963 > 0.96).  Therefore, no additional

power transfers can lower the total system costs.

The savings between 15 and 30 MVAR capacitors was $451 while the savings between

30 and 45 MVAR capacitors was only $41, because there is a greater change in system megawatt

1.04 PU
0.9600 PU

198 MW
323 MVR

754 MW
 56 MVR

300 MW

-60 MW

Bus 1

Bus 2

100 MW

1.04 PU
Bus 3

100 MVR

Area Two

Area One

 28 MVR500 MW
100 MVR

 30 MVR

34.89 $/MWH
 0.00 $/MVRH

27.08 $/MWH
 0.00 $/MVRH

38.00 $/MWH
13.37 $/MVRH

-242 MW
 101 MVR

122 MVR

 261 MW
 -25 MVR

 393 MW
  51 MVR

  64 MW

-109 MVR

-364 MW
  36 MVR

Figure 4.3 Three-Bus Example at Maximum
Power Transfer (30 MVAR Capacitor
Support)
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100 MW
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33.52 $/MWH
 0.00 $/MVRH

27.72 $/MWH
 0.00 $/MVRH

32.82 $/MWH
 1.05 $/MVRH

-257 MW
 110 MVR

122 MVR

 278 MW
 -24 MVR

 408 MW
  44 MVR

  77 MW

-107 MVR

-377 MW
  49 MVR

Figure 4.4 Three-Bus Example at Maximum
Power Transfer (45 MVAR Capacitor
Support)
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dispatch when moving from 15 to 30 MVAR than from 30 to 45 MVAR.  This is also reflected

in the incremental costs of MVAR at bus 2 for the various cases.

4.9 Transmission System Pricing Through Short-Run Marginal Costing (SRMC)

In the restructured environment of the future, it may be necessary to determine the cost

incurred to the transmission system due to a power transaction between two companies.  This

cost would be charged to the two companies undergoing the transaction and would be paid to the

operator of the transmission system.  Two methods proposed for the determination of this cost is

through short-run marginal costing (SRMC) and long-run marginal costing (LRMC).  These two

topics are extensively discussed in both [27] and [28].  A brief, albeit simple, explanation of

these follows.

The SRMC takes into account only the operating costs of the power system.  The operating

costs include fuel costs, losses, as well as system constraints such as transmission line limits.

The LRMC, however, includes both the operating costs and the capital costs of the power system.

The capital costs include the costs of future expansion to the transmission system as well as the

generation capacity.

Through the use of the OPF, the SRMC technique can easily be implemented as discussed in

[28].  The SRMC of a power transaction can be estimated by solving the OPF for both the system

with the transaction and the system without the transaction in place.  After these solutions are

obtained, the SRMC can be found as follows.

Define BMCi =  (marginal cost of power at bus i after the transaction)
Pi,transaction =  the net power injection at bus i due to the transaction

=   (- power generation at bus i before transaction
 + power generation at bus i after transaction)

From these definitions a definition for SRMC can then be made [28].
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SRMC Ptransaction i transaction= ∑BMCi
all buses
in transaction

* ,

As a simple example consider the six-bus, two-area system from Section 4.3.  Figure 4.1 on page

36 shows this system with no transactions, and Figure 4.2 on page 37 shows the system with a

transaction of 65.5 MW undertaken between the two areas.  Taking the data from these two

figures, a calculation of the SRMC for the transaction can be made.  This calculation is

summarized in Table 4.1.

Table 4.1 SRMC calculation for six-bus, two-area system

Bus
Nu
m

Generation
Before

Transaction
[MW]

BMC
Before

Transaction
[$/MWhr]

Generation
After

Transaction
[MW]

BMC After
Transaction
[$/MWhr]

Pi,trans

[MW]

BMCi

*Pi,trans

[$/hr]
1 161 15.86 122 14.93 -39 -582.27
2 133 12.15 190 13.25 57 755.25
3 143 16.71 116 16.03 -27 -432.81
4 169 12.58 179 12.77 10 127.70

SRMC Ptransaction i transaction= =∑ BMCi
all buses
in transaction

* ,
-132.13

Thus, the SRMC for this transaction is (- $132.13)/hour.  As mentioned in [27], SRMC can

be a negative value.

For comparison, consider the same system undergoing the same 65.5 MW transaction, but

with the line between buses 4 and 5 doubled to 100 MVA from 50 MVA.  The simulation of this

system is shown in Figure 4.1.
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  0.10 $/MVRH
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Figure 4.1  Six-bus, Two-Area System Undergoing Transaction with Line Limit Doubled

Again, Figure 4.1 shows this system with no transactions, and Figure 4.2 shows the system

with a transaction of 65.5 MW undertaken between the two areas.  Taking the data from these

two figures, a calculation of the SRMC for the transaction can be made for the system where no

line limit will be encountered.  This calculation is summarized in Table 4.2.

Table 4.2  SRMC calculation for six-bus, two-area system where no limit is encountered

Bus
Num

Generation
Before

Transaction
[MW]

BMC
Before

Transaction
[$/MWhr]

Generation
Aafter

Transaction
[MW]

BMC After
Transaction
[$/MWhr]

Pi,trans

[MW]

BMCi

*Pi,trans

[$/hr]
1 161 15.86 125 15.00 -36 -540.00
2 133 12.15 165 12.77 32 408.64
3 143 16.71 113 15.95 -30 -478.50
4 169 12.58 204 13.23 35 463.05

SRMC Ptransaction i transaction= =∑ BMCi
all buses
in transaction

* ,
-146.81
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Thus, the SRMC for this transaction is (- $146.81)/hour.  This is not unexpected.  The

previous system encountered a transmission line constraint, while this one has not; therefore, the

incentive to do the transaction should be large, i.e., the SRMC should be less.

While this discussion is not entirely complete, it does display the basic use of the OPF to

calculate the SRMC.  More study will be done on this topic in the future.
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5. CONCLUSION

The OFP written for this thesis has been very successful in achieving the goals set forth for

an OPF.  Minimization of system costs, while maintaining system security, was accomplished

through the implementation of Newton’s method to the OPF problem.  Newton’s method has

proven to be very adept at solving the OPF problem.

Many applications of the OPF have also been shown as in Chapter 4.  The OPF performs

generator control and transmission system control while taking into account system limits.  The

marginal cost data from the OPF were shown to aid in the available transfer capability (ATC)

calculation, real and reactive power pricing, transmission system pricing, and transmission

system component valuation.

At present, the OPF works very well for small systems (less than 200 buses).  Improvements

will need to be made to this in order for the software to be truly useful.  This can and will be

done with relatively minor modifications.  As discussed in Section 3.5, by keeping the previous

OPF solution from time step to time step, the speed of the OPF solution will be increased. This

will allow larger systems to be simulated.  The author also plans to implement the partial re-

factorization schemes for the Hessian as seen in [25].  These improvements to the software will

allow the simulation of systems with thousands of buses.  With this ability, the use of the OPF in

a power system simulation environment will be truly useful.

Another problem which should be addressed is the modeling of discrete variables within the

OPF framework.  At present, variables such as transformer tap ratios and phase shift angles are

treated as continuous variables.
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As a final note for this thesis, the author would like to reiterate that while the applications of

the OPF as discussed in this thesis are extremely valuable, they do not take into account the

possibility of random outages of transmission line components or generators.  Also, the pricing

schemes discussed do not take into account the need for future expansion of the power system.
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APPENDIX A. ECONOMIC INTERPRETATION OF  THE LAGRANGE
MULTIPLIERS

The Lagrange multipliers found in the optimal solution can be given an economic

interpretation.  One can show that the Lagrange multipliers are the negative of the derivative of

the function which is being minimized with respect to the enforced constraint.  In other words,

they are the marginal costs associated with enforcing the constraint.  A proof of this as taken

from [29] follows.

The non-linear programming problem that is being solved can be expressed in the following

form (excluding inequality constraints).

Minimize x (the objective function)

subject to: x u (equality constraints)i

f ( )

h ( ) = , i = , , . . . , mi 1 2

Therefore, the Lagrange function may be written:

( ) ( )( ) ( )( ) ( ) ( )( )[ ]
( )

L f hTx u u u x u u x u u

with u  is a vector of Lagrange multipliers

, ,λ λ
λ

= + −

The optimal solution for u = 0 is (x*, λ*).  In this problem formulation, the values of ui are

constraints on some resource.  One can see that if this constraint value were varied, the optimal

solution (x*, λ*) would change.  The sensitivity to a change in u is desired.  This sensitivity can

be expressed as the derivative of the Lagrange function with respect to the variable u.  Evaluating

this derivative yields

( ) ( )( ) ( )( ) ( ) ( ) ( )( )[ ] ( )∇ =
∂
∂

∇ +
∂
∂

∂
∂

+
∂

∂
− −u xx u

x

u
x u

x

u

x u

x
u

u

u
x u u uL f

h
h, ,λ λ

λ
λ

Grouping terms of this functions gives
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( ) ( )( ) ( )( ) ( ) ( ) ( )( )[ ] ( )∇ =
∂
∂

∇ +
∂

∂








 +

∂
∂

− −u xx u
x

u
x u

x u

x
u

First Term

u

u
x u u

Second Term

uL f
h

h, ,λ λ
λ

λ
1 2444444 3444444 1 2444 3444

Now, study the first two terms of this more closely.

( )( ) ( )( ) ( ) ( )∇ +
∂

∂








 = ∇x xx u

x u

x
u x uf

h
Lλ λ, ,

( )( )[ ] ( )h Lx u u x u− = ∇λ λ, ,

Thus the following is written

( ) ( ) ( ) ( ) ( )∇ =
∂
∂

∇ +
∂

∂
∇ −u xx u

x

u
x u

First Term

u

u
x u

Second Term

uL L L, , , , , ,λ λ
λ

λ λλ
1 244 344 1 2444 3444

By the Kuhn-Tucker optimality conditions [20, p. 284], both ( )∇x x uL , ,λ  and ( )∇λ λL x u, ,

must be zero at the optimal solution.  Therefore, both the first and second terms must be zero at

the optimal solution, and the following is left at the optimal solution

( )∇ = −u
*   * *xL ,λ λ

We also know that at the optimal solution,

( ) ( )∇ = ∇u
*   *

u
*x xL f,λ

Combining these two equations, it is seen that at the optimal solution, the following is true.

( )λ  *
u

*x= −∇ f

Thus the Lagrange multipliers are the negatives of the derivative of the function which is being

minimized with respect to the enforced constraint.  If the objective function is considered a cost

function, then the λ* can be interpreted as the cost per unit of the resources associated with each

constraint.  These Lagrange multipliers are thus often referred to as the shadow prices.
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Although the previous derivation has not included inequality constraints, the derivation with

them included is essentially the same.  A simple explanation will be proved here.  For all

inequality constraints not being enforced (i.e., they are not active), the derivative of the objective

function with respect to them will be zero, because the problem solution will not be affected by

changing the constraint (ui) since it is not being enforced anyway.  As for the inequality

constraints that are being enforced, they will simply behave like equality constraints and the

previous derivation can be applied to them.
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APPENDIX B. CALCULATION OF THE GRADIENT OF THE
LAGRANGIAN

Appendix B contains a list of all the terms that make up the gradient of the Lagrangian for the

OPF.  The listing is organized by those equations or constraints which result in the addition of

the gradient term.

Note: The terms that are shown surrounded by parenthesis, (), are not always part of the

gradient.  They are dependent on the inequality constraints being enforced.

Note: Many terms are surrounded by brackets, [].  Appendix D contains a further

explanation of the calculation of these terms.

Gradient term due to generator cost curves (the objective function)

∂
∂

= +
L

P
b c P

Gi
i i Gi2

Gradient terms due to the power flow equations

∂
∂

=
∂
∂









 +

∂
∂



















∑L

V

P

V

Q

Vi
Pk

k

i
Qk

k

ik

µ µ
∂
∂

=
∂
∂













+
∂
∂
























∑L P Q

i
Pk

k

i
Qk

k

ikδ µ δ µ δ

∂
∂

=
L

P
Pk

kµ
∂

∂
=

L
Q

Qk
kµ

∂
∂

= −
L

PGi
Pkµ

Gradient terms due to generator voltage set points

∂
∂

=
L

Vi
visetµ

∂
∂

= −
L

V V
viset

i Gi setµ
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Gradient terms due to maximum and minimum generator power output

( )∂
∂

= − +
L

P P
PGil

Gi Giλ min ( )∂
∂

= + −
L

P P
PGih

Gi Giλ max

( ) ( )∂
∂

= − +
L

PGi
PGil PGihλ λ

Gradient terms due to enforcement of hard transmission line constraints

∂
∂

= −





L
S S

Skm
km kmλ

2 2

max

∂
∂

=
∂

∂





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














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
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2

    where  =   or , , ,

Gradient terms due to enforcement of soft transmission line constraints

∂
∂

= −
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Gradient terms due to enforcement of area interchange constraints

{ }∂
∂

= −∑L
P Pkm schedµ int tie lines

∂
∂
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∂
∂


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Gradient terms due to enforcement of hard voltage constraints

( ) ( )∂
∂

= + −
L
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vih vilλ λ ( )∂

∂
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L
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Gradient terms due to enforcement of soft voltage constraints
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∂

= − − +
L

V
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i
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∂
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L

V
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i
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Gradient terms due to tap changing transformers
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∂
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∂
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Gradient terms due to phase shifting transformers
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





 +

∂
∂









 +

∂
∂









 +

∂
∂











+
∂
∂























 +

∂
∂























 + + −

L

P Q P Q

S
k

Skm

Pm
m

km
Qm

m

km
Pk

k

km
Qk

k

km

Skm

km

km

km

km
km km

α

µ
α

µ
α

µ
α

µ
α

λ α α λ λα α

2 2

max min
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APPENDIX C.  CALCULATION OF THE HESSIAN OF THE
LAGRANGIAN

Appendix C contains a list of all the terms that make up the Hessian of the Lagrangian for the

OPF.  The listing is organized by those equations or constraints which result in the addition of

the Hessian term.

Note: The terms that are shown surrounded by parenthesis, (), are not always part of the

Hessian.  They are dependent on those inequality constraints being enforced.

Note: Many terms are surrounded by brackets, [].  Appendix E contains a further

explanation of the calculation of these terms.

Hessian term due to generator cost curves (the objective function)

∂
∂

=
2

2 2
L

P
c

Gi
i

Hessian terms due to the power flow equations

∂
∂ ∂

=
∂
∂ ∂









 +

∂
∂ ∂



















∑
2 2 2L

x y

P

x y

Q

x y
x y V VPk

k
Qk

k

k
i j i jµ µ δ δwhere  and  = , , ,   or 

∂
∂ ∂

=
∂
∂











2 L

V

P

Vi Pk

k

iµ
∂

∂ ∂
=

∂
∂











2 L

V

Q

Vi Qk

k

iµ

∂
∂ ∂

=
∂
∂













2 L P

i Pk

k

iδ µ δ
∂

∂ ∂
=

∂
∂













2 L Q

i Qk

k

iδ µ δ

∂
∂ ∂

= −
2

1
L

PGk Pkµ
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Hessian terms due to generator voltage set points

∂
∂ ∂

= +
2

1
L

Vi visetµ

Hessian terms due to maximum and minimum generator power output

( )∂
∂ ∂

= −
2

1
L

PGi PGilλ
( )∂

∂ ∂
= +

2

1
L

PGi PGihλ

Hessian terms due to hard transmission line constraints

∂
∂ ∂

=
∂

∂

























2
2

L

x

S

x
x V V

Skm

km

k m k mλ
δ δwhere  =   or , , ,

∂
∂ ∂

=
∂

∂ ∂

























2 2 2
L

x y

S

x y
x y V VSkm

km

k m k mλ δ δwhere  and  =   or , , ,

Hessian terms due to soft transmission line constraints

∂
∂ ∂

= −





∂
∂ ∂













+
∂

∂













∂
∂

























2
2 2

2 2 2 2

2 2
L

x y
k S S

S

x y
k

S

x

S

y

x V V

km km

km km km

k m k m

max

where  =  , , ,  or δ δ

Hessian terms due to area interchange constraints

∂
∂ ∂

=
∂
∂







∑
2 L

x

P

x
km

µ int tie lines

∂
∂ ∂

=
∂
∂ ∂









∑

2 2L

x y

P

x y

x y V V

km

k m k m

µ

δ δ

int

, , ,
tie lines

   where  and  = or 

Hessian terms due to hard voltage constraints
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( )∂
∂ ∂

= +
2

1
L

Vi vihλ
( )∂

∂ ∂
= −

2

1
L

Vi vilλ
( )∂

∂
=

2

2 0
L

Vi

Hessian terms due to soft voltage constraints

( )∂
∂

=
2

2 2
L

V
k

i

Hessian terms due to tap changing transformers

∂
∂ ∂

=
∂

∂ ∂








 +

∂
∂ ∂









 +

∂
∂ ∂









 +

∂
∂ ∂











+
∂
∂ ∂























 +

∂
∂ ∂

























2 2 2 2 2

2 2 2 2

L

t x

P

t x

Q

t x

P

t x

Q

t x

S

t x
k

S

t x
x V V

km
Pm

m

km
Qm

m

km
Pk

k

km
Qk

k

km

Skm

km

km

km

km
k m k

µ µ µ µ

λ δwhere  =  , , ,  or δ m

( )∂
∂ ∂

= +
2

1
L

ttkm kmλ max

( )∂
∂ ∂

= −
2

1
L

ttkm kmλ min

∂
∂ ∂

=
∂
∂











2 L

t

P

tkm Pm

m

kmµ
∂

∂ ∂
=

∂
∂











2 L

t

Q

tkm Qm

m

kmµ

∂
∂ ∂

=
∂
∂











2 L

t

P

tkm Pk

k

kmµ
∂

∂ ∂
=

∂
∂











2 L

t

Q

tkm Qk

k

kmµ

∂
∂ ∂

=
∂
∂













∂
∂

























2
2 2

L

t

S

t

S

tkm Skm

km

km

mk

kmλ
 or  ;  depending on which end of the line is metered 

∂
∂ ∂

=
∂
∂









 =

∂
∂











∂
∂











2 L

t

P

t

P

t

P

tkm km

km

km

km

kmµ int

int  or  ;  depending on which end of the line is metered

Hessian terms due to phase shifting transformers
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∂
∂ ∂

=
∂

∂ ∂








 +

∂
∂ ∂









 +

∂
∂ ∂









 +

∂
∂ ∂











+
∂
∂ ∂























 +

∂
∂ ∂

























2 2 2 2 2

2 2 2 2

L

x

P

x

Q

x

P

x

Q

x

S

x
k

S

x
x V V

km
Pm

m

km
Qm

m

km
Pk

k

km
Qk

k

km

Skm

km

km

km

km
k m k

α
µ

α
µ

α
µ

α
µ

α

λ α α δwhere  =  , , ,  or δ m

( )∂
∂ ∂

= +
2

1
L

km kmλ αα max

( )∂
∂ ∂

= −
2

1
L

km kmλ αα min

∂
∂ ∂

=
∂

∂










2 L P

km Pm

m

kmα µ α
∂

∂ ∂
=

∂
∂











2 L Q

km Qm

m

kmα µ α

∂
∂ ∂

=
∂

∂










2 L P

km Pk

k

kmα µ α
∂

∂ ∂
=

∂
∂











2 L Q

km Qk

k

kmα µ α

∂
∂ ∂

=
∂
∂













∂
∂

























2
2 2

L S S

km Skm

km

km

mk

kmα λ α α
 or  ;  

depending on which end

 of the line is metered
 

∂
∂ ∂

=
∂

∂








 =

∂
∂











∂
∂











2 L P P P

km km

km

km

km

kmα µ α α αint

int  or  ;  
depending on which end

of the line is metered
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APPENDIX D. SUMMARY OF DERIVATIVE CALCULATIONS

In Appendices B and C, many partial derivatives left uncalculated.  These partial derivatives

are summarized in Appendix D.  The listing is organized by the equations being differentiated.

Calculation of partial derivatives of the net power and reactive power injections.

( ) ( )[ ][ ]
( ) ( )[ ][ ]

P V V g b P P

Q V V g b Q Q

g b

k k m km k m km k m
m

N

Gk Lk

k k m km k m km k m
m

N

Gk Lk

km km

= − + − − +

= − − − − +

=

=

∑

∑

cos sin

sin cos

δ δ δ δ

δ δ δ δ

1

1

where  and  are elements of the real and 

imaginary parts of the network admittance matrix

(D.1)

From Equation (D.1), the following partial derivatives can be found

∂
∂













∂
∂













∂
∂











∂
∂











P Q P

V

Q

V
k

i

k

i

k

i

k

iδ δ, , ,and
are elements of the familiar power 

system Jacobian matrix

∂
∂









 =

2

2 2
P

V
gk

k
kk

∂
∂









 =

2

2 0
P

V
k

m

( ) ( )∂
∂ ∂









 = − + −

2 P

V V
g bk

k m
km k m km k mcos sinδ δ δ δ

( ) ( )[ ][ ]∂
∂









 = − − + −

=
∑

2

2
1

P
V V g bk

k
k n kn k n kn k n

nδ
δ δ δ δcos sin

all
busses

( ) ( )[ ]∂
∂ ∂













= − + −
2 P

V V g bk

k m
k m km k m km k mδ δ

δ δ δ δcos sin
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( ) ( )[ ]∂
∂









 = − − − −

2

2

P
V V g bk

m
k m km k m km k mδ

δ δ δ δcos sin

( ) ( )[ ]{ }∂
∂ ∂













= − − + −∑
2 P

V
V g bk

k k
n kn k n kn k nδ

δ δ δ δsin cos
n

all busses

( ) ( )[ ]∂
∂ ∂













= − − −
2 P

V
V g bk

k m
m km k m km k mδ

δ δ δ δsin cos

( ) ( )[ ]∂
∂ ∂













= − − + −
2 P

V
V g bk

m k
k km k m km k mδ

δ δ δ δsin cos

( ) ( )[ ]∂
∂ ∂













= − − −
2 P

V
V g bk

m m
k km k m km k mδ

δ δ δ δsin cos

∂
∂









 = −

2

2 2
Q

V
bk

k
kk

∂
∂









 =

2

2 0
Q

V
k

m

( ) ( )∂
∂ ∂









 = − − −

2Q

V V
g bk

k m
km k m km k msin cosδ δ δ δ

( ) ( )[ ][ ]∂
∂









 = − − − −

=
∑

2

2
1

Q
V V g bk

k
k n kn k n kn k n

nδ
δ δ δ δsin cos

all busses

( ) ( )[ ]∂
∂ ∂













= − − −
2Q

V V g bk

k m
k m km k m km k mδ δ

δ δ δ δsin cos

( ) ( )[ ]∂
∂









 = − − + −

2

2

Q
V V g bk

m
k m km k m km k mδ

δ δ δ δsin cos

( ) ( )[ ]{ }∂
∂ ∂













= − + −∑
2Q

V
V g bk

k k
n kn k n kn k nδ

δ δ δ δcos sin
n

all busses
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( ) ( )[ ]∂
∂ ∂













= − − + −
2Q

V
V g bk

k m
m km k m km k mδ

δ δ δ δcos sin

( ) ( )[ ]∂
∂ ∂













= − + −
2Q

V
V g bk

m k
k km k m km k mδ

δ δ δ δcos sin

( ) ( )[ ]∂
∂ ∂













= − − + −
2Q

V
V g bk

m m
k km k m km k mδ

δ δ δ δcos sin

Calculation of the partial derivatives of the power and reactive power flow between buses.

( ) ( )[ ]
( ) ( )[ ]

P V g V V g b

Q V b V V g b

g , b , g , b

km k kk k m km k m km k m

km k kk k m km k m km k m

kk kk km km

= + + − + −

= − + − − −

2

2

cos sin

sin cos

δ δ δ δ

δ δ δ δ
where  and  are the contributions to the network

admittance matrix from the branch between bus k and bus m.

(D.2)

From Equation (D.2), the following partial derivatives can be found

( ) ( )[ ]∂
∂









 = + − + −

P

V
V g V g bkm

k
k kk m km k m km k m2 cos sinδ δ δ δ

( ) ( )[ ]∂
∂









 = − + −

P

V
V g bkm

m
k km k m km k mcos sinδ δ δ δ

( ) ( )[ ]∂
∂













= − − + −
P

V V g bkm

k
k m km k m km k mδ

δ δ δ δsin cos

( ) ( )[ ]∂
∂













= − − −
P

V V g bkm

m
k m km k m km k mδ

δ δ δ δsin cos

( ) ( )[ ]∂
∂









 = − + − − −

Q

V
V b V g bkm

k
k kk m km k m km k m2 sin cosδ δ δ δ
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( ) ( )[ ]∂
∂









 = − − −

Q

V
V g bkm

m
k km k m km k msin cosδ δ δ δ

( ) ( )[ ]∂
∂













= − + −
Q

V V g bkm

k
k m km k m km k mδ

δ δ δ δcos sin

( ) ( )[ ]∂
∂













= − − − −
Q

V V g bkm

m
k m km k m km k mδ

δ δ δ δcos sin

∂
∂









 =

2

2 2
P

V
gkm

k
kk

( ) ( )∂
∂ ∂









 = − + −

2 P

V V
g bkm

k m
km k m km k mcos sinδ δ δ δ

∂
∂









 =

2

2 0
P

V
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m

( ) ( )[ ]∂
∂













= − − + −
2

2

P
V V g bkm

k
k m km k m km k mδ

δ δ δ δcos sin

( ) ( )[ ]∂
∂ ∂













= − + −
2 P

V V g bkm

k m
k m km k m km k mδ δ

δ δ δ δcos sin

( ) ( )[ ]∂
∂













= − − + −
2

2

P
V V g bkm

m
k m km k m km k mδ

δ δ δ δcos sin

( ) ( )[ ]∂
∂ ∂













= − − + −
2 P

V
V g bkm

k k
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Calculation of the partial derivatives of the square of the MVA flow on a line, |Skm|2
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From Equation (D.3), the following partial derivative can be found
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Equation (D.3) can also be simplified to the following
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From Equation (D.4), the following partial derivatives can be found
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Calculation of partial derivatives with respect to tap ratio and phase shift variables

Before beginning calculation of the partial derivative with respect to tap ratio and phase shift

variables, first consider what equations they affect.  In the modeling of power systems, tap ratios

and phase shifts are typically represented as alterations to the network admittance matrix. Figure

D.1 shows the model for a transformer with tap changing and/or phase shifting capabilities.

Using this model, the entries in the network admittance matrix due to the transformer can be

found as in the book by Grainger [20, pp. 361-362].
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Figure D.1  Transformer Model
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From this model, the following derivatives are defined.
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From these equations, the partial derivatives of elements of the network admittance matrix with

respect to tap ratio and phase shift angle can be summarized as below.



75

∂
∂

=
∂
∂

= −
∂
∂

=
∂
∂

= −

∂
∂

= −
∂
∂

= −
∂
∂

= −
∂
∂

= −

∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=

∂
∂

=

g

t

g

t

g

t

b

t

b

t

b

t

g

t

g

t

g

t

g

t

b

t

b

t

b

t

b

t

g

t

g

t

g

t

b

t

b

t

b

t

g

t

kk

km

km

km

km

km

kk

km

km

km

km

km

mk

km

mk

km

mm

km

mm

km

mk

km

mk

km

mm

km

mm

km

kk

km

km

km

km

km

kk

km

km

km

km

km

mk

km

0 0

2 2

0
2

0
2

2

2

2

2

2 2

2

2

2

2 2

2

2

g

t

g

t

g

t

b

t

b

t

b

t

b

t
mk

km

mm

km

mm

km

mk

km

mk

km

mm

km

mm

km
2

2

2 2

2

2 2

2

2 2

6 2 6∂
∂

=
∂
∂

=
∂
∂

=

∂
∂

=
∂
∂

=
∂

∂
=

∂
∂

= −

∂
∂

= −
∂
∂

=
∂
∂

=
∂
∂

=

∂
∂

=
∂
∂

= −
∂
∂

=
∂
∂

= −

∂
∂

= −
∂
∂

=
∂
∂

= −
∂

g g
b

b b
g

g
b

g b
g

b

g g
g

b b
b

g
g

g b
b

kk

km

km

km
km

kk

km

km

km
km

mk

km
mk

mm

km

mk

km
mk

mm

km

kk

km

km

km
km

kk

km

km

km
km

mk

km
mk

mm

km

mk

km
mk

α α α α

α α α α

α α α α

α α α

0 0

0 0

0 0

0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2bmm

km∂
=

α 2 0

  The equations that have to be differentiated are of the form
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Therefore, the derivatives that need to be calculated may be found as follows.
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Using this process, the following partial derivatives with respect to tap ratio can be found.
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Using the same process for phase shift angles, the following partial derivatives can be found.
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APPENDIX E. SIX-BUS SAMPLE POWER SYSTEM

Appendix E contains information on the six-bus sample power system discussed in the thesis.

A one-line diagram of the system is shown in Figure E.1.
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Figure E.1   One-Line Diagram of Six-Bus System

The line characteristics of the system are shown in Table E.1.  The bus characteristics of the

system are shown in Table E.2.  The economic information of the system is shown in Table E.3.

Table E.1  Line characteristics for six-bus system

From Bus To Bus Circuit Resistance
[p.u.]

Reactance
[p.u.]

Line Charging
[p.u.]

Line Limit
[MVA]

1 2 1 0.04 0.08 0.02 100
1 5 1 0.04 0.08 0.02 100
2 4 1 0.04 0.08 0.02 100
3 5 1 0.04 0.08 0.02 100
3 6 1 0.04 0.08 0.02 100
4 5 1 0.04 0.08 0.02 50
4 6 1 0.04 0.08 0.02 100
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Table E.2  Bus characteristics for six-bus system

Bus
Number

Load
[MW]

Load
[MVAR]

Min Generation
[MW]

Max Generation
[MVAR]

1 100 20 50 250
2 100 20 50 250
3 100 20 50 250
4 100 20 50 250
5 100 50 0 0
6 100 10 0 0

Table E.3  Economic information for six-bus system

Generator
Bus a  

$

hr






b 
$

MW hr






c 
$

MW  hr2







1 105 12.0 0.0120
2   96   9.6 0.0096
3 105 13.0 0.0130
4   94   9.4 0.0094



83

APPENDIX F. TWENTY-THREE BUS SAMPLE POWER SYSTEM

Appendix F contains information on the twenty-three bus sample power system discussed in

the thesis.  A one-line diagram of the system is shown in Figure F.1.
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  0.98 PU

  1.02 PU

 432 MW

 125 MW

  1.03 PU

  97 MVR

 106 MVR

 106 MVR

  98 MVR

 106 MVR

  97 MVR

16.55 $/MWH 13.90 $/MWH

13.57 $/MWH

14.52 $/MWH

17.25 $/MWH

16.64 $/MWH

16.51 $/MWH

15.58 $/MWH

16.50 $/MWH

15.22 $/MWH 13.39 $/MWH

13.49 $/MWH

13.16 $/MWH

13.68 $/MWH

13.53 $/MWH

13.44 $/MWH

13.51 $/MWH

13.49 $/MWH

13.61 $/MWH

12.86 $/MWH

13.27 $/MWH

12.48 $/MWH

12.86 $/MWH

1.000 tap

1.000 tap

1.000 tap

Figure F.1     One-Line Diagram of the Twenty-Three Bus System

The line characteristics of the system are shown in Table F.1.  The bus characteristics of the

system are shown in Table F.2.  The economic information of the system is shown in Table F.3.
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Table F.1  Line characteristics for twenty-three bus system

From Bus To Bus Circuit Resistance
[p.u.]

Reactance
[p.u.]

Line Charging
[p.u.]

Line Limit
[MVA]

1 2 1 0.015 0.040 0.0005 1000
3 23 1 0.010 0.050 0.0000 1000
6 7 1 0.030 0.070 0.0000 1000
6 9 1 0.000 0.100 0.0000 1000
2 6 1 0.015 0.040 0.0006 1000
8 9 1 0.010 0.030 0.0050 1000
5 7 1 0.030 0.070 0.0000 1000
4 7 1 0.020 0.100 0.0005 1000
3 4 1 0.030 0.100 0.0000 1000
1 3 1 0.025 0.060 0.0005 1000
8 28 1 0.010 0.050 0.0000 1000
25 28 1 0.002 0.009 0.0008 1000
23 25 1 0.002 0.009 0.0008 1000
5 25 1 0.010 0.050 0.0000 1000

102 122 1 0.010 0.050 0.0000 1000
122 23 1 0.000 0.100 0.0000 1000
204 224 1 0.010 0.050 0.0000 1000
224 28 1 0.001 0.007 0.0005 500
105 201 1 0.010 0.030 0.0005 500
201 203 1 0.020 0.060 0.0005 1000
203 204 1 0.020 0.060 0.0000 1000
202 204 1 0.020 0.060 0.0000 1000
201 202 1 0.020 0.050 0.0005 1000
102 101 1 0.020 0.060 0.0000 1000
102 104 1 0.015 0.040 0.0008 1000
104 105 1 0.020 0.060 0.0005 1000
101 103 1 0.030 0.070 0.0000 1000
103 105 1 0.000 0.100 0.0000 1000
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Table F.2  Bus characteristics for twenty-three bus system

Bus
Number

Load
[MW]

Load
[MVAR]

Min Generation
[MW]

Max Generation
[MW]

1 125 50 100 1000
2 300 100 0 0
3 250 50 100 600
4 75 10 0 0
5 350 100 150 1000
6 150 35 100 400
7 100 10 0 0
8 225 75 0 0
9 175 50 100 800
23 0 0 0 0
25 0 0 0 0
28 0 0 0 0
101 700 200 100 600
102 200 20 200 1000
103 350 100 0 0
104 450 75 0 0
105 200 20 100 600
122 0 0 0 0
201 300 100 0 0
202 200 20 0 0
203 300 100 50 200
204 0 0 100 800
224 0 0 0 0

Table F.3  Economic information for six-bus system

Generator
Bus a  

$

hr






b 
$

MW hr






c 
$

MW  hr2







1 55.43 7.9181 0.005279
3 58.90 7.6570 0.007657
5 64.28 7.7141 0.006428
6 58.90 7.6570 0.007657
9 80.47 7.5102 0.006897

101 72.94 7.2937 0.009981
102 74.24 7.8609 0.004367
105 65.59 7.5255 0.008285
203 65.91 7.5330 0.008161
204 70.81 7.9140 0.004165
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APPENDIX G. SEVEN-BUS SAMPLE POWER SYSTEM

Appendix G contains information on the twenty-three bus sample power system discussed

in the thesis.  A one-line diagram of the system is shown in Figure G.1.

Bus 2
Bus 3

Bus 4 Bus 5

Bus 7

Bus 1

Bus 6

0.99 PU

1.00 PU

1.00 PU 1.04 PU

1.01 PU

1.01 PU

1.04 PU

 50 MW
 10 MVR

 50 MW
 10 MVR

100 MW
 30 MVR

100 MW
 30 MVR

 50 MVR

 50 MW
 10 MVR

 50 MW
 10 MVR

150 MW
 60 MVR

1.0000 tap 1.0000 tap

 136 MW
  81 MVR

 431 MW
  59 MVR

20.11 $/MWH
-0.02 $/MVRH

18.51 $/MWH
 0.36 $/MVRH

18.50 $/MWH
 0.28 $/MVRH

18.18 $/MWH
 0.21 $/MVRH

19.07 $/MWH
 0.00 $/MVRH

16.75 $/MWH
 0.00 $/MVRH

18.19 $/MWH
 0.32 $/MVRH

Figure G.1  One-Line Diagram of the Seven-Bus System

The line characteristics of the system are shown in Table G.1.  The bus characteristics of the

system are shown in Table G.2.  The economic information of the system is shown in Table G.3.

Table G.1    Line characteristics for seven-bus system

From
Bus

To
Bus

R
[p.u.]

X
[p.u.]

C
[p.u.]

Limit
[MVA]

1 3 0.03 0.05 0.00 1000
2 1 0.03 0.05 0.00 1000
2* 4* 0.00 0.02 0.00 1000
3* 5* 0.11 0.02 0.00 1000
4 6 0.07 0.01 0.00 1000
6 7 0.06 0.10 0.00 1000
7 5 0.07 0.11 0.00 1000
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* Note:  Elements from buses 2-4 and 3-5 are transformers with tap ranges of 0.9 - 1.1 p.u.

Table G.2    Bus characteristics for seven-bus system

Bus
Number

Load
[MW]

Load
[MVAR]

Min Gen.
[MW]

Max Gen.
[MW]

1 150 60 0 1000
2 50 10 0 0
3 50 10 0 0
4 50 10 0 0
5 50 10 0 0
6* 100 30 0 0
7 100 30 0 1000

* A 50 MVAR capacitor bank is at bus 6

Table G.3      Economic information for seven-bus system

Generator
Bus

a  $

hr






b $

MW hr






c $

MW  hr2







1 90 9.0 0.0090
7 115 15.0 0.0150
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APPENDIX H. THREE-BUS SAMPLE POWER SYSTEM

Appendix H contains information on the twenty-three bus sample power system discussed

in the thesis.  A one-line diagram of the system is shown in Figure H.1.

1.04 PU
0.9710 PU

504 MW
193 MVR

411 MW
 70 MVR

300 MW

 75 MW

Bus 1

Bus 2

100 MW

1.04 PU
Bus 3

100 MVR

Area Two

Area One

 14 MVR500 MW
100 MVR

 30 MVR

50.18 $/MWH
 0.00 $/MVRH

20.22 $/MWH
 0.00 $/MVRH

22.85 $/MWH
 0.94 $/MVRH

 -72 MW
  21 MVR

 72 MVR

  73 MW
 -15 MVR

 238 MW
  55 MVR

 -73 MW

 -64 MVR

-227 MW
 -22 MVR

Figure H.1   One-Line Diagram of the Three-Bus System

The line characteristics of the system are shown in Table H.1.  The bus characteristics of the

system are shown in Table H.2.  The economic information of the system is shown in Table H.3.

Table H.1  Line characteristics for three-bus system

From
Bus

To
Bus

R
[p.u.]

X
[p.u.]

C
[p.u.]

Limit
[MVA]

1 2 0.02 0.08 0.00 500
1 3 0.03 0.12 0.00 500
2 3 0.02 0.06 0.00 600
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Table H.2  Bus characteristics for three-bus system

Bus
Number

Load
[MW]

Load
[MVAR]

Min Gen.
[MW]

Max Gen.
[MW]

1 500 100 100 800
2 300 100 0 0
3 100 30 100 800

Table H.3  Economic information for three-bus system

Generator
Bus

a  $

hr






b $

MW hr






c $

MW  hr2







1 100 25.0 0.0250
3 150 13.0 0.0100
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