Introduction to PowerWorld Simulator: Interface and Common Tools

116: TransLineCalc

2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com http://www.powerworld.com

TransLineCalc Tool

- The Transmission Line Parameter Calculator (TransLineCalc) is a tool designed to compute characteristic line parameters
 - Input data: Type of conductor and tower configuration of a three-phase overhead transmission line
 - Output data: Resistance R, reactance X, susceptance B, conductance G
 - Values computed as distributed, lumped or total, and in per-unit
- As a stand-alone program or as an automation server that interacts with Simulator or from an external application

Distributed Transmission Line Model

Distributed parameter line

 $z = r + j\omega l$ = series impedance per unit length/phase $y = g + j\omega c$ = shunt admittance per unit length/phase ℓ = length of the line

Distributed Transmission Line Model (cont'd)

 The relationship between the per-phase voltages and currents at the two ends of the transmission line is specified by:

$$\begin{split} V_1 &= V_2 \cosh \gamma \ell + Z_C I_2 \sinh \gamma \ell \\ I_1 &= I_2 \cosh \gamma \ell + \frac{V_2}{Z_C} \sinh \gamma \ell \end{split}$$

where

- z is the series impedance
- y is the shunt admittance
- γ is the propagation constant = \sqrt{zy}
- Z_C is the characteristic impedance = $\sqrt{z/y}$

Π Transmission Line Model

ullet Use of equivalent Π circuit of a transmission

line

 The same relationship between terminal voltages and currents in a matrix form:

$$V_1 = AV_2 + BI_2$$
$$I_1 = CV_2 + DI_2$$

Π Transmission Line Model (cont'd)

• The A, B, C, D parameters are given by:

$$A = 1 + \left(\frac{Z'Y'}{2}\right) \qquad B = Z'$$
 where
$$C = Y'\left(1 + \frac{Z'Y'}{4}\right) \qquad D = 1 + \frac{Z'Y'}{2}$$

• $Z \triangleq z\ell$ is the total series impedance of the line, and

$$Z' = Z \frac{\sinh \gamma \ell}{\gamma \ell}$$

• $Y \triangleq y\ell$ is the total line-neutral admittance of the line, and $\frac{Y'}{2} = \frac{Y}{2} \frac{\tanh\left(\gamma\ell/2\right)}{\gamma\ell/2}$

TransLineCalc Calculations

- Three types of calculations available in TransLineCalc:
 - Parameters Calculation. Computes distributed and lumped or total values of R, X, G and B
 - Amp to MVA Conversion. Converts the limits of transmission lines from Amps to MVA's, and viceversa, given the voltage base
 - Reverse Lookup. Given the tower configuration and the characteristic line parameters in per unit, lists the conductors that match those characteristic line parameter given values

Parameters Calculation

Editing Conductors and Tower Configurations

Amp to MVA Limit Conversion

The stand-alone version displays only three limits. When used from Simulator, it will display the current 8 line limits of a transmission line

The voltage base is the only input data

As the user modify either the Amp Limits or the MVA Limits, they are automatically converted

Reverse Lookup

Interaction with Simulator

TransLineCalc can be open from Simulator.

Transmission/Line/Transformer options dialog for

each line in Edit Mode

- Parameters tab,
- Click on Calculate
 Impedances button,
- Select From ConductorType and TowerConfiguration.

