Voltage Stability

PowerWorld Corporation
2001 S. First St, Suite 203
Champaign, IL 61820
http://www.powerworld.com
info@powerworld.com
217 384 6330
Power System Voltage Stability

- **Voltage Stability**: The ability to maintain system voltage so that both power and voltage are controllable. System voltage responds as expected (i.e., an increase in load causes proportional decrease in voltage).

- **Voltage Instability**: Inability to maintain system voltage. System voltage and/or power become uncontrollable. System voltage does not respond as expected.

- **Voltage Collapse**: Process by which voltage instability leads to unacceptably low voltages in a significant portion of the system. Typically results in loss of system load.
Voltage Stability

- Two good references are

- Classified by either size of disturbance or duration
 - Small or large disturbance: small disturbance is just perturbations about an equilibrium point (power flow)
 - Short-term (several seconds) or long-term (many seconds to minutes)
Small Disturbance Voltage Stability

- Small disturbance voltage stability can be assessed using a power flow (maximum loadability).
- Depending on the assumed load model, the power flow can have multiple (or now solutions).
- PV curve is created by plotting power versus voltage.

Assume $V_{\text{slack}} = 1.0$

\[
P_L - BV \sin \theta = 0
\]
\[
Q_L + BV \cos \theta - BV^2 = 0
\]

Where B is the line susceptance $=-10$, $V \angle \theta$ is the load voltage.
Small Disturbance Voltage Stability

• Question: how do the power flow solutions vary as the load is changed?

• A Solution: Calculate a series of power flow solutions for various load levels and see how they change

• Power flow Jacobian

\[
\mathbf{J}(\theta, V) = \begin{bmatrix}
-BV \cos \theta & -B \sin \theta \\
-BV \sin \theta & B \cos \theta - 2BV
\end{bmatrix}
\]

\[
\det \mathbf{J}(\theta, V) = VB^2 \left(2V \cos \theta - \cos^2 \theta - \sin^2 \theta\right)
\]

Singular when \((2V \cos \theta - 1) = 0\)
Maximum Loadability When Power Flow Jacobian is Singular

- An important paper considering this was by Sauer and Pai from IEEE Trans. Power Systems in Nov 1990, “Power system steady-state stability and the load-flow Jacobian”
- Other earlier papers were looking at the characteristics of multiple power flow solutions
- Work with the power flow optimal multiplier around the same time had shown that optimal multiplier goes to zero as the power flow Jacobian becomes singular
- The power flow Jacobian depends on the assumed load model (we’ll see the impact in a few slides)
The Sauer/Pai paper related system stability to the power flow Jacobian by noting the system dynamics could be written as a set of differential algebraic equations

\[\begin{align*}
 \dot{x} &= f(x, y, p) \\
 0 &= g(x, y, p)
\end{align*} \]

Linearising about an equilibrium gives

\[
\begin{bmatrix}
 \Delta \dot{x} \\
 0
\end{bmatrix} =
\begin{bmatrix}
 \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
 \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{bmatrix}
\begin{bmatrix}
 \Delta x \\
 \Delta y
\end{bmatrix}
\]
Relationship Between Stability and Power Flow Jacobian

• Then

Assuming $\frac{\partial g}{\partial y}$ is nonsingular then

$$\Delta \dot{x} = \left[\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \left[\frac{\partial g}{\partial y} \right]^{-1} \frac{\partial g}{\partial x} \right] \Delta x$$

• What Sauer and Pai show is if $\frac{\partial g}{\partial y}$ is singular then the system is unstable; if $\frac{\partial g}{\partial y}$ is nonsingular then the system may or may not be stable

• Hence it provides an upper bound on stability
Bifurcations

- In general, bifurcation is the division of something into two branches or parts
- For a dynamic system, a bifurcation occurs when small changes in a parameter cause a new quality of motion of the dynamic system
- Two types of bifurcation are considered for voltage stability
 - Saddle node bifurcation is the disappearance of an equilibrium point for parameter variation; for voltage stability it is two power flow solutions coalescing with parameter variation
 - Hopf bifurcation is cause by two eigenvalues crossing into the right-half plane
PV and QV Curves

- PV curves can be traced by plotting the voltage as the real power is increased; QV curves as reactive power is increased
 - At least for the upper portion of the curve
- Two bus example PV and QV curves
Small Disturbance Voltage Collapse

- At constant frequency (e.g., 60 Hz) the complex power transferred down a transmission line is $S=VI^*$
 - V is phasor voltage, I is phasor current
 - This is the reason for using a high voltage grid
- Line real power losses are given by RI^2 and reactive power losses by XI^2
 - R is the line’s resistance, and X its reactance; for a high voltage line $X >> R$
- Increased reactive power tends to drive down the voltage, which increases the current, which further increases the reactive power losses
Commercial power flow software usually auto converts constant power loads at low voltages; set these fields to zero to disable this conversion.

Case is **Bus2_PV**
Power Flow Region of Convergence

Convergence regions with $P=100$ MW, $Q=0$ Mvar
Load Parameter Space Representation

- With a constant power model there is a maximum loadability surface, S
 - Defined as point in which the power flow Jacobian is singular
 - For the lossless two bus system it can be determined as

$$-\frac{P_L^2}{B} + Q_L + \frac{1}{4} B = 0$$
Load Model Impact

- With a static load model regardless of the voltage dependency the same PV curve is traced
 - But whether a point of maximum loadability exists depends on the assumed load model
 - If voltage exponent is > 1 then multiple solutions do not exist

Change load to constant impedance; hence it becomes a linear model
ZIP Model Coefficients

- One popular static load model is the ZIP; lots of papers on the “correct” amount of each type

Application: Conservation Voltage Reduction (CVR)

- If the “steady-state” load has a true dependence on voltage, then a change (usually a reduction) in the voltage should result in a total decrease in energy consumption.
- If an “optimal” voltage could be determined, then this could result in a net energy savings.
- Some challenges are 1) the voltage profile across a feeder is not constant, 2) the load composition is constantly changing, 3) a decrease in power consumption might result in a decrease in useable output from the load, and 4) loads are dynamic and an initial increase might be balanced by a later increase.
Determining a Metric to Voltage Collapse

- The goal of much of the voltage stability work was to determine an easy to calculate metric (or metrics) of the current operating point to voltage collapse
 - PV and QV curves (or some combination) can determine such a metric along a particular path
 - Goal was to have a path independent metric. The closest boundary point was considered, but this could be quite misleading if the system was not going to move in that direction
 - Any linearization about the current operating point (i.e., the Jacobian) does not consider important nonlinearities like generators hitting their reactive power limits
Assessing Voltage Margin Using PV and QV Curve Analysis

- A common method for assessing the distance in parameter space to voltage instability (or an undesirable voltage profile) is to trace how the voltage magnitudes vary as the system parameters (such as the loads) are changed in a specified direction
 - If the direction involves changing the real power (P) this is known as a PV curve; if the change is with the reactive power (Q) then this is a QV curve
- PV/QV curve analysis can be generalized to any parameter change, and can include the consideration of contingencies
PV and QV Analysis in PowerWorld

- Requires setting up what is known in PowerWorld as an injection group
 - An injection group specifies a set of objects, such as generators and loads, that can inject or absorb power
 - Injection groups can be defined by selecting Case Information, Aggregation, Injection Groups

- The PV and/or QV analysis then varies the injections in the injection group, tracing out the PV curve
- This allows optional consideration of contingencies
- The PV tool can be displayed by selecting Add-Ons, PV
PV and QV Analysis in PowerWorld: Two Bus Example

- Setup page defines the source and sink and step size
PV and QV Analysis in PowerWorld: Two Bus Example

- The PV Results Page does the actual solution
 - Plots can be defined to show the results
 - Other Actions, Restore initial state restores the pre-study state

Click the Run button to run the PV analysis; Check the Restore Initial State on Completion of Run to restore the pre-PV state (by default it is not restored)
PV and QV Analysis in PowerWorld: Two Bus Example
PV and QV Analysis in PowerWorld: 37 Bus Example

Usually other limits also need to be considered in doing a realistic PV analysis; example case is Bus37_PV
Shorter Term Dynamics

- On a shorter time-scale (minutes down to seconds) voltage stability is impacted by controls hitting limits (such as the action of generator over excitation limiters), the movement of voltage control devices (such as LTC transformers) and load dynamics
 - Motor stalling can have a major impact

- The potential for voltage instability can be quantified by looking at the amount and duration of voltage dips following an event

Image from WECC Planning and Operating Criteria
Fault Induced Delayed Voltage Recovery (FIDVR)

- FIDVR is a situation in which the system voltage remains significantly reduced for at least several seconds following a fault (at either the transmission or distribution level)
 - It is most concerning in the high voltage grid, but found to be unexpectedly prevalent in the distribution system

- Stalled residential air conditioning units are a key cause of FIDVR – they can stall within the three cycles needed to clear a fault

Image Source: NERC, Fault Induced Delayed Voltage Recovery (FIDVR) Advisory, July 2015