Real Time Visualization, Topology Processing and Simulation

- PowerWorld Retriever Implementation at ISO-NE

Wednesday, June 14, 2006

Xiaochuan Luo, Yujie Hu

ISO new england

Drivers of the ISO NE Retriever *Project*

- Develop advanced Power System visualization tools as a result of the 2003 Blackout and for the new ISO NE Control Room Wallboard
- Provide IT/EMS with additional Modeling and Analysis capabilities
- Provide operations and planning a platform to analyze the EMS case, taking advantage of the the advanced analyzing capability such as ATC, PV/QV, etc
- Cyber Security PowerWorld Retriever/Simulator does not require EMS WebFG access thus improved EMS cyber security through fewer EMS users

ISO new england

Presentation Title 2005 ISO New England Inc.

ISO NE Retriever Project: Visualization

- Wallboard one-line display
- GIS based contours (Nodal LMP, Voltage)
- Bubble diagram of internal interface monitor
- Bubble diagram of wide area monitor
- Generator Mvar reserve monitor

ISO new england

Presentation Title © 2005 ISO New England Inc. 2

ISO NE Retriever Project: Simulation

- Automatic, real-time EMS network model synchronization with PowerWorld (model AUX, contingency AUX, SPS AUX)
- Retrieve historical EMS case via PI system and solve power flow (post mortem analysis)
- Validation of EMS Network modeling

ISO new england

2005 ISO New England Inc.

EMS Real Time Case Export

- Data Retrieval Layer
 - ISO EMS has been modified to:
 - ➤ Automatically export real-time state estimation model
 - model_rtnet_autorun_rtnet_ems.aux
 - ➤ Automatically export Contingency and SPS definitions
 - ctgs_rtca_autorun_rtca_ems.aux
 - auto_load_sps_definitions.aux
 - All exports are pushed to a share on the sever such that any PW user in the company can access current EMS case without requiring EMS environment

Presentation Title new england © 2005 ISO New England Inc.

EMS Study Case Export

- EMS Power Flow and Contingency Analysis users can export their study cases to PowerWorld in ~10 seconds
- Three EMS applications to export PowerWorld cases
 - EMS PWRFLOW Application (model aux file only)
 - EMS STCA Application (model aux, contingency aux)
 - EMS PWRWORLD Application (model aux, contingency aux, real time subscription aux)

ISO new england

Presentation Title © 2005 ISO New England Inc. 7

ISO New England EMS Model to PowerWorld

Node-Breaker model:

Sub: SubNum, SubName, Latitude, Longitude

Bus: BusNum, BusName, BusNomVolt, Area, Zone, SubNum,

Latitude, Longitude, BusKVVolt, BusAngle, LSName,

BusMonEle, BusVoltLimHigh, BusVoltLimLow

Area: AreaNum, AreaName, BGAGC

• Zone: ZoneNum, ZoneName

Load: MW, Mvar

Shunt: SSRegNum, DesiredVoltage,SSCmode,SSVHigh,

SSVLow, SSNMVR, SSBlockNumSteps,

SSBlockMVarPerStep

Gen: MW, Mvar, VoltSet, GenRegNum, AGC, AVR, MWMin,

MWMax, MVRmin, MVRmax, UseCapCurve,

GenParFac, GenRMPCT

ISO new england

Presentation Title © 2005 ISO New England Inc.

ISO New England EMS Model to PowerWorld

- Branch
 - Line: BusNum, BusNum:1, R, X, C, LineMonEle, LSName, LineAMVA, LineAMVA:1, LineAMVA:2
 - Transformer: All transformer base parameters
 - **Phase Shifter**
 - **ZBR**
 - Breaker
- Transformer Impedance Correction table
- Interface Definition
- Study MW Transaction
- Injection group
 - Generation Dispatch Zone
 - Load Tree Structure
- EMS Solution parameters, including solution tolerances

ISO new england

Presentation Title © 2005 ISO New England Inc.

Implementation of Retriever Visualization

- Three Phases:
 - Phase I: Sample displays built based on planning model and connection to PI to promote the visualization project (end of 2004 to early 2005)
 - Phase II: Synchronize Retriever with EMS model and robust connectivity with real-time PI System; Developed four prototyped displays to control room and several others within the company (March 2005 - July 2005)
 - Phase III: Large scale wallboard displays (December 2005 - May 2006)

ISO new england

Presentation Title © 2005 ISO New England Inc. 15

Implementation of Retriever Visualization

- Prototype wallboard (9X3 array, 20" LCD monitors)
- Hired a professional A/V company to help optimizing the content of wallboard displays and develop a style guide
- Daily interaction with control room operators when building displays
- Testing was actually done by control room operators
- All employee move to new building on April 24, 2006
- Parallel control room operation between May 1 and 5
- Final control room move on May 5, 2006 and Wallboard (9X3 array, 80" DLP video wall) go live!
- Operators love it!

ISO new england

Presentation Title © 2005 ISO New England Inc.

Future Displays

- 3D Mvar Reserve Monitor
- Island Display, using island number either from
 - EMS, or
 - Topology Processing feature of Retriever 12
- Advanced displays per operators' request

Presentation Title

1SO new england © 2005 ISO New England Inc.

Topology Processing and Real Time Power Flow

Presentation Title new england © 2005 ISO New England Inc. 27

Topology Processing

- Besides allowing effective visualization of real-time data, Retriever can be set up to obtain power flow solutions.
- The solution requires handling and interacting with two different representations of the power system:
 - Node/Breaker or Full (Topology) model,
 - Bus/Branch or Consolidated model
- Power flow and state estimator algorithms use the Bus/Branch model
- Topology Processing algorithm is used to convert the Node/Breaker model into a Bus/Branch model

ISO new england

Presentation Title © 2005 ISO New England Inc.

28

Solving the Consolidated Model

- Consolidating a model has two advantages:
 - It prevents numeric instability by removing lowimpedance branches from the power flow Jacobian
 - It solves a much smaller case, which is particularly important in contingency analysis
- Once the consolidated model is solved, the results can be mapped to the full model
 - Bus voltages are mapped back to all the related nodes
- Save consolidated case as PWB, PSSE, PSLF, IEEE, etc.
- The case can be shared with other workgroups such as planners and market participants

ISO new england

© 2005 ISO New England Inc.

Demo of Topology Processing using ISO New England EMS case

- Open a case in Full topology
- Case Information --- Buses to show nodes under full topology
- Topology Processing Dialog
 - Init new case (show log)
 - Run TP (show log)
- Case Information Buses to show buses under consolidated model
- Solve consolidated case
- Save the case to *.pwb or other format

ISO new england

Presentation Title © 2005 ISO New England Inc.

30

Contingency Analysis

- Contingency actions may involve breakers that were already merged
- Two methods to model actions in the contingency analysis:
 - Keep in the consolidated case all the switching devices that are involved in contingency actions.
 - Dynamically restore portions of the full model to the consolidated system.
- Retriever currently uses the first method

ISO new england

Presentation Title © 2005 ISO New England Inc.

Demo of Real Time Contingency Analysis

- Load the model AUX and contingency AUX files
- Show contingency under full topology

ISO new england

ISO new england

- Open TP dialog and select "Preserve all Breakers involved in Active Contingencies"
- Show bus information of consolidated model
- Show contingency definition of consolidated model
- Press the Start Run button in the Consolidated Contingency Analysis

Presentation Title © 2005 ISO New England Inc.

Presentation Title © 2005 ISO New England Inc. 33

Real Time Retrieving and Power Flow Data Sources Data Source: New ... Delete Save Selected Modify ... Visualization: SCADA Redundant Group PowerFlow: **RTNET** SCADA_PIPRDB SCADA_PIPRDA Redundant PI Server Redundant Group -COMMON_PIPRDB COMMON_PIPRDA Mode: Redundant Group Visualization: Real Time ---RTNET_PIPRDBRTNET PIPRDA Power Flow: RUN

Demo of Real Time Power Flow

Use ISO New England real time case and data source to demo the real time power flow solution

ISO new england

Presentation Title © 2005 ISO New England Inc.

26

Summary

- PowerWorld Retriever implemented at ISO-NE to retrieve and visualize real-time power system data via the ISO PI System.
- Automatic, real-time EMS network model synchronization with PowerWorld has been developed, tested and deployed
- PowerWorld Power Flow and Contingency Analysis functions have been tested and correlate accurately with online ISO EMS solutions
- Retrieve historical data through PI system, generate the case and obtain power flow solution for further analysis

ISO new england

Presentation Title