

Auxiliary File Format for

Simulator 21

Last Updated: December 24, 2020

PowerWorld Corporation

2001 South First St

Champaign, IL 61820

(217) 384-6330

http://www.powerworld.com

info@powerworld.com

 ii

Table of Contents

Introduction.. 1

SCRIPT Section ... 2

Using Filters in Script Commands ... 2

Specifying Special Keywords in Script Command Parameters... 2

Specifying File Names in Script Commands .. 3

Specifying Field Variable Names in Script Commands ... 3

Specifying Field Values in Script Commands ... 3

General Actions .. 4
Program Actions ... 4

CopyFile("oldfilename", "newfilename"); ... 4
DeleteFile("filename"); ... 4
ExitProgram; .. 4
LogAdd("text"); ... 4
LogAddDateTime("label", includedate, includetime, includemilliseconds); ... 4
LogClear; ... 4
LogSave("filename", AppendFile); ... 4
LogShow(DoShow); .. 5
RenameFile("oldfilename", "newfilename"); ... 5
SetCurrentDirectory("filedirectory", CreateIfNotFound); ... 5
StopAuxFile; ... 5
WriteTextToFile("filename", "text"); .. 5

Data Actions ... 6
CreateData(objecttype, [fieldlist], [valuelist]); .. 6
Delete(objecttype, filter); .. 6
DeleteDevice([ObjectIDString]);... 6
DeleteIncludingContents(objecttype, filter);... 6
ExportAreaSupplyCurves("filename", "User Defined String", NumPoints); .. 7
ImportData("filename", FileType, HeaderLine, CreateIfNotFound); .. 7
LoadAux("filename", CreateIfNotFound); .. 7
LoadAuxDirectory("filedirectory", "filterstring", CreateIfNotFound); .. 7
LoadCSV("filename", CreateIfNotFound); .. 7
LoadData("filename", DataName, CreateIfNotFound); ... 8
LoadScript("filename", ScriptName, CreateIfNotFound); .. 8
SaveData("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], Transpose, Append); 8
SaveDataEPC("filename", objecttype, filter, GEFileType, SaveBuses, Append); ... 9
SaveDataUsingExportFormat("filename", filetype, "FormatName", ModelToUse); ... 9
SaveDataWithExtra("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], [Header_List],

[Header_Value_List], Transpose, Append); .. 10
SaveObjectFields("filename", objecttype, [fieldlist]); ... 11
SelectAll(objecttype, filter); .. 11
SendtoExcel(objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", "worksheetname", [SortFieldList],

[Header_List], [Header_Value_List], ClearExisting, RowShift, ColShift); .. 11
SetData(objecttype, [fieldlist], [valuelist], filter); .. 12
UnSelectAll(objecttype, filter); .. 13

Case Related Actions .. 14

 iii

AutoInsertTieLineTransactions; .. 14
CalculateRXBGFromLengthConfigCondType(filter); .. 14
CaseDescriptionClear; .. 15
CaseDescriptionSet("text", Append); ... 15
ChangeSystemMVABase(NewBase); .. 15
ClearSmallIslands; .. 15
ConditionVoltagePockets(VoltageThreshold, AngleThreshold, filter); ... 15
DetermineBranchesThatCreateIslands(Filter, StoreBuses, "filename", SetSelectedOnLines, FileType); 15
DeterminePathDistance([start], BranchDistMeas, BranchFilter, BusField); .. 16
DetermineShortestPath([start], [end], BranchDistanceMeasure, BranchFilter, Filename); .. 17
DoFacilityAnalysis ("Filename"); ... 17
DirectionsAutoInsert(Source, Sink, DeleteExisting, UseAreaZoneFilters, Start, Increment); .. 17
EnterMode(mode); .. 17
EstimateVoltages(filter); .. 17
GenForceLDC_RCC(filter); ... 18
InitializeGenMvarLimits; .. 18
InjectionGroupsAutoInsert; ... 18
InjectionGroupCreate("Name", objecttype, InitialValue, filter, Append); .. 18
InterfaceCreate("Name", DeleteExisting, ObjectType, Filter); .. 19
LoadEMS("filename", filetype); ... 19
NewCase; .. 19
OpenCase("filename", OpenFileType,[LoadTransactions,StarBus,HowToKeepDuplicates]); ... 19
OpenCase("filename", OpenFileType,[MSLine,VarLimDead,PostCTGAGC,MSLineDummyBus]); ... 19
RenameInjectionGroup("OldName", "NewName"); ... 20
SaveCase("filename", SaveFileType, [PostCTGAGC, UseAreaZone]);... 20
SaveCase("filename", SaveFileType, [AddCommentForObjectLabels]); ... 20
SaveGenLimitStatusAction("filename"); .. 21
SaveJacobian("JacFileName", "JIDFileName", FileType, JacForm); ... 21
SaveYbusInMatlabFormat("filename", IncludeVoltages); .. 21
Scale(scaletype, basedon, [parameters], scalemarker); .. 21
SetGenPMaxFromReactiveCapabilityCurve(filter); ... 22
SetParticipationFactors(Method, ConstantValue, Object); .. 23
SetScheduledVoltageForABus([bus identifier], voltage); ... 23
SetSelectedFromNetworkCut(SetHow, [BusOnCutSide], BranchFilter, InterfaceFilter, DCLineFilter, Energized,

NumTiers, InitializeSelected, [ObjectsToSelect], UseAreaZone, UsekV, MinkV, MaxkV, LowerMinkV, LowerMaxkV); .. 23
UpdateIslandsAndBusStatus; .. 24

Distributed Computing Actions ... 25
EnterDistMasterPassword(Password); ... 25
VerifyDistributedComputersAvailable; .. 25

Oneline Actions .. 26
CloseOneline("OnelineName"); .. 26
EditMultipleOnelineAction("Path", LinkType, SaveFileType); ... 26
ExportOneline("filename", "OnelineName", ImageType, "view", FullScreen, ShowFull, [ExportOptions]); 26
ExportOnelineAsShapeFile("filename", "OnelineName", "ShapeFileExportDescriptionName", UseLonLat,

PointLocation);.. 27
ImportDDLAsTranslation("filename"); ... 27
LoadAXD("filename", "OnelineName", CreateIfNotFound) .. 27
OpenOneline("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, Height); .. 28
RelinkAllOpenOnelines; .. 28
SaveOneline("filename", "OnelineName", SaveFileType); ... 28
OpenBusView("Bus key", ForceNewWindow); ... 28
OpenSubView("Substation key", ForceNewWindow); .. 29

User Interface Actions .. 30

 iv

MessageBox("text"); ... 30
ObjectFieldsInputDialog("ObjectIDString", [fieldlist], "DialogCaption", "DialogExplain", [LabelCaptions], [TabBreaks],

[TabCaptions], [RowBreaks], [RowCaptions], [ColBreaks], [ColCaptions]);.. 30
OpenDataView("ObjectIDString", "DataGridIDString"); ... 32

Customer-Specific Actions ... 33
ISONEInterfaceLimitCalculation("filename", variablename); .. 33

Edit Mode Actions .. 35
Case Related Actions .. 35

AppendCase("filename", OpenFileType, [StarBus, EstimateVoltages]); ... 35
AppendCase("filename", OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]); 35
Combine([elementA], [elementB]); ... 36
DeleteExternalSystem; ... 36
Equivalence; ... 36
InterfacesAutoInsert(Type, DeleteExisting, UseFilters, "Prefix", Limits); .. 36
MergeBuses([element], Filter); ... 36
MergeLineTerminals(Filter); ... 37
MergeMSLineSections(Filter); ... 37
Move([elementA], [destination parameters], HowMuch); ... 37
ReassignIDs(objecttype, field, filter, UseRight); ... 38
Remove3WXformerContainer(filter); ... 38
Renumber3WXFormerStarBuses("filename", Delimiter); ... 39
RenumberAreas(NumCI); ... 39
RenumberBuses(NumCI); ... 39
RenumberMSLineDummyBuses("filename", Delimiter); .. 39
RenumberSubs(NumCI); ... 40
RenumberZones(NumCI); .. 40
SaveExternalSystem("Filename", SaveFileType, WithTies); .. 40
SplitBus([element], NewBusNumber, InsertBusTieLine, LineOpen, BranchDeviceType); .. 40
TapTransmissionLine([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine); 41

Run Mode Actions.. 42
Animate(DoAnimate); .. 42
CalculatePTDF([transactor seller], [transactor buyer], LinearMethod); ... 42
CalculatePTDFMultipleDirections(StoreForBranches, StoreForInterfaces, LinearMethod); .. 43
CalculateLODF([BRANCH nearbusnum farbusnum ckt], LinearMethod, PostClosureLCDF);... 43
CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod,

filterMonitorInterface, PostClosureLCDF); ... 43
CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines, UseLODFThreshold,

LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile, FileLocation,

CustomFieldHighLODF, CustomFieldHighLODFLine, CustomFieldHighOverload, CustomFieldHighOverloadLine,

DoUseCTGName, CustomFieldOrigCTGName); .. 44
CalculateLODFAdvanced(IncludePhaseShifters, FileType, MaxColumns, MinLODF, NumberFormat, DecimalPoints,

OnlyIncludingLinesIncreasing, "FileName", IncludeIslandingCTG); ... 46
CalculateTLR([flow element], direction, [transactor], LinearMethod, SetOutOfServiceBuses, filter, AbortOnError);...... 46
CalculateTLRMultipleElement(TypeElement,WhichElement,direction,[transactor],LinearMethod); 47
CalculateVoltSense([BUS num]); .. 48
CalculateFlowSense([flow element], FlowType);.. 48
CalculateLossSense(FunctionType); ... 48
CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR); 49
CalculateVoltSelfSense(filter); ... 49
DeleteState(WhichState, StateName);... 49
RestoreState(WhichState, StateName); .. 50
SetInterfaceLimitToMonitoredElementLimitSum(filter); .. 50

 v

SetSensitivitiesAtOutOfServiceToClosest(filter); ... 51
StoreState(StateName); .. 51
ZeroOutMismatches(ObjectType);.. 51

Power Flow Related Actions .. 52
ClearPowerFlowSolutionAidValues; ... 52
DiffFlowClearBase; .. 52
DiffFlowKeyType(KeyType); ... 52
DiffFlowMode(diffmode); ... 52
DiffFlowSetAsBase; ... 52
DiffFlowShowPresentAndBase(How); .. 52
DiffFlowRefresh; ... 53
DiffFlowWriteCompleteModel ("filename", AppendFile, SaveAdded, SaveRemoved, SaveBoth, KeyFields,

"ExportFormat", UseAreaZone, UseDataMaintainer, AssumeBaseMeet, IncludeClearPowerFlowSolutionAidValues); 53
DiffFlowWriteBothEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append); 53
DiffFlowWriteNewEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append); 54
DiffFlowWriteRemovedEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append); 54
DoCTGAction([contingency action]); ... 54
ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle); ... 54
SolvePowerFlow (SolMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 55

Contingency Related Actions .. 56
CTGApply("ContingencyName"); .. 56
CTGAutoInsert; ... 56
CTGCalculateOTDF([transactor seller], [transactor buyer], LinearMethod); ... 56
CTGClearAllResults; .. 56
CTGCompareTwoListsofContingencyResults (PRESENT or "ControllingFilename",PRESENT or

"ComparisonFilename"); ... 56
CTGConvertAllToDeviceCTG(KeepOriginalIfEmpty); ... 57
CTGCreateContingentInterfaces(filter, maxOption); .. 57
CTGCreateExpandedBreakerCTGs; ... 58
CTGCreateStuckBreakerCTGs(filter, AllowDuplicates, "PrefixName", IncludeCTGLabel, BranchFieldName,

"SuffixName", "PrefixComment", BranchFieldComment, "SuffixComment"); .. 58
CTGJoinActiveCTGs(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename"); .. 58
CTGProcessRemedialActionsAndDependencies(DoDelete, filter); .. 59
CTGProduceReport("filename"); .. 59
CTGReadFilePSLF("filename"); .. 59
CTGReadFilePTI("filename"); ... 59
CTGRelinkUnlinkedElements; .. 59
CTGRestoreReference; ... 59
CTGSaveViolationMatrices("filename", filetype, UsePercentage, [ObjectTypesToReport], SaveContingency,

SaveObjects, FieldListObjectType, [FieldList], IncludeUnsolvableCTGs); ... 59
CTGSetAsReference; ... 60
CTGSolve("ContingencyName"); ... 60
CTGSolveAll(DoDistributed, ClearAllResults); ... 61
CTGWriteAllOptions("filename", KeyField, UseSelectedDataMaintainer, SaveDependencies, UseAreaZoneFilters); 61
CTGWriteFilePTI("filename", BusFormat, TruncateCTGLabels); ... 61
CTGWriteResultsAndOptions("filename", [opt1, opt2, opt3, …, opt19], KeyField, UseDATASection, UseConcise,

UseObjectIDs, UseSelectedDataMaintainers, SaveDependencies, UseAreaZoneFilters); ... 62
Fault Related Actions .. 64

Fault([Bus num], faulttype, R, X); ... 64
Fault([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X); .. 64
LoadPTISEQData("filename", version); .. 64

ATC (Available Transfer Capability) Related Actions .. 65
ATCCreateContingentInterfaces(filter); ... 65

 vi

ATCDetermine([transactor seller], [transactor buyer], DoDistributed); .. 65
ATCDetermineATCFor(RL, G, I, ApplyTransfer); ... 65
ATCIncreaseTransferBy(amount); .. 65
ATCRestoreInitialState; .. 65
ATCTakeMeToScenario(RL, G, I); ... 65
ATCWriteAllOptions("filename", AppendFile, KeyField); .. 66
ATCWriteResultsAndOptions("filename", AppendFile); ... 66
ATCWriteToExcel("worksheetname", [fieldlist]); .. 66
ATCWriteToText("filename", filetype, [fieldlist]); ... 67
ATCSetAsReference; ... 67

GIC (Geomagnetically Induced Current) Related Actions .. 68
GICCalculate(MaxField, Direction, SolvePF); ... 68
GICClear; ... 68
GICLoadAERData(CoarseFile, FineFilePoints, FineFileEast, FineFileNorth); ... 68
GICTimeVaryingCalculate(TheTime,SolvePF); ... 68
GICTimeVaryingAddTime(NewTime); .. 68
GICTimeVaryingDeleteAllTimes; .. 68
GICTimeVaryingEFieldCalculate(TheTime,SolvePF); ... 68
GICWriteOptions(“FileName”, KeyField); .. 69

ITP (Integrated Topology Processing) Related Actions .. 70
CloseWithBreakers(objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects, [SwitchingDeviceTypes],

CloseNormallyClosedDisconnects);.. 70
ExpandAllBusTopology; .. 72
ExpandBusTopology(BusIdentifier, TopologyType); .. 72
OpenWithBreakers(objecttype, filter or [object identifier], [SwitchingDeviceTypes], OpenNormallyOpenDisconnects);

 .. 72
SaveConsolidatedCase("filename", filetype, [BusFormat, TruncateCtgLabels, AddCommentsForObjectLabels]); 73

OPF (Optimal Power Flow) and SCOPF Related Actions .. 75
SolvePrimalLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); ... 75
InitializeLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); .. 75
SolveSinglePrimalLPOuterLoop("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 75
SolveFullSCOPF (BCMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 76
OPFWriteResultsAndOptions("filename"); ... 76

PV Related Actions .. 77
PVClear; ... 77
PVDestroy; .. 77
PVQVTrackSingleBusPerSuperBus; ... 77
PVRun([elementSource], [elementSink]); ... 77
PVSetSourceAndSink([elementSource], [elementSink]); .. 77
PVStartOver; .. 77
PVWriteInadequateVoltages("filename", AppendFile, InadequateType); ... 78
PVWriteResultsAndOptions("filename", AppendFile); .. 78
RefineModel(objecttype, filter, Action, Tolerance);.. 78

QV Related Actions ... 79
QVRun("filename", InErrorMakeBaseSolvable); ... 79
QVWriteResultsAndOptions("filename"); ... 79
QVSelectSingleBusPerSuperBus; ... 79

TS (Transient Stability) Related Actions .. 80
TSAutoCorrect; ... 80
TSAutoInsertDistRelay(Reach, AddRelayAtFromBus, AddRelayAtToBus, DoTransferTrip, Shape, filter); 80
TSAutoInsertZPOTT(Reach, filter,);.. 80
TSCalculateCriticalClearTime([branch] or filter,); .. 81
TSCalculateSMIBEigenValues; .. 81

 vii

TSClearAllModels; ... 81
TSGetVCurveData("FileName", filter); .. 81
TSGetResults("FileName", SINGLE/SEPARATE/JSIS/INTEGRATED, [Contingencies], [Plots, ObjectFields], StartTime,

EndTime]);... 81
TSLoadBPA("FileName"); .. 82
TSLoadGE("FileName", GENCCYN, EnableOutOfOrderModels); ... 82
TSLoadPTI("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename", "BASEGENfilename",

“MODREMOVEfilename); ... 82
TSLoadRDB("filename", ModelType, filter); ... 82
TSLoadRelayCSV("filename", ModelType, filter); .. 83
TSResultStorageSetAll(objecttype, YES/NO); ... 83
TSRunUntilSpecifiedTime("ContingencyName", [StopTime, StepSize, StepsInCycles, ResetStartTime,

NumberOfTimeStepsToDo]); .. 83
TSSaveBPA("FileName", DiffCaseModifiedOnly); .. 83
TSSaveGE("FileName", DiffCaseModifiedOnly); .. 84
TSSavePTI("FileName", DiffCaseModifiedOnly); .. 84
TSSaveTwoBusEquivalent ("AuxFileName", [BUS]); .. 84
TSSolve("ContingencyName", [StartTime, StopTime, StepSize, StepInCycles]); ... 84
TSSolveAll(DoDistributed); .. 84
TSWriteModels("FileName", DiffCaseModifiedOnly); ... 84
TSWriteOptions("FileName",[SaveDynamicModel, SaveStabilityOptions, SaveStabilityEvents, SaveResultsEvents,

SavePlotDefinitions], KeyField);.. 85
TSSetSelectedForTransientReferences(SetWhat, SetHow, [ObjectType List],[ModelType List]); ... 85

Scheduled Actions Related Actions .. 86
IdentifyBreakersForScheduledActions(IdentifyFromNormalStatus); ... 86
SetScheduleView(ViewTime, ApplyActions, UseNormalStatus, ApplyWindow); .. 86
SetScheduleWindow(StartTime, EndTime, Resolution, ResolutionUnits); ... 86

DATA Section ... 87

Concise Auxiliary File Header ... 87

Legacy Auxiliary File Header ... 87

ObjectType ... 87

File_Type_Specifier ... 88

Required Fields and Create_if_not_found .. 88

List_of_Fields ... 88

Concise Field Variable Names ... 89

Legacy Field Variable Naming .. 89

Special Naming .. 89

Key Fields .. 89

Data List .. 90

Special Data List Entries .. 90

Special Identifiers for Model Fields in Data ... 90

Using Labels for Identification .. 91
Saving Auxiliary Files Using Labels ... 92
Loading Auxiliary Files SUBDATA Sections Using Labels ... 92
Special Use of Labels in SUBDATA .. 93

ATC Scenarios ... 93

 viii

ATC Extra Monitors ... 93
Model Conditions.. 93
Model Expressions .. 93
Bus Load Throw Over Records ... 93
Injection Group Participation Points .. 93

SubData Sections ... 94
ATC_Options .. 95

RLScenarioName ... 95
GScenarioName ... 95
IScenarioName ... 95
ATCMemo .. 95

ATCExtraMonitor .. 95
ATCFlowValue ... 95

ATCScenario ... 96
TransferLimiter.. 96
ATCExtraMonitor ... 96

AUXFileExportFormatData .. 97
DataBlockDescription .. 97

AUXFileExportFormatDisplay .. 97
DataBlockDescription .. 97

BGCalculatedField .. 97
Condition .. 97

Bus ... 98
MWMarginalCostValues ... 98
MvarMarginalCostValues ... 98
LPOPFMarginalControls .. 98

BusViewFormOptions ... 98
BusViewBusField .. 98
BusViewFarBusField .. 98
BusViewGenField ... 98
BusViewLineField ... 98
BusViewLoadField ... 98
BusViewShuntField ... 98

ColorMap .. 99
ColorPoint .. 99

Contingency ... 99
CTGElementAppend ... 99
CTGElement ... 99
LimitViol ... 111
Sim_Solution_Options .. 112
WhatOccurredDuringContingency .. 112
ContingencyMonitoringException ... 112

CTG_Options ... 112
Sim_Solution_Options .. 112

CTGElementBlock .. 113
CTGElement .. 113
CTGElementAppend .. 113

CustomColors ... 113
CustomColors .. 113

CustomCaseInfo .. 113
ColumnInfo ... 113

DataGrid ... 113

 ix

ColumnInfo ... 113
DynamicFormatting ... 114

DynamicFormattingContextObject ... 114
LineThicknessLookupMap ... 115
LineColorLookupMap ... 115
FillColorLookupMap .. 115
FontColorLookupMap .. 115
FontSizeLookupMap ... 115
BlinkColorLookupMap .. 115
XoutColorLookupMap .. 115
FlowColorLookupMap .. 115
SecondaryFlowColorLookupMap ... 115

Filter ... 116
Condition ... 116

Gen ... 117
BidCurve ... 117
ReactiveCapability .. 117

GeoDataViewStyle .. 118
TotalAreaValueMap ... 118
RotationRateValueMap .. 118
RotationAngleValueMap ... 118
LineThicknessValueMap .. 119

GlobalContingencyActions .. 119
CTGElementAppend .. 119
CTGElement .. 119

HintDefValues... 119
HintObject ... 119

InjectionGroup ... 120
PartPoint .. 120

Interface .. 121
InterfaceElement ... 121

KMLExportFormat ... 122
DataBlockDescription ... 122

LimitSet ... 122
LimitCost .. 122

Load .. 122
BidCurve ... 122

LPVariable .. 123
LPVariableCostSegment .. 123

ModelCondition .. 123
Condition ... 123

ModelExpression ... 123
LookupTable ... 123

ModelFilter .. 124
ModelCondition .. 124

MTDCRecord... 125
MTDCBus ... 125
MTDCConverter .. 125
MTDCTransmissionLine ... 126

MultiSectionLine .. 127
Bus .. 127
BusRenumber ... 128

Nomogram .. 128

 x

InterfaceElementA .. 128
InterfaceElementB .. 128
NomogramBreakPoint ... 129

NomogramInterface .. 129
InterfaceElement ... 129

Owner .. 129
Bus .. 129
Load ... 129
Gen ... 129
Branch ... 130

PostPowerFlowActions.. 130
CTGElementAppend .. 130
CTGElement .. 130

PWCaseInformation ... 130
PWCaseHeader .. 130

PWFormOptions .. 130
PieSizeColorOptions.. 130

PWLPOPFCTGViol ... 131
OPFControlSense.. 131
OPFBusSenseP ... 131
OPFBusSenseQ .. 131

PWLPTabRow .. 131
LPBasisMatrix ... 131

PWPVResultListContainer .. 132
PWPVResultObject ... 132
LimitViol ... 132
PVBusInadequateVoltages ... 132

PWQVResultListContainer ... 133
PWPVResultObject ... 133

QVCurve ... 133
QVPoints .. 133

QVCurve_Options ... 134
Sim_Solution_Options .. 134

RemedialAction.. 134
CTGElementAppend .. 134
CTGElement .. 134

SelectByCriteriaSet ... 134
SelectByCriteriaSetType ... 134
Area .. 135
Zone ... 135
ScreenLayer .. 135

ShapefileExportDescription ... 135
StudyMWTransactions .. 135

ImportExportBidCurve .. 135
SuperArea .. 136

SuperAreaArea .. 136
TSSchedule .. 136

SchedPoint .. 136
UserDefinedDataGrid .. 137

ColumnInfo ... 137

SCRIPT Section for Display Auxiliary File .. 138

AXD Actions .. 138

 xi

AutoInsertBorders; ... 138
AutoInsertBuses(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, "filename",

InsertSelected); .. 138
AutoInsertLoads(MinkV, InsertTextFields); ... 138
AutoInsertSwitchedShunts(MinkV, InsertTextFields); ... 138
AutoInsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines, ZBRImpedance,

NoStubsZBRs, SingleCBZRs); ... 139
AutoInsertLineFlowObjects(MinkV, InsertOnlyIfNotAlreadyShown, LineLocation, Size, FieldDigits, FieldDecimals,

TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, ShowComplex); ... 139
AutoInsertSubStations(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, "filename",

InsertSelected); .. 139
AutoInsertLineFlowPieCharts(MinkV, InsertOnlyIfNotAlreadyShown, InsertMSLines, Size); .. 140
AutoInsertInterfaces(InsertPieCharts, PieChartSize); .. 140
ResetStubLocations(ZBRImpedance, NoStubsZBRs); ... 140
FixFlowArrowLineEnds("OnelineName", "LayerName"); .. 140
PanAndZoomToObject("ObjectID", "DisplayObjectType", "DoZoom"); ... 140
General Script Commands .. 141

DATA Section for Display Auxiliary File .. 142

Key Fields .. 142

Special Data Sections ... 142
GeographyDisplayOptions .. 142
Picture.. 142
PWFormOptions .. 142
View .. 143

SubData Sections ... 143
ColorMap ... 143
CustomColors ... 143
DisplayDCTramisssionLine... 144
DisplayInterface ... 144
DisplayMultiSectionLine ... 144
DisplaySeriesCapacitor ... 144
DisplayTransformer .. 144
DisplayTransmissionLine .. 144
Line ... 144

Line ... 144
DynamicFormatting ... 144
Filter ... 144
GeoDataViewStyle .. 144
PieChartGaugeStyle ... 145

ColorMap ... 145
PWFormOptions .. 145
SelectByCriteriaSet ... 145
UserDefinedDataGrid .. 145
View .. 145

ScreenLayer .. 145

 1

Introduction
PowerWorld has incorporated the ability to import data to/from data sources other than power flow models into

PowerWorld Simulator. The text file interface for exchanging data, as well as for executing a batch script command, is

represented by the auxiliary files. The script language and auxiliary data formats are incorporated together. This format is

described in this document.

Script/Data files are called data auxiliary files in Simulator and typically have the file extension .AUX. These files mostly

contain information about power system elements and options for running the various tools within Simulator. They do

not contain any information about the individual display objects contained on a one-line diagram. There are separate files

called display auxiliary files that are available for importing display data to/from Simulator in a text format. These files are

distinguished from the data auxiliary files by using the extension .AXD. The format for these two types of files is similar,

but different object types are supported by each and require that the files be read separately.

Both file types will be generically referred to as auxiliary files. An auxiliary file may be comprised of one or more data or

script sections. A data section provides specific data for a specific type of object. A script section provides a list of script

actions for Simulator to perform. These sections have the following format:

SCRIPT ScriptName1

{

script_statement_1;

 .

script_statement_n;

}

object_type DataName1(list_of_fields)

{

data_list_1

 .

data_list_n

}

object_type DataName2(list_of_fields)

{

data_list_1

 .

data_list_n

}

SCRIPT ScriptName2

{

script_statement_1;

 .

script_statement_n;

}

Data sections start with the string representing the object_type, but older auxiliary files start with the syntax

DATA DataName(object_type, [list_of_fields])

See the description of the data section later in this document for more information.

Note that the keywords script, data, or a valid object_type must occur at the start of a text file line. Auxiliary files may

contain more than one section. These sections always begin with the keyword script, data, or a valid object_type. Data

sections are followed by an argument list enclosed in (). The actual data or script commands are then contained within

curly braces { }. Strings are enclosed in straight quotes – note that smart quotes will not work (this might be encountered

when copy/pasting script commands from another program). The Script commands available are described in the next

main section. The data sections are then described after this. There are separate sections for describing the data sections

for the data auxiliary files and the display auxiliary file.

 2

SCRIPT Section
SCRIPT ScriptName

{

script_statement_1;

 .

script_statement_n;

}

Scripts may optionally contain a ScriptName. This enables you to call a particular SCRIPT by using the LoadScript action

(see General Actions). After the optional name, the SCRIPT section begins with a left curly brace and ends with a right

curly brace. Inside of this, script statements can be given. In general, a script statement has the following format

Keyword(arg1, arg2, ...);

• Statement starts with a keyword.

• The keyword is followed by an argument list which is encompassed in parentheses ().

• The arguments are separated by commas.

• If a single argument is a list of things, this list is encompassed by braces [].

• Statements end with a semicolon.

• Statements may take up several lines of the text file.

• You may put more than one statement on a single text line.

Those familiar with using Simulator will know that there is a RUN and EDIT mode in Simulator. Some features in Simulator

are only available in one mode or the other. This functionality will be preserved in the script language. In earlier versions

of the software, certain functionality was organized by the "submode" feature. While existing scripts designed to work

with submodes will still function as before, moving between submodes is no longer necessary.

Various script commands require that you be in RUN or EDIT mode. If a script requires this, then the script will

automatically change modes.

Using Filters in Script Commands

Many script commands allow the specification of a filtername. Only those objects meeting this filter will be selected for

the specified action. Unless otherwise specified, a blank filter will select all objects. This filtername can be the name of an

advanced filter. Advanced filters belonging to a different objecttype can also be used depending on the objectype in use.

For example, if filtering generator objects a bus filter can also be used. When using an advanced filter that belongs to a

different objecttype the format of the filter is <Objecttype> filtername instead of just specifying the filtername

itself.

The filtername can also be the name of a device filter. A device filter allows you to specify a particular object for filtering

instead of a class of object. For example, you might want to return all buses that belong to a particular substation. You

can specify the device filter for the particular substation and then apply this to the bus objects. The format of a device

filter is <DEVICE> objecttype 'key1' 'key2' 'key3'.

In addition to a filtername, special keywords can be used to indicate the type of filter desired. These include the following:

AREAZONE : Only objects that meet the area/zone/owner filters will be selected for the specified action.

SELECTED : Only objects whose Selected field is YES will be selected for the specified action.

Specifying Special Keywords in Script Command Parameters

The special keywords @DATETIME, @DATE, @TIME, @BUILDDATE, @VERSION, @CASENAME, @CASEFILENAME, and

@CASEFILEPATH may be used as part of the input for script command parameters. Generally, these are allowed as part of

the file name input in commands that save or modify files, as well as, some other commands that take text as input. These

special keywords will be replaced with their actual values when the script command is processed. @DATETIME will replace

 3

the keyword with the actual date and time in the format yyyymmdd_hhnnss-hhmm with the UTC offset included on the

end of the time.

The special keyword @MODELFIELD can be used in combination with an object type and variable name so that any field of

any object can be included in the text. The syntax for inserting the value of a model field in the text is the following:

@MODELFIELD<objecttype 'key1' 'key2' variablename:digits:rod>.

Specifying File Names in Script Commands

In place of the "filename" parameter in any script command, specially formatted text can be used to indicate that the user

should be prompted to choose the file. Depending on whether or not a file is being opened or saved, an Open or Save

dialog will be presented for the user to choose the file. This will not work when using the SimAuto Add-on. The special

syntax of the filename parameter is generally "<PROMPT 'Caption' 'FileTypes', 'InitialDirectory'>". The entire string must

start with <PROMPT and end with >. After the word PROMPT there may optionally be a space delimiter followed by a

special caption to be placed at the top of the file dialog that appears (this caption must be enclosed in single quotes). If

the special caption is omitted, either 'Save' or 'Open' is assumed. After the special caption there may optionally be a list of

File Types and extensions specified. This list must be enclosed in single quotes. The list itself is composed of a pipe-

delimited string (|) with the first string representing the first file type, the second string representing the first file extension,

the third string representing the second file type, the fourth string representing the second file extension and so on. If no

File Types are specified, 'All Files (*.*)|*.*' is assumed. After the list of file types there may optionally be a space delimiter

followed by the initial directory in which the dialog should open. This initialy directory must be enclosed in single quotes.

An example string might be:

<PROMPT 'Choose an AUX file' 'Auxiliary Files (*.aux)|*.aux|All Files (*.*)|*.*' 'c:\StudyDirectory\AUX Files'>

If Cancel is clicked on the resulting dialog, this will indicate that the command should be cancelled and to skip any

remaining commands in the auxiliary file containing the PROMPT without producing a fatal error.

The special keywords described in the Specifying Special Keywords in Script Command Parameters section can also be

used as part of a filename.

Specifying Field Variable Names in Script Commands

See the Field Variable Naming (Legacy) topic in the DATA Section for general information about naming fields.

Within select script commands the keyword ALL can be used instead of using the location number of a field when

specifying variable names as part of a field list. This will return all fields with the same variable name. This is intended to

allow easier access to fields when the exact number of fields is not known, such as with multiple TLR (MultBusTLRSens:ALL)

or PTDF (LinePTDFMult:ALL) results. This can be used with SaveData, SaveDataWithExtra, SaveObjectFields, and

SendToExcel script actions.

Within select script commands the keyword ALL can be used instead of a list of fields. This will return all fields for a

particular objecttype. This can be used with SaveData, SaveDataWithExtra, SaveObjectFields, and SendToExcel script

actions.

Specifying Field Values in Script Commands

Several script commands require that a valuelist be specified to assign values to a corresponding fieldlist. Instead of

specifying the values explicitly, special formatting is available to assign values from other fields. See the Special Data List

Entries topic in the DATA Section for more information.

 4

General Actions

Program Actions

Available regardless of the mode
CopyFile ("oldfilename", "newfilename");

DeleteFile ("filename");

ExitProgram;

LogAdd ("text");

LogAddDateTime ("label", includedate, includetime, includemilliseconds);

LogClear;

LogSave ("filename", AppendFile);

LogShow (DoShow);

RenameFile ("oldfilename", "newfilename");

SetCurrentDirectory ("filedirectory", CreateIfNotFound);

StopAuxFile;

WriteTextToFile ("filename", "text");

CopyFile("oldfilename", "newfilename");

Use this action to copy a file from within a script.

"oldfilename" : The present file name. See the Specifying File Names in Script Commands

section for special keywords that can be used when specifying the file

name.

"newfilename" : The new file name desired. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

DeleteFile("filename");

Use this action to delete a file from within a script.

"filename" : The file name to delete. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

ExitProgram;

Immediately exits the program with no prompts. Note that this command should not be used in scripts

loaded through SimAuto, as the SimAuto instance should be managed from the script which created it.

LogAdd("text");

Use this action to add a personal message to the MessageLog.

"text" : The text that will appear as a message in the log.

LogAddDateTime("label", includedate, includetime, includemilliseconds);

Use this action to add the date and time to the message log

"label" : A string which will appear at the start of the line containing the

date/time.

includedate : YES – Include the data or NO to not include.

includetime : YES – Include the time or NO to not include.

includemilliseconds : YES – Include the milliseconds or NO to not include.

LogClear;

Use this action to clear the Message Log.

LogSave("filename", AppendFile);

This action saves the contents of the Message Log to "filename".

"filename" : The file name to save the information to.

AppendFile : Set to YES or NO. YES means that the contents of the log will be

appended to "filename". NO means that "filename" will be overwritten.

 5

LogShow(DoShow);

Added in February 21, 2020 patch of Simulator 21

This action will show or hide the Message Log.

DoShow : Set to YES to show the Message Log. Set to NO to hide the Message

Log.

RenameFile("oldfilename", "newfilename");

Use this action to rename a file from within a script.

"oldfilename" : The present file name. See the Specifying File Names in Script Commands

section for special keywords that can be used when specifying the file

name.

"newfilename" : The new file name desired. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

SetCurrentDirectory("filedirectory", CreateIfNotFound);

Use this action to set the current work directory.

"filedirectory" : The path of the working directory. See the Specifying Special Keywords

in Script Command Parameters and Special Identifiers for Model Fields

section for information on special keywords that can be used as part of

the directory name.

CreateIfNotFound : Set to YES or NO. YES means that if the directory path cannot be

found,the directory will be created. If this parameter is not specified, NO

is assumed.

StopAuxFile;

Use this action to treat the remainder of the file after the command as a big comment. This includes any

script commands inside the present SCRIPT block, as well as all remaining SCRIPT or DATA blocks.

WriteTextToFile("filename", "text");

Use this action to write text to a file. If the specified file already exists, the text will be appended to the

file. Otherwise, it creates the file and writes the text to the file.

"filename" : The file path and name to save.

"text" : The text to be written to the file. Special keywords can be entered that

will be replaced with their actual values. These include @BUILDDATE,

@DATETIME, @DATE, @TIME, @VERSION, and @CASENAME.

 6

Data Actions

Available regardless of the mode
CreateData (objecttype, [fieldlist], [valuelist]);

Delete (objecttype, filter);

DeleteDevice ("ObjectIDString");

DeleteIncludingContents (objecttype, filter);

ExportAreaSupplyCurves ("filename", "User Defined String", NumPoints);

ImportData ("filename", FileType, CreateIfNotFound);

LoadAux ("filename", CreateIfNotFound);

LoadAuxDirectory ("filedirectory", "filterstring", CreateIfNotFound);

LoadCSV ("filename", CreateIfNotFound);

LoadData ("filename", DataName, CreateIfNotFound);

LoadScript ("filename", ScriptName, CreateIfNotFound);

SaveData ("filename", filetype, objecttype, [fieldlist], [subdatalist],

filter, [SortFieldList], Transpose, Append);

SaveDataEPC ("filename",objecttype,filter,GEFileType,SaveBuses,Append);

SaveDataUsingExportFormat ("filename",filetype,"FormatName",ModelToUse);

SaveDataWithExtra ("filename", filetype, objecttype, [fieldlist], [subdatalist],

filter, [SortFieldList], [Header_List], [Header_Value_List],

Transpose, Append);

SaveObjectFields ("filename", objecttype, [fieldlist]);

SelectAll (objecttype, filter);

SendToExcel (objecttype, [fieldlist], filter, UseColumnHeaders,

"workbookname", "worksheetname", [SortFieldList], [Header_List],

[Header_Value_List], ClearExisting, ShiftRow, ShiftCol);

SetData (objecttype, [fieldlist], [valuelist], filter);

UnSelectAll (objecttype, filter);

CreateData(objecttype, [fieldlist], [valuelist]);

Use this action to create particular objects.

objecttype : The objecttype being created.

[fieldlist] : A list of fields to set with the object. The key fields and required fields

must be specified.

[valuelist] : A list of values corresponding to the respective fields.

Delete(objecttype, filter);

Use this delete objects of a particular type. A filter may optionally be specified to only delete objects that

meet a filter.

objecttype : The objecttype being selected.

filter : Optional parameter – default is to delete all objects of specified type

 See Using Filters in Script Commands section for more information on

specifying the filter.

DeleteDevice([ObjectIDString]);

Use this action to delete a specific object.

[ObjectIDString] : The specific object to delete. The format is the object type followed by

the key fields used to identify the object. Examples: DeleteDevice([Bus

234891]), DeleteDevice([Branch 1239 1234 "AB"]), and

DeleteDevice([Interface "my interface name"]).

DeleteIncludingContents(objecttype, filter);

Use this to delete objects of a particular type and other objects that these contain. Currently, only multi-

section lines (objecttype = MultiSectionLine) can be used with this command. The branches and dummy

buses that belong to multi-section lines will also be deleted along with the multi-section lines. A filter may

optionally be specified to only delete objects that meet a filter. The syntax is identical to the

Delete(objecttype, filter); action above.

 7

ExportAreaSupplyCurves("filename", "User Defined String", NumPoints);

Use this action to export Area Supply Curves to a CSV file. The output of the file will have 7 entries for

each area for Fixed Gen MW, Fixed Load MW, Fixed Shunt MW, Losses MW, Variable Min MW, Variable

Max MW, Variable Present MW, followed by a set of Bid MW/Price entries represents the supply curve for

the variable MWs.

"filename.csv" : The name of the CSV file to which results will be written.

"User Defined String" : This is an optional parameter for specifying a user defined string written

to each entry in the resulting CSV file. If this is omitted, blank will be

assumed.

NumPoints : This is an optional parameter and is related to converting a cubic cost

model into a piece-wise linear model. If this is omitted, 5 is the default.

ImportData("filename", FileType, HeaderLine, CreateIfNotFound);

Use this action to import data in various file formats that are not native to Simulator.

"filename" : Name of the file to import

FileType : Parameter that specifies the format of the data this is being read.

Currently supported are two methods of importing CROW files as created

by the Equinox Control Room Operations Window application. This is

used with the Scheduled Actions add-on tool.

CSV : Uses CSV Import Settings as specified in the Scheduled

Actions dialog to read in a CROW CSV file.

CROW : Uses the hardcoded format Scheduled Actions was originally

programmed to import.

HeaderLine : Optional parameter to specify if the row of headers in the CSV file is on

the first line (1) or second line (2). If left blank (or any other value is

specified), it will use the setting last configured in the Scheduled Actions

dialog.

CreateIfNotFound : Optional parameter that is NO by default. Set this to YES to create

objects defined in the data if they do not already exist.

LoadAux("filename", CreateIfNotFound);

Use this action to load another auxiliary file from within a script.

"filename" : The filename of the auxiliary file being loaded.

CreateIfNotFound : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections from filename. If this parameter

is not specified, NO is assumed.

LoadAuxDirectory("filedirectory", "filterstring", CreateIfNotFound);

Use this action to load multiple auxiliary files from a specified directory. The auxiliary files will be loaded

in alphabetical order by name.

"filedirectory" : The directory where the auxiliary files are located.

"filterstring" : Optional – if not specified then all files in the directory are loaded.

 If specified, only files meeting this filter will be loaded. This filtering

supports normal Windows wildcard filtering.

CreateIfNotFound : Optional – default is NO

 Set to YES or NO. YES means that objects that cannot be found will be

created while reading in DATA sections from the files.

LoadCSV("filename", CreateIfNotFound);

Use this action to load a CSV file that is formatted the same as the data sent to Excel in the Send All to

Excel option found within a case information display, or by choose Save As CSV.

"filename" : The filename of the CSV file being loaded.

 8

CreateIfNotFound : Set to YES or NO. YES means that objects which cannot be found will be

created. If this parameter is not specified, NO is assumed.

LoadData("filename", DataName, CreateIfNotFound);

Use this action to load a named Script Section from another auxiliary file. This will open the auxiliary file

denoted by "filename", but will only execute the script section specified.

"filename" : The filename of the auxiliary file being loaded.

DataName : The specific ScriptName from the auxiliary file which should be loaded.

CreateIfNotFound : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections from filename. If this parameter

is not specified, NO is assumed.

LoadScript("filename", ScriptName, CreateIfNotFound);

Use this action to load a named Script Section from another auxiliary file. This will open the auxiliary file

denoted by "filename", but will only execute the script section specified.

"filename" : The filename of the auxiliary file being loaded.

ScriptName : The specific ScriptName from the auxiliary file which should be loaded.

CreateIfNotFound : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in SCRIPT sections from filename. If this parameter

is not specified, NO is assumed.

SaveData("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], Transpose,

Append);

Use this action to save data in a custom defined format.

"filename" : The file path and name to save.

filetype : There are several options for the filetype

AUXCSV : save as a comma-delimited auxiliary data file.

AUX : save as a space-delimited auxiliary data file.

CSV : save as a normal CSV file without the AUX file

syntax. The first few lines of the text file will

represent the object name and field variable

names.

CSVNOHEADER : save as a normal CSV text file, without the AUX file

formatting. The object name and field variable

names are NOT included. This option is useful

when appending data of the same object type and

field list into a common file.

CSVCOLHEADER : save as a normal CSV without the AUX syntax and

with the first row showing column headers you

would see in a case information display

objecttype : The type of object being saved.

[fieldlist] : A list of fields that you want to save. For numeric fields, the number of

digits and the number of decimal places (digits to right of decimal) can

be specified by using the following format for the field,

variablenamelegacy:location:digits:rod or

concisename:digits:rod. See the Specifying Field Variable Names

in Script Commands topic for more information on specifying this list.

[subdatalist] : A list of the subdata objecttypes to save with each object record.

 9

filter : Optional parameter – default is to save all objects of specified type

blank : Save all objects of the specified type

AREAZONE : Only objects that meet the area/zone/owner filters will

be saved

SELECTED : Only objects whose Selected field = YES will be saved

“FilterName" : Only objects that meet the specified filter will be

checked. See Using Filters in Script Commands section

for more information on specifying the filtername.

[SortFieldList] : Optional parameter – the default is to do no sorting

 This allows the specification of a sort order in which the data will be

saved. The format is: [variablename1:+:0, variablename2:-:1] where

variablename : is the name of the field to sort by. There is no limit to

how many fields can be specified for sorting. For fields

that require a location other than zero , variablename

can be in the format fieldname:location.

+ or - : for the second parameter indicates sort ascending for

+ and sort descending for -. This parameter must be

specified.

0 or 1 : for the third parameter 0 means case insensitive and

do not use absolute value, 1 mean case sensitive or

use absolute value. This parameter is optional.

Transpose : Optional parameter – default is NO

 Set this to YES or NO. Set to YES to transpose the columns and rows of

the returned data. When transposed the values for the same field for all

selected objects will appear in the same row. Transposing the data is

only allowed for CSV filetypes and this option will default to NO for all

other filetypes.

(Following added in the February 13, 2020 patch of Simulator 21)

Append : Optional parameter – default is YES

 Set this to YES or NO. Set to YES to append data to an existing file. Set

to NO to overwrite an existing file.

SaveDataEPC("filename", objecttype, filter, GEFileType, SaveBuses, Append);

Use this action to save data in the GE EPC format.

"filename" : The file path and name to save.

objecttype : The type of object being saved.

filter : Optional parameter – default is to save all objects of specified type

 See Using Filters in Script Commands section for more information on

specifying the filter.

GEFileType : Optional parameter – default is to save with the latest version. Valid

options:

GE (latest version), GE14-GE21

SaveBuses : Optional parameter – default is NO

 Set to YES or NO. Set to YES to save any buses associated with the

regulated bus of generators or switched shunts so that the scheduled

voltage can also be saved.

Append : Optional parameter – default is YES

 Set to YES or NO. Set to YES to append data to an existing file. Set to

NO to overwrite an existing file.

SaveDataUsingExportFormat("filename", filetype, "FormatName", ModelToUse);

Use this action to save data in a user-defined format that has previously been defined.

"filename" : The file to save the data to

 10

filetype : There are several options for the filetype

AUXCSV : save as a comma-delimited auxiliary data file.

AUX : save as a space-delimited auxiliary data file.

CSV : save as a normal CSV file without the AUX file

syntax. The first few lines of the text file will

represent the object name and field variable

names.

CSVNOHEADER : save as a normal CSV text file, without the AUX file

formatting. The object name and field variable

names are NOT included. This option is useful

when appending data of the same object type and

field list into a common file.

CSVCOLHEADER : save as a normal CSV without the AUX syntax and

with the first row showing column headers you

would see in a case information display

FormatName : The name of the Object Export Format Description to use.

ModelToUse : Optional parameter that indicates the model to use.

FULL : Full-topology model. This is the default if the

parameter is omitted.

CONSOLIDATED : Consolidated planning-type model. This option

will only work with the Topology Processing add-

on.

SaveDataWithExtra("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList],

[Header_List], [Header_Value_List], Transpose, Append);

Use this action to save data in a custom defined format. User-specified fields and field values can also be

specified in the output. The syntax is identical to the SaveData command with the following exceptions:

Filetype : There are several options for the filetype

CSV : save as a normal CSV file without the AUX file

syntax. The first few lines of the text file will

represent the object name and field variable

names.

CSVNOHEADER : save as a normal CSV text file, without the AUX file

formatting. The object name and field variable

names are NOT included. This option is useful

when appending data of the same object type and

field list into a common file.

CSVCOLHEADER : save as a normal CSV without the AUX syntax and

with the first row showing column headers you

would see in a case information display

 Data cannot be saved using AUX or AUXCSV filetypes with this

command.

 [Header_List] : Optional parameter – default is that no extra headers are included

 This allows the specification of user-defined fields that will appear in the

output. Headers should be specified as a list of comma delimited strings.

A string should be enclosed in double quotes if the string contains a

comma. Header strings cannot be blank.

 11

[Header_Value_List] : Optional parameter – default is that all values are blank

 Allows the specification of the values that should be assigned to the

user-defined fields specified by Header_List. If specified, there must be as

many values specified as there are headers. If not specified, all values are

blank. Each object will use the same specified value for the specified field.

To use different values for different objects and save these in the same

file, make use of the CSVNOHEADER file format and filtering. Special

keywords can be entered that will be replaced with their actual values.

These include @BUILDDATE, @DATETIME, @DATE, @TIME, @VERSION,

and @CASENAME.

(Following added in the February 13, 2020 patch of Simulator 21)

Append : Optional parameter – default is YES

 Set this to YES or NO. Set to YES to append data to an existing file. Set

to NO to overwrite an existing file.

For the Header_List and Header_Value_List, the input should be formatted in a manner to indicate how it

should be written to the CSV. Any strings enclosed in double quotes will be stripped of the enclosers.

Any strings containing double double quotes will have them replaced with single double quotes.

SaveObjectFields("filename", objecttype, [fieldlist]);

Use this action to save a list of fields available for the specified objecttype to a CSV file. Format of the file

is variablename, field, col header, description.

"filename" : The file path and name to save.

objecttype : The type of object for which fields should be saved.

[fieldlist] : List of fields for which information will be saved. See the Specifying Field

Variable Names in Script Commands topic for more information on

specifying this list.

SelectAll(objecttype, filter);

Use this to set the selected property of objects of a particular type to true. A filter may optionally be

specified to only set this property for objects that meet a filter.

objecttype : The objecttype being selected.

filter : Optional parameter – default is to set all objects of specified type

AREAZONE : Only objects that meet the area/zone/owner filters will

be selected

"FilterName" : Only objects that meet the specified filter will be checked. See Using

Filters in Script Commands section for more information on specifying

the filtername.

SendtoExcel(objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", "worksheetname",

[SortFieldList], [Header_List], [Header_Value_List], ClearExisting, RowShift, ColShift);

Use this action to mimic the behavior of the Send to Excel option found within a case information display.

objecttype : The type of object for which fields should be saved.

[fieldlist] : List of fields for which information will be saved. See the Specifying Field

Variable Names in Script Commands topic for more information on

specifying this list.

filter : Optional parameter – default is to send all objects of specified type

 See the Using Filters in Script Commands section for more information

on specifying the filter.

UseColumnHeaders : Set to YES or NO. YES signifies that the first row shows the Column

Header, NO signifies that field variable names are used.

 12

"workbookname" : Path and name of the workbook to save or modify. If no path is

specified, the workbook will be saved or opened from the current

directory. If the workbook already exists, it will be modified with a new

worksheet, or if the worksheet is specified and already exists, the

worksheet will be overwritten. If using Excel 2007 or later *.xlsm filetypes

can be specified.

"worksheetname" : Optional parameter to specify the worksheet name to save. If blank, a

new worksheet will be created, if a value is specified it will overwrite the

data in any existing worksheet of that name.

[SortFieldList] : Optional parameter – the default is to do no sorting

 This allows the specification of a sort order in which the data will be

saved. The format is: [variablename1:+:0, variablename2:-:1] where

variablename : is the name of the field to sort by. There is no limit to

how many fields can be specified for sorting. For fields

that require a location other than zero , variablename

can be in the format fieldname:location.

+ or - : for the second parameter indicates sort ascending for

+ and sort descending for -. This parameter must be

specified.

0 or 1 : for the third parameter 0 means case insensitive and

do not use absolute value, 1 mean case sensitive or

use absolute value. This parameter is optional.

 [Header_List] : Optional parameter – default is that no extra headers are included

 This allows the specification of user-defined fields that will appear in the

output. Headers should be specified as a list of comma delimited strings.

A string should be enclosed in double quotes if the string contains a

comma. Header strings cannot be blank.

[Header_Value_List] : Optional parameter – default is that all values are blank

 Allows the specification of the values that should be assigned to the

user-defined fields specified by Header_List. If specified, there must be as

many values specified as there are headers. If not specified, all values are

blank. Each object will use the same specified value for the specified field.

Special keywords can be entered that will be replaced with their actual

values. These include @BUILDDATE, @DATETIME, @DATE, @TIME,

@VERSION, and @CASENAME.

ClearExisting : Optional parameter – default is YES. YES means to clear the existing

sheet

RowShift : Optional parameter – default is 0. Set to a positive integer to shift the

paste of data downwards from row 1. Negative values treated as 0.

ColShift : Optional parameter – default is 0. Set to a positive integer to shift the

paste of data to the right from column A. Negative values treated as 0.

SetData(objecttype, [fieldlist], [valuelist], filter);

Use this action to set fields for particular objects. If a filter is specified, then it will set the respective fields

for all objects which meet this filter. Otherwise, if no filter is specified, then the key fields must be

included in the field list so that the object can be found.

objecttype : The objecttype being set.

[fieldlist] : A list of fields to update.

[valuelist] : A list of values to which to set the corresponding fields.

 13

filter : Optional parameter – if omitted the key fields and corresponding values

must be included to identify the one object to update

ALL : Set data for all objects

AREAZONE : Only objects that meet the area/zone/owner filters will

be set

SELECTED : Only objects whose Selected field = YES will be set

“FilterName" : Only objects that meet the specified filter will be set.

See Using Filters in Script Commands section for more

information on specifying the filtername.

UnSelectAll(objecttype, filter);

Same as SelectAll, but this action sets the selectected properties to false.

 14

Case Related Actions

Available regardless of the mode
AutoInsertTieLineTransactions;

CalculateRXBGFromLengthConfigCondType(filter);

CaseDescriptionClear;

CaseDescriptionSet ("text", Append);

ChangeSystemMVABase (NewBase);

ClearSmallIslands;

ConditionVoltagePockets (VoltageTreshold, AngleThreshold, filter);

DetermineBranchesThatCreateIslands(Filter, StoreBuses,"filename", SetSelectedOnLines, FileType);

DeterminePathDistance ([start], BranchDistMease, BranchFilter, BusField);

DetermineShortestPath ([start],[end], BranchDistMeas, BranchFilter, Filename);

DoFacilityAnalysis ("filename");

DirectionsAutoInsert (Source, Sink, DeleteExisting, UseDisplayFilters, Start,

Increment);

EnterMode (mode);

EstimateVoltages (filter);

GenForceLDC_RCC (filter);

InitializeGenMvarLimits;

InjectionGroupsAutoInsert;

InjectionGroupCreate ("Name", objecttype, InitialValue, Filter, Append);

InterfaceCreate ("Name", DeleteExisting, ObjectType, Filter);

LoadEMS ("filename", filetype);

NewCase;

OpenCase ("filename", openfiletype, [LoadTransactions, StarBus,

HowToKeepDuplicates]);

RenameInjectionGroup ("OldName", "NewName");

SaveCase ("filename", savefiletype, [PostCTGAGC, UseAreaZone]);

SaveGenLimitStatusAction ("filename");

SaveJacobian ("JacFileName", "JIDFileName", FileType, JacForm)

SaveYbusInMatlabFormat ("filename", IncludeVoltages);

Scale (scaletype, basedon, [parameters], ScaleMarker);

SetGenPMaxFromReactiveCapabilityCurve(filter);

SetParticipationFactors (Method, ConstantValue, Object);

SetScheduledVoltageForABus ([bus identifier], voltage);

SetSelectedFromNetworkCut (SetHow, [BusOnCutSide], BranchFilter, InterfaceFilter,

DCLineFilter, Energized, NumTiers, InitializeSelected,

[ObjectsToSelect], UseAreaZone, UsekV, MinkV, MaxkV, LowerMinkV,

LowerMaxkV);

UpdateIslandsAndBusStatus;

AutoInsertTieLineTransactions;

Use this action todelete all existing MW transactions and set the unspecified MW interchange for each

area to zero. It then automatically creates a MW transaction between each pair of connected areas with a

MW transaction exactly equal to the sum of the tie-line flows.

CalculateRXBGFromLengthConfigCondType(filter);

Use this action the go through branches in the power system and automatically recalculate the per unit R,

X, G, and B values using the TransLineCalc tool. The branches Conductor Type, Tower Configuration, and

Line Length will be passed to the TransLineCalc tool and new R, X, G and B values will be calculated. This is

only available if you have installed the TransLineCalc tool.

filter : This parameter is used to specify which branches are checked.

ALL : means all branches will be checked

SELECTED : means only branches whose Selected field = YES will

be checked

AREAZONE : means only branches that meet the area/zone/owner

filters will be checked

"FilterName" : means only branches that meet the specified filter will

be checked. See the Using Filters in Script Commands

section for more information on specifying the

filtername.

 15

CaseDescriptionClear;

Use this action clear the case description of the presently open case.

CaseDescriptionSet("text", Append);

Use this action to set or append text to the case description.

"text" : Specify the text to set/append to the case description.

Append : YES – will append the text specified to the existing case description. NO –

will replace the case description.

ChangeSystemMVABase(NewBase);

Use this action to change the system MVA base to the specified value and update all internal data

structures to store values on the new base.

NewBase : New power system base in MVA.

ClearSmallIslands;

Use this action to identify the largest island and de-energize all other islands. The largest island is the

island with the most buses. Small islands are de-energized by setting the status of all generators in those

island to open.

ConditionVoltagePockets(VoltageThreshold, AngleThreshold, filter);

The goal of this script command is to find pockets of buses that may have bad initial voltage estimates

and to get a better voltage estimate of these buses based on assuming that the voltages on buses outside

these pockets are good. It will identify pockets of buses bounded by branches that meet the condition

that the absolute value of the voltage difference across the branch is greater than VoltageThreshold or

the absolute value of the angle difference across the branch is greater than AngleThreshold and the

branch meets the specified filter.

VoltageThreshold : Per-unit voltage difference (absolute value) that determines if a branch

can be considered when determining groups of radial buses.

AngleThreshold : Angle difference in degrees (absolute value) that determines if a branch

can be considered when determining groups of radial buses.

filter : This is an optional parameter that is used to specify which branches are

checked. If omitted all branches are considered.

ALL : All branches will be checked

SELECTED : Only branches whose Selected field = YES will be

checked

AREAZONE : Only branches that meet the area/zone/owner filters

will be checked

"FilterName" : Only branches that meet the specified filter will be

checked. See Using Filters in Script Commands section

for more information on specifying the filtername.

DetermineBranchesThatCreateIslands(Filter, StoreBuses, "filename", SetSelectedOnLines, FileType);

Use this action to determine the branches whose outage results in island formation. Note that setting the

Selected field will overwrite the Selected fields.

Filter : This parameter is used to specify which branches are checked.

ALL : means all branches will be checked

SELECTED : means only branches whose Selected field = YES will

be checked

AREAZONE : means only branches that meet the area/zone/owner

filters will be checked

"FilterName" : means only branches that meet the specified filter will

be checked. See the Using Filters in Script Commands

section for more information on specifying the

filtername.

 16

StoreBuses : YES to store the buses in the island to the output file

"filename" : file to which the results will be written. The format of the file is based on

the auxiliary file format. Each branch that was checked will be followed

by the list of buses that are islanded. The branch and bus information

will be written in appropriate auxiliary file DATA format. If this is left

blank, SetSelectedOnLines will be assumed to be YES.

SetSelectedOnLines : YES to set the SELECTED field to YES for branches that create islands

FileType : Optional parameter used to specify the format of the file. This is AUX by

default.

AUX : The saved file is based on an auxiliary file data format. Each

branch that causes an island appears in the file in the auxiliary

file data format followed by a auxiliary file bus data section

containing all of the buses that are islanded by the preceeding

branch.

CSV : The saved file is a comma-delimited text file. Each unique

bus/branch pair appears on a single line. A unique bus/branch

pair is determined by a bus that is islanded and a particular

branch that causes it to be islanded. A header appears in the

file specifying the fields used to identify the branch and bus in

each record.

DeterminePathDistance([start], BranchDistMeas, BranchFilter, BusField);

Use this action to calculate a distance measure at each bus in the entire model. The distance measure will

represent how far each bus is from the starting group specified. The distance measure can be related to

impedance, geographical distance, or simply the number of nodes.

[start] : The starting location. The starting location may be either an Area, Zone,

SuperArea, Substation, Injection Group, or Bus. Format of string is

[Area Num], [Area "Name"], or [Area "label"]

[Zone Num], [Zone "Name"], or [Zone "label"]

[SuperArea "Name"] or [SuperArea "label"]

[Substation Num] or [Substation "label"]

[InjectionGroup "Name"] or [InjectionGroup "label"]

BranchDistMeas : is either X, Z, Length, Nodes, or a field variable name for a branch.

X : means use the series reactance,

Z : means use sqrt(X^2 + R^2),

Length : means us the Length field, and

Nodes : means treat each branch as a length of one.

"Variablename" : Otherwise use any Branch object field variable name.

BranchFilter : is either All, Selected, Closed or the name of a branch Advanced Filter.

This parameter is used to specify which branch can be traversed at all.

All : means all branches can be traversed

Selected : means only branches whose Selected field = YES can

be traversed

Closed : means only branches that are CLOSED can be

traversed.

"FilterName" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

BusField : is the variable name of a Bus field. This field is populated with the

minimum distance from the Start Place to that bus. All buses in the start

group will have a distance measure of zero. Buses which cannot be

reached from the start group will have a distance measure of -1.

 17

DetermineShortestPath([start], [end], BranchDistanceMeasure, BranchFilter, Filename);

Use this action to calculate the shortest path between a starting group and an ending group. The results

will be written to a textfile specified by filename. In the text file, the first bus listed will be in the end

grouping and the last bus listed will be the start grouping. The result text file will have a line for each bus

passed. Each line will contain three entries delimited by a space: "Number DistanceMeasure Name".

[start] : same as the starting place for the DeterminePathDistance script

command

[end] : same as the starting place for the DeterminePathDistance script

command

BranchDistanceMeasure

 : same as for DeterminePathDistance script command

BranchFilter : same as for DeterminePathDistance script command

Filename : is a filename (may need to be enclosed in quotes) to which the results

will be written.

DoFacilityAnalysis ("Filename");

Do Facility Analysis (Minimum Cut) is used to determine the branches that would isolate the Facility from

the External region as specified in the Select Bus Dialog in the Simulator Tool dialog. It is assumed that

the user will set the options before using the script command. The script will be used to identify the

minimum number of branches that need to be opened or removed from the system in order to isolate the

Facility (power system device) from an External region.

"Filename" : The auxiliary file to which the results will be written. The results will show

the buses of the different paths in a data section consisting of the buses

that form the respective path. Also it will show the branches of the

minimum cut.

DirectionsAutoInsert(Source, Sink, DeleteExisting, UseAreaZoneFilters, Start, Increment);

Use this action to auto-insert directions to the case

Source : AREA, ZONE, or INJECTION GROUP – specifies what to use as source

Sink : AREA, ZONE, INJECTION GROUP, or SLACK – specifies what to use as

sink.

DeleteExisting : YES – to delete existing direction; NO to not do that.

UseAreaZoneFilters : YES – to filter Area/Zones by filter.

Start : The starting number for the new directions added.

Incremement : The increment for subsequent directions.

EnterMode(mode);

This action will change the mode in which Simulator is operating. This is especially necessary when

creating new case objects for which you are required to be in EDIT mode. Simulator will automatically

change the mode to RUN for script actions that require that mode.

Mode : The mode to enter, either RUN or EDIT.

EstimateVoltages(filter);

Added in February 6, 2020 patch of Simulator 21

This will estimate voltages and angles at the buses that meet the filter based on voltages and angles at

surrounding buses (these are buses that do not meet the filter). It is assumed that the voltages and

angles are correct at the surrounding buses, and in order for this command to work, there must be some

buses that do not meet the filter.

filter : See the Using Filters in Script Commands section for more information

on specifying the filter. A valid filter must be specified. An error will

result if a blank filter is specified.

 18

GenForceLDC_RCC(filter);

Use this action to force generators in the case onto line drop / reactive current compensation. The

present voltage at the point at which the generator is controlling based on the line drop/reactive current

compensation impedance is calculated, and the setpoint of the generator is set to this value. If the

absolute value of the line drop/reactive current compensation impedance is less than or equal to 2*10-

6*MVA Base, the generator will regulate its terminal bus and the setpoint voltage is set to the present

value of the terminal bus voltage. For a typical case with an MVA Base of 100 MVA, this value is 0.0002.

filter : Optional parameter – default is to set all generators

 See the Using Filters in Script Commands section for more information

on specifying the filter.

InitializeGenMvarLimits;

Use this action to initialize all generators in the case so that they are appropriately marked as being at

Mvar limits or not. This could be useful if manually setting the Mvar output of generators or changing

their limits.

InjectionGroupsAutoInsert;

Use this action to automatically insert injection groups according to the options specified in the

"IG_AutoInsert_Options" object. The settings available with this object represent what is seen on the Auto

Insert Injection Groups Dialog.

InjectionGroupCreate("Name", objecttype, InitialValue, filter, Append);

This action will create or modify an injection group with participation points of a single object type that

meet a filter. Repeated calls to this script command can be used to define an injection group with

different object types.

"Name" : Name of the injection group to create or modify.

objecttype : Type of object to be included in the injection group. Valid options are

GEN, LOAD, SHUNT, or BUS.

InitialValue : Set this to a floating point value to indicate the value of the participation

factor to use with each point. Special keywords can also be used to

indicate dynamically determined values. (The participation point

AutoCalc field is set to YES). The following options are available:

Generators:

 PRESENT, MAX GEN INC, MAX GEN DEC, and MAX GEN MW

Loads:

 LOAD MW

Switched Shunts:

 MAX SHUNT INC, MAX SHUNT DEC, and MAX SHUNT MVAR

All object types:

 <FIELD>variablename can be used to reference a field associated

with the object in the participation point.

 <EXPRESSION>modelexpressionname can be used to reference a

Model Expression.

filter : Specify a filter to select the objects to add to the injection group. See

the Using Filters in Script Commands section for more information on

specifying the filter.

Append : Optional parameter – default is YES.

 Set to YES or NO. Set to YES to add new participation points based on

the current settings to an injection group that exists with the same Name.

Set to NO to delete all existing points before adding new points to an

injection group that already exists with the same Name.

 19

InterfaceCreate("Name", DeleteExisting, ObjectType, Filter);

This action will create or modify an interface with elements of a single object type that meet a filter.

Repeated calls to this script command can be used to define an interface with different object types.

"Name" : Name of the interface to create or modify.

DeleteExisting : Set to YES to delete an interface with the same Name. Set to NO to

append elements to an interface with the same Name.

ObjectType : Type of object to be included in the interface. Valid options are BRANCH

or INTERFACE.

Filter : Specify a filter to select the objects of the specified ObjectType to add to

the interface. See the Using Filters in Script Commands section for more

information on specifying the filter. Special filter keywords of SELECTED

and AREAZONE cannot be used with this script command.

LoadEMS("filename", filetype);

Use this to open any EMS file. This can be a full case, a contingency file, or remedial action scheme file.

Simulator will determine the type of information being loaded and how to handle it based on the records

in the file.

"filename" : Name of the file to open. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

filetype : Type of file to be loaded. Currently the only option is AREVAHDB.

NewCase;

This action clears out the existing case and open a new case from scratch.

OpenCase("filename", OpenFileType,[LoadTransactions,StarBus,HowToKeepDuplicates]);

OpenCase("filename", OpenFileType,[MSLine,VarLimDead,PostCTGAGC,MSLineDummyBus]);

This action will open a case stored in "filename" of the type OpenFileType. Different sets of optional

parameters apply for the PTI and GE file formats. The LoadTransactions and Star bus parameters are

available for writing to RAW files. MSLine, VarLimDead, and PostCTGAGC are for writing EPC files.

"filename" : The file to be opened.

OpenFileType : An optional parameter indicating the format of the file being opened. If

none is specified, PWB will be assumed. It may be one of the following

strings:

PWB, PTI (latest version), PTI23-PTI33

GE (latest version), GE14-GE21, CF

AUX, UCTE, AREVAHDB, OPENNETEMS

LoadTransactions : valid for PTI RAW format only

YES : load transactions when opening case.

NO : do not load transactions when opening case.

DEFAULT : follow default behavior.

StarBus : valid for PTI RAW format only

NEAR : star buses are numbered starting after the near bus number

MAX : star buses are numbered starting with the maximum bus

number

VALUE : star bus numbering will start at value

(Following added in July 10, 2020 patch of Simulator 21)

HowToKeepDuplicates : valid for PTI RAW format only

LAST : keep only the LAST duplicate of any device in each section of

a PTI RAW file

ALL : keep ALL duplicates of any device in each section of a PTI

RAW file, and make them each unique by dynamically

changing their IDs

 20

MSLine : valid for GE EPC format only

MAINTAIN : maintain multi-section lines

EQUIVALENCE : equivalence mult-section lines

VarLimDead : valid for GE EPC format only

Number : set the GE var limit deadband

PostCTGACG : valid for GE EPC format only

 set to YES to populate the generator field Post-CTG Prevent Response

based on the EPC file’s generator base load flag.

MSLineDummyBus : Optional parameter – default is specified with Simulator Options

 valid for GE EPC format only

 Specifies how the dummy bus numbers for multi-section lines are

determined.

FROM : starting at the from bus number

MAX : starting with the maximum bus number

 Value or range – starting with the specified value or will be numbered

within the specified range. If an unused bus number within the specified

range cannot be found, the numbering will start at the highest number

specified in the range.

RenameInjectionGroup("OldName", "NewName");

This action will change the name of an existing injection group.

"OldName" : Name of the existing injection group.

"NewName" : New name of the existing injection group.

SaveCase("filename", SaveFileType, [PostCTGAGC, UseAreaZone]);

SaveCase("filename", SaveFileType, [AddCommentForObjectLabels]);

This action will save the case to "filename" in the format SaveFileType.

"filename" : The file name in which to save the information.

SaveFileType : An optional parameter saying the format of the file to be saved. If none

is specified, then PWB will be assumed. It may be one of the following

strings

PWB (latest version), PWB5-PWB20

PTI23-PTI33

GE14-GE21, CF

AUX, AUXSECOND, AUXLABEL, AUXNETWORK, UCTE

PostCTGAGC : An optional parameter, only valid for GE EPC format. If the Governor

Response Limits field for a generator is set to Down Only or Fixed, the

base load flag will be written as 1 or 2, respectively, and this option is

ignored. This option is only used when a generator’s Governor Response

Limits field is set to Normal. If this option is set to YES and not ignored,

the base load flag in the EPC file is based on the Post-Contingency

Prevent AGC Response setting. If preventing post-contingency AGC, the

base load flag is set to 2. If not preventing post-contingency AGC, the

base load flag is set to 0.

UseAreaZone : An optional parameter, only valid for GE EPC format. YES limits the

entries in the EPC file based on the area/zone/owner filter (NO by

default)

AddCommentsForObjectLabels

 : An optional parameter, only valid for PTI RAW format. Default is NO.

YES adds object labels to the end of data records when saving a RAW file.

 21

SaveGenLimitStatusAction("filename");

Use this action to save Mvar information about generators in a text file. The information saved includes

the generator bus number, generator ID, Mvar, Max Mvar, Min Mvar, AVRable flag (user specified), and

internal AVRable flag (set by Simulator). This information is useful for debugging.

"filename" : Name of the text file in which to save the generator information.

SaveJacobian("JacFileName", "JIDFileName", FileType, JacForm);

Use this action to save the Jacobian Matrix to a text file or a file formatted for use with Matlab

"JacFileName" : File in which to save the Jacobian.

"JIDFileName" : File to save a description of what each row and column of the Jacobian

represents.

FileType : One of:

M – Matlab form

TXT – Text file

EXPM – Save Jacobian in Exponential form (ex. 1.2E-2) in Matlab form

JacForm : One of:

R – AC Jacobian in Rectangular coordinates

P – AC Jacobian in Polar coordinates

DC – B’ matrix of DC power flow

SaveYbusInMatlabFormat("filename", IncludeVoltages);

Use this action to save the YBus to a file formatted for use with Matlab

"filename" : File in which to save the YBus.

IncludeVoltages : YES includes the per unit bus voltages in the file; NO does not include.

Scale(scaletype, basedon, [parameters], scalemarker);

Use this action to scale the load and generation in the system. This script command should be used in

conjunction with the SCALE_OPTIONS object that specifies additional options necessary for the scaling

that are not set through the script command.

scaletype : The objecttype begin scaled. Must be either LOAD, GEN,

INJECTIONGROUP, or BUSSHUNT.

basedon : One of:

MW : parameters are given in MW, MVAR units.

FACTOR : parameters a factor to multiple the present values by.

[parameters] : These parameters have different meanings depending on ScaleType.

LOAD : [MW, MVAR] or [MW]. If you want to scale load

using constant power factor, then do not

specifying a MVAR value.

GEN : [MW]

INJECTIONGROUP : [MW, MVAR] or [MW] . If you want to scale load

using constant power factor, then do not

specifying a MVAR value.

BUSSHUNT : [GMW, BCAPMVAR, BREAMVAR]. The first values

scales G shunt values, the second value scales

positive (capacitive) B shunt values, and the third

value scales negative (reactive) B shunt values

 The Scale script command also allows using the [parameters] input to

specify the new value or scale factor through a field with the object type

to scale. To use this option, the [parameters] input should contain field

variable names instead of numeric values. When using a field rather than

value, the scaling will be done by individual object rather than the

aggregation of all objects selected for scaling.

 22

scalemarker : This value specifies whether to look at an element’s bus, area or zone to

determine whether it should be scaled.

BUS : Means that elements will be scaled according to the

Scale property of the element’s terminal bus.

AREA : Means that elements will be scaled according to the

Scale property of the element’s Area. Note that it is

possible for the area of a load, generator, or switched

shunt to be different than the terminal bus’s area.

ZONE : Means that elements will be scaled according to the

Scale property of the element’s Zone. Note that it is

possible for the zone of a load, generator, or switched

shunt to be different than the terminal bus’s zone.

OWNER : Means that elements will be scaled according to the

Scale property of the element’s Owner. Note that it is

possible for the Owner of a load, generator, or switched

shunt to be different than the terminal bus’s Owner.

Examples: Two different wasy to scale three areas to a particular load value
Script

{

 SetData(Area, [Scale], ["NO"], All); // Sets the scale field of all areas

to NO

 SetData(Area, [Number, Scale], [111, "YES"]); // For area, set Scale=YES

 Scale(LOAD, MW, [1111.1],AREA); // Do the scaling for particular area

 SetData(Area, [Number, Scale], [111, "NO"]); // reset Scale back to NO

 SetData(Area, [Number, Scale], [333, "YES"]); // For area, set Scale=YES

 Scale(LOAD, MW, [3333.3],AREA); // Do the scaling for particular area

 SetData(Area, [Number, Scale], [333, "NO"]); // reset Scale back to NO

 SetData(Area, [Number, Scale], [444, "YES"]); // For area, set Scale=YES

 Scale(LOAD, MW, [4444.4],AREA); // Do the scaling for particular area

 SetData(Area, [Number, Scale], [444, "NO"]); // reset Scale back to NO

}

Script

{

 SetData(Area, [Scale], ["NO"], All);

 SetData(Area, [Number, Scale, CustomFloat:5], [111, "YES", 1111.1]);

 SetData(Area, [Number, Scale, CustomFloat:5], [333, "YES", 3333.3]);

 SetData(Area, [Number, Scale, CustomFloat:5], [444, "YES", 4444.4]);

 Scale(LOAD,MW,["CustomFloat:5"],AREA);

}

SetGenPMaxFromReactiveCapabilityCurve(filter);

Use this action to change the Maximum MW output of generators which use a capability curve, equal to

the second-to-last MW point in the capability curve if the last Max Mvar point on the capability curve is

smaller than 0.001 Mvar. If the present MW output is higher than this new Max MW value, then Max MW

is set to the present MW output..

filter : optional parameter which is either Selected, Closed or the name of a

branch Advanced Filter. This parameter is used to specify which

generators are processed. If blank, all generators are processed.

Selected : means only generators whose Selected field = YES can

be processed

AREAZONE : means process those generators that meet the

area/zone/owner filters.

"FilterName" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

 23

SetParticipationFactors(Method, ConstantValue, Object);

Use this action to modify the generator participation factors in the case

Method : The formula used to calculate the participation factors for each

generator. It may be one of the following strings:

 MAXMWRAT – base factors on the maximum MW ratings.

 RESERVE – base factors on the (Max MW rating – Present MW).

 CONSTANT – set factors to a constant value.

ConstantValue : The value used if CONSTANT method is specified. If CONSTANT method

is not specified, enter 0 (zero).

Object : Specify which generators to set the participation factor for.

 [Area Num], [Area "name"], [Area "label"]

 [Zone Num], [Zone "name"], [Zone "label"]

 SYSTEM

 AREAZONE or DISPLAYFILTERS

SetScheduledVoltageForABus([bus identifier], voltage);

Use this action to set the stored scheduled voltage, vsched, for a bus according to how this is defined in

the EPC format. This value is not used by Simulator but is stored for purposes of writing out to an EPC

file. The setpoint voltages for generators and switched shunts regulating the specified bus are also set to

the new voltage. The regulation range for switched shunts is modified for the new setpoint voltage

according to how this is defined in the EPC format: vband = (VHigh-VLow)/2 with newVHigh =

voltage+vband and new VLow = voltage-vband.

[bus identifier] : specifies bus

voltage : the new voltage

SetSelectedFromNetworkCut(SetHow, [BusOnCutSide], BranchFilter, InterfaceFilter, DCLineFilter,

Energized, NumTiers, InitializeSelected, [ObjectsToSelect], UseAreaZone, UsekV, MinkV, MaxkV,

LowerMinkV, LowerMaxkV);

Use this action to set the Selected field of specified object types if they are on the specified side of a

network cut created by specified branches, interfaces, and/or dc lines.

SetHow : Set to YES or NO. This is the value to which the Selected field will be set

if an object is within the network cut.

[BusOnCutSide] : Specify the bus that is on the desired side of the network cut. Objects

that are on the same side as this bus will have their Selected field set.

At least one of the following filters MUST not be blank:

BranchFilter : Specify a filter to select the branches that define the network cut. See

the Using Filters in Script Commands section for more information on

specifying the filter. A blank filter means that no branches are selected.

InterfaceFilter : Specify a filter to select the interfaces that define the network cut. See

the Using Filters in Script Commands section for more information on

specifying the filter. A blank filter means that no interfaces are selected.

DCLineFilter : Specify a filter to select the dc lines that define the network cut. See the

Using Filters in Script Commands section for more information on

specifying the filter. A blank filter means that no dc lines are selected.

Energized : Set to YES or NO. Set to YES to only include branches with a closed

status when traversing branches to determine which side of the network

cut each bus is on. This option does not apply to the branches that are

specified to define the network cut. Those branches will not be traversed

regardless of their status.

 24

NumTiers : Once the network cut has been defined by a set of branches and the bus

defining which side of the cut is being examined has been chosen, this

value indicates that buses will be included within this number of tiers of

the network cut boundary, on the opposite side of the cut as the

specified bus. If the number of tiers is set to zero, the buses examined

will only be those on the same side of the cut as the specified bus.

InitializeSelected : Set to YES or NO. Set to YES to set the Selected field for all objects to

the opposite of the value specified in the SetHow parameter.

[ObjectsToSelect] : Comma separated list of object types enclosed in square brackets. These

objects will have their Selected fields set if they are within the network

cut. Valid options are: BRANCH, BUS, DCTRANSMISSIONLINE, GEN,

LOAD, and SHUNT.

UseAreaZone : Optional parameter – default is NO.

 Set to YES or NO. Set to YES to only set the Selected field for objects

that are within the network cut that meet the area/zone/owner filter.

UsekV : Optional parameter – default is NO.

 Set to YES or NO. Set to YES to only set the Selected field for objects

that are within the network cut and within the nominal kV range

specified.

MinkV : Optional parameter – default is 0.

 An object’s nominal kV must be greater than or equal to this value to

have its Selected field set if it is also in the network cut. Branches can

have different nominal voltages at each terminal; the largest nominal

voltage must be greater than or equal to this value.

MaxkV : Optional parameter – default is 9999.

 An object’s nominal kV must be less than or equal to this value to have

its Selected field set if it is also in the network cut. Branches can have

different nominal voltages at each terminal; the largest nominal voltage

must be less than or equal to this value.

LowerMinkV : Optional parameter – default is 0.

 This value is only used with branches. Branches can have different

nominal voltages at each terminal; the smallest nominal voltage must be

greater than or equal to this value.

LowerMaxkV : Optional parameter – default is 9999.

 This value is only used with branches. Branches can have different

nominal voltages at each terminal; the smallest nominal voltage must be

less than or equal to this value.

UpdateIslandsAndBusStatus;

Changes to branch and generator status impact islands and whether or not buses are connected. Islands

and bus status are always updated at the beginning of a power flow solution if necessary, but this script

command makes it convenient to update this information without requiring a power flow solution.

 25

Distributed Computing Actions

Available regardless of the mode
EnterDistMasterPassword (Password);

VerifyDistributedComputersAvailable;

EnterDistMasterPassword(Password);

Use this action to enter the master password used to unlock distributed machine login credentials.

Password : Password that must be specified to unlock the credentials.

VerifyDistributedComputersAvailable;

Allows distributed computer status to be verified.

 26

Oneline Actions

Available regardless of the mode
CloseOneline ("OnelineName");

EditMultipleOnelineAction ("Path", LinkType, SaveFileType);

ExportOneline ("filename", "OnelineName", ImageType, "view", FullScreen,

ShowFull, [ExportOptions]);

ExportOnelineAsShapeFile ("filename", "OnelineName", "shapefileExportDescriptionName",

UseLonLat, PointLocation);

ImportDDLAsTranslation ("filename");

LoadAXD ("filename", "OnelineName", CreateIfNotFound);

OpenOneline ("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top,

Width, Height);

RelinkAllOpenOnelines;

SaveOneline ("filename", "OnelineName", SaveFileType);

CloseOneline("OnelineName");

Use this action to close an open oneline diagram without saving it. If the name is omitted, the last

focused oneline diagram will be closed.

"OnelineName" : The name of the oneline diagram to close.

EditMultipleOnelineAction("Path", LinkType, SaveFileType);

Use this action to convert all files with a PWD extension in a specified directory to a new format. The files

will be saved with the same name but with an extension appropriate for the SaveFileType.

"Path" : Specify a valid path where the files are located.

LinkType : Specify the key field identifier to use for linking objects in the oneline

diagrams to a power flow case. Options are NUMBER, NAMENOMKV,

and LABEL.

SaveFileType : Specify the new format for the oneline diagrams. Valid options are: PWB,

PWB5-PWB20, and AUX.

ExportOneline("filename", "OnelineName", ImageType, "view", FullScreen, ShowFull, [ExportOptions]);

Use this action to export an image of the open oneline diagram to a file containing the specified image

type.

"filename" : Name of the file in which the exported image will be saved. See the

Specifying File Names in Script Commands section for special keywords

that can be used when specifying the file name.

"OnelineName" : The name of the oneline diagram to export. The oneline diagram must be

open. Use the OpenOneline script command if necessary to open the

appropriate oneline.

ImageType : The type of image to save. Valid options are: BMP, GIF, JPG, EMF, WMF.

"view" : Optional parameter. The view name that should be opened. Pass an

empty string to denote no specific view.

FullScreen : Optional parameter with default of NO. Set to YES or NO. YES means

that the oneline diagram will be open in full screen mode. If this

parameter is not specified, then NO is assumed.

ShowFull : Optional parameter with default of NO. Set to YES to open the oneline

and apply the Show Full option. Set to NO to open the oneline and leave

the oneline as is.

[ExportOptions] : Optional parameter

 This is a comma separated list of options based on the ImageType that is

being exported. When exporting an image of type JPG, the following

options can be specified:

ImageQuality : Quality of the image specified from 1 to 100 with 100 being the highest

quality image. The larger the image quality the larger the resulting file

will be. Default is 80.

 27

ResolutionScalar : The resolution can be changed from the default resolution by adjusting

by this scalar. To increase the resolution set the scalar to something

greater than 1. Increasing the resolution will also increase the file size.

Default is 1.

 When exporting an image of type GIF, the following options can be

specified:

NumFrames : GIF images can be animated by introducing multiple frames. This value

specifies the number of frames. Default is 1.

FrameDelay : Number of seconds to wait between frames. Default is 0.1.

ResolutionScalar : The resolution can be changed from the default resolution by adjusting

by this scalar. To increase the resolution set the scalar to something

greater than 1. Increasing the resolution will also increase the file size.

Default is 1.

ExportOnelineAsShapeFile("filename", "OnelineName", "ShapeFileExportDescriptionName",

UseLonLat, PointLocation);

Use this action to save an open oneline diagram to a shapefile.

"filename" : The file name of the shapefile to save.

"OnelineName" : The name of the oneline diagram to save to a shapefile. The oneline

diagram must be open. Use the OpenOneline script command if

necessary to open the appropriate oneline.

"ShapeFileExportDescriptionName"

 : Name of the ShapeFile Export Description to use when saving the

shapefile.

UseLonLat : Set to YES or NO. YES means that the coordinates of objects on the

oneline diagram will be saved using longitude,latitude. This will only be

true if a valid map projection is in use with the oneline diagram.

Otherwise, the coordinates will be saved in x,y. If this parameter is set to

NO, the coordinates will be saved in x,y. If this parameter is not specified,

YES is assumed.

PointLocation : Determines where points are specified – object centers, or the upper left

corner. Specify “center” to define points as the shape centers, or “ul” to

define them as the upper left corner of the shapes. If not specified, upper

left is assumed.

ImportDDLAsTranslation("filename");

This loads an ESET DDL and converts some definitions into translations within Simulator. This currently

only works for keyset definitions that set links to open onelines.

"filename" : The name of file to load.

LoadAXD("filename", "OnelineName", CreateIfNotFound)

Use this action to apply a display auxiliary file to an open oneline diagram.

"filename" : The file name of the display auxiliary file to load.

"OnelineName" : The name of the oneline diagram to which to apply the display auxiliary

file. If the oneline is not already open, the OpenOneline script command

can be used to open the appropriate oneline. If the specified oneline is

not open, a new one will be created with the given name.

CreateIfNotFound : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections from filename. If this parameter

is not specified, NO is assumed.

 28

OpenOneline("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, Height);

Use this action to open a oneline diagram. When using SimAuto, this action cannot be used to actually

view a oneline. This script can be used in SimAuto to associate onelines with a PWB file. Any oneline that

is opened using the script command and while the case is saved will opened in the GUI once the case is

reopened.

"filename" : The file name of the oneline diagram to open. Wildcards are allowed

when opening a DDL file type. This is useful for loading DDL files via

browsing patch searches.

"view" : The view name that should be opened. Pass an empty string to denote

no specific view.

FullScreen : Set to YES or NO. YES means that the oneline diagram will be open in

full screen mode. If this parameter is not specified, then NO is assumed.

ShowFull : Optional parameter. Set to YES to open the oneline and apply the Show

Full option. Set to NO to open the oneline and leave the oneline as is.

Default is NO if not specified.

LinkMethod : Optional Parameter that controls oneline linking. LABELS, NAMENOMKV,

and NUMBER will link using the respective key fields.

Left : Optional with default of 0. Value between 0 and 100 that indicates the

location of the left edge of the oneline as a percentage of the

Simulator/Retriever window width.

Top : Optional with default of 0. Value between 0 and 100 that indicates the

top edge of the oneline as a percentage of the Simulator/Retriever

window height.

Width : Optional with default of 0. Value between 0 and 100 that indicates the

width of the oneline as a percentage of the Simulator/Retriever window

width.

Height : Optional with default of 0. Value between 0 and 100 that indicates the

height of the oneline as a percentage of the Simulator/Retriever window

height.

RelinkAllOpenOnelines;

Making modifications to the power flow case could cause objects on a oneline from becoming unlinked.

This action will attempt to relink all objects on all open onelines.

SaveOneline("filename", "OnelineName", SaveFileType);

Use this action to save an open oneline diagram to file

"filename" : The path and file name of the file to save. If a full path is not specified,

then the file is saved to the current directory.

"OnelineName" : Name of the open oneline to save.

SaveFileType : Type of file to save. Valid options are AXD, PWB, and PWB5-PWB20. If

omitted, PWB, which is the most recent version, will be assumed. Note

the use of "PWB" instead of "PWD" is not a typo. The version of the PWD

file corresponding to the PWB version will be used.

OpenBusView("Bus key", ForceNewWindow);

Opens the Bus View to a particular bus specified in the first parameter.

"Bus key" : The specific bus. The format is the object type followed by the key fields

ForceNewWindow : Optional with default of NO. Set to YES to force a new bus view to be

opened regardless. If NO, then if a bus view is already open the

command will update that bus view instead of opening a new one.

 29

OpenSubView("Substation key", ForceNewWindow);

Opens the Substation View to a particular substation specified in the first parameter.

"Substation key" : The specific substation. The format is the object type followed by the key

fields

ForceNewWindow : Optional with default of NO. Set to YES to force a new substation view to

be opened regardless. If NO, then if a substation view is already open the

command will update that substation view instead of opening a new one.

 30

User Interface Actions

Available regardless of the mode
MessageBox ("text");

ObjectFieldsInputDialog ("ObjectIDString", [fieldlist]);

OpenDataView ("ObjectIDString", "DataGridIDString");

MessageBox("text");

Use this action to open a dialog box that will display the entered text. This script command will fail if

using the SimAuto add-on.

"text" : Text that will appear in the dialog box.

ObjectFieldsInputDialog("ObjectIDString", [fieldlist], "DialogCaption", "DialogExplain",

[LabelCaptions], [TabBreaks], [TabCaptions], [RowBreaks], [RowCaptions], [ColBreaks], [ColCaptions]);

Use this action to open a dialog box displaying the list of specified fields for the specified object. This will

allow the fields to be modified in the same manner as they can through case information displays. This

script command will fail if using the SimAuto add-on.

"ObjectIDString" : The specific object for which to display fields. The format is the object

type followed by the key fields used to identify the object. Examples:

"Bus 234891", "Gen 16445 'A'", "Branch 1239 1234 'AB'".

[fieldlist] : A list of fields to to display for the specified object.

"DialogCaption" : Optional with default of blank. This is the caption that will appear on the

dialog.

"DialogExplain" : Optional with default of blank. This is an explanation that will appear in a

text at the top of the dialog underneath the caption.

[LabelCaptions] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of captions that will appear with the respective fields. The

captions must be enclosed in double quotes if there are any commas in

the string. If now label captions are specified, then the concise variable

names will be used to indicate what each field is

[TabBreaks] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of integers that indicate that a tab break occurs before the

field at the particular index. The fields are indexed starting at zero. The

dialog that appears will be created with the first “tab” representing a

panel at the TOP of the dialog. This top panel will be made a fixed

height so that all rows of fields can be seen. Any subsequent tabs will be

placed inside a Tabbed control. The tabbed control will take up the

remainder of the size of the dialog.

[TabCaptions] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of captions that will appear with the respective tab break.

Each tab break will represent a TAB on the tabbed control. These will be

the captions. If nothing is specified, the captions will simply numbered.

[RowBreaks] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of integers that indicate that a row break occurs before the

field at the particular index. The fields are indexed starting at zero. Each

tab of the dialog will be drawn with controls optionally grouped into

rows and then these rows optionally grouped into columns. A particular

“cell” of this table can then have multiple fields inside it.

[RowCaptions] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of captions that will appear with the respective group box

that starts with the field at this index. The group box will contain all

fields up until the next Column or Row break. Blank captions are also

allowed, in which case a group box is not drawn.

 31

[ColBreaks] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of integers that indicate that a column break occurs before

the field at the particular index. The fields are indexed starting at zero.

Each tab of the dialog will be drawn with controls optionally grouped

into rows and then these rows optionally grouped into columns. A

particular “cell” of this table can then have multiple fields inside it.

[ColCaptions] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of captions that will appear with the respective group box

that starts with the field at this index. The group box will contain all

fields up until the next Column or Row break. Blank captions are also

allowed, in which case a group box is not drawn.

The following image depicts what the resulting dialog would show for the following script command.

Note the field list is abbreviated but for this example there are 21 fields listed in the same manner as

other script commands.

ObjectFieldsInputDialog("Branch 5 6 1", [Field0, … Field20],

 "Add Caption Here", "Explain Stuff Here", [],

 [4, 12], [My Cap,Another],

 [5,11,12,17,19], [EDFG,"Test,Cap","Heref",ABCD,""],

 [8,14,15,18,18], [HIJK,,LMNO,,XYZ]

);

A few things of note

in this example.

Column caption that

goes with Index 14 is

blank so no group

box is drawn.

Column index 18 is

listed twice in the

ColBreaks which

results in the empty

column between Field

17 and 18.

RowBreak index 12

would seem to be

unnecessary but

provide the

mechanism to add

the caption “Heref”.

 32

OpenDataView("ObjectIDString", "DataGridIDString");

Use this action to open the Data View Dialog to a particular object using a particular set of customized

string grid options. The string grid options determine the fields to show as well as whether to have any

Tab, Row or Column breaks on the dialog in the same manner as is done for the ObjectFieldsInputDialog()

script command.

"ObjectIDString" : The specific object for which to display fields. The format is the object

type followed by the key fields used to identify the object. Examples:

"Bus 234891", "Gen 16445 'A'", "Branch 1239 1234 'AB'".

"DataGridIDString" : Optional. If not specified dialog will open with the first customized grid.

This is a reference to either a DataGrid or a UserDefinedDataGrid object.

DataGrid objects store the customizations used on various case

information displays in PowerWorld Simulator. A part of the

customization for a DataGrid includes information about the Data View

Layout (allows tab, row, and column breakers along with captions for

tabs and group boxes). The format for this string is object type string

DataGrid or UserDefinedDataGrid the key fields for that object (only a

name for the DataGrid, and name followed by object type for

UserDefinedDataGrid). Examples:

"DataGrid 'BranchRun'”

"DataGrid 'BranchEdit'”

"UserDefinedDataGrid 'My named grid' Bus”

 Note: you may also simply enter a string showing the name of either the

DataGrid or UserDefinedDataGrid. If you do this, then Simulator will first

look for a DataGrid with that name. If a DataGrid is not found, then we

will look for a UserDefinedDataGrid that matches the name specified and

assumes the object type matches what is specified for the ObjectIDString.

 33

Customer-Specific Actions

Available regardless of the mode
ISONEInterfaceLimitCalculation ("filename", variablename);

ISONEInterfaceLimitCalculation("filename", variablename);

This script command has been developed specifically for ISO-NE to determine the limit of a specified

interface based on a set of logical conditions being met on the given state of the power system.

"filename" : Name of the file containing all input data. This is a text-based format

with the description of the contents given below.

variablename : Interface floating point field that will contain the calculated limit for each

studied interface.

The file containing the input data contains specific sections to properly calculate an interface limit. Each

section is identified by a keyword. Any sections with keywords that are not recognized will be ignored.

The data for each section is enclosed in curly braces, { }. Curly braces must be on their own lines.

Comments can be added using the double slash, //, notation at the start of a line. Only entire lines can be

commented. The contents of an example file are shown below:

// Put comments here

Interface

{

MyInterface

}

ModelExpressions

{

Branch1_Online

GeneratorA_Online

GeneratorB_Offline

LoadGroup_Online

}

MatrixM

{

-0.5,0.5, 0.5,1.5, -9,9, -9,9

-0.5,0.5, -0.5,0.5, -9,9, -9,9

}

VectorL

{

123

456

}

MatrixA

{

0,0,350,100

0,0,120,80

}

VectorB

{

700

400

}

The section keywords and data contents are described below :

Interface : Name of the interface for which the limit is being calculated. Only a

single interface limit can be calculated per input file.

ModelExpressions : List of Model Expressions that correspond to the columns of MatrixM

and MatrixA. These Model Expressions must be specified by name as the

key field for identifying them within the power flow case. There must be

 34

as many Model Expressions defined as there are columns of MatrixM and

MatrixA (m).

MatrixM : This is an nxm matrix of floating point values. Each entry in the matrix

contains two values that represent the minimum and maximum range of

a power system value. It is possible that there will be no limit in either

the minimum or maximum direction and -INF or INF can be used to

indicate this instead of a floating point value.

VectorL : This is an nx1 vector of floating point values. This vector must be the

same size as the number of rows in MatrixM.

MatrixA : This is an nxm matrix of floating point values. This matrix must be the

same size as MatrixM. This matrix is optional and does not have to exist

in the input file. If not specified, it will be assumed that all entries are 0

and it is the same size as MatrixM. Previous versions of the script

command named this MatrixL1. To maintain older functionality,

Simulator will look for either MatrixA or MatrixL1.

VectorB : This is an nx1 vector of floating point values. Each entry is the upper

bound limit for the corresponding rows of MatrixM. To maintain older

functionality, it is not required that this vector be included in the input

data. If it is not included, the calculations will be done without imposing

these limits.

Implementation of the limit calculation is determined by the following:

Each column of Matrix M corresponds to a Model Expression. All defined Model Expressions will be

evaluated in the present power system state. Each row, n, of M is evaluated for the logical conditions

defined for each cell entry. The logical condition for each cell entry m is: 𝑚𝑖𝑛𝑚 ≤ 𝑀𝑜𝑑𝑒𝑙 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑚 ≤

𝑚𝑎𝑥𝑚 . There is only one row, call this p, of M where all logical conditions are met.

The interface limit is then calculated based on row p using the following equation:

𝐿𝑖𝑚𝑖𝑡𝑝𝑟𝑒𝑙𝑖𝑚 = 𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑝 + ∑ 𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑝,𝑗 ∙ 𝑉𝑗

𝑚

𝑗=1

where 𝑉𝑗 is the value of 𝑀𝑜𝑑𝑒𝑙 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑗 .

If VectorB has been specified,

𝐿𝑖𝑚𝑖𝑡 = Min{𝐿𝑖𝑚𝑖𝑡𝑝𝑟𝑒𝑙𝑖𝑚 , 𝑉𝑒𝑐𝑡𝑜𝑟𝐵𝑝}

otherwise,

𝐿𝑖𝑚𝑖𝑡 = 𝐿𝑖𝑚𝑖𝑡𝑝𝑟𝑒𝑙𝑖𝑚

If there is no row p where all logical conditions are met, the Limit will be set to 99999 if the input is

specified using MatrixA. If the older format that uses MatrixL1 is specified, the Limit will be set to 0. To

access the calculated Limit value, the field that is specified by the input variablename parameter is set to

the Limit.

During the calculation, the Selected field will be set to YES for all Model Expressions that are used in the

calculation and to NO for all Model Expressions that are not used as part of the calculation. The Selected

field for the interface for which the limit is determined will be set to YES, and the Selected field will be set

to NO for all other interfaces.

 35

Edit Mode Actions

Case Related Actions

The following script commands are available while in Edit mode
AppendCase ("filename", OpenFileType, [StarBus, EstimateVoltages]);

AppendCase ("filename", OpenFileType, [MSLine, VarLimDead, PostCTGAGC,

EstimateVoltages]);

Combine ([elementA], [elementB]);

DeleteExternalSystem;

Equivalence;

InterfacesAutoInsert (Type, DeleteExisting, UseFilters, Prefix, Limits);

MergeBuses ([element], Filter);

MergeLineTerminals (Filter);

MergeMSLineSections (Filter);

Move ([elementA], [destination parameter], HowMuch);

ReassignIDs (objecttype, field, filter, UseRight);

Remove3WXformerContainer (filter);

Renumber3WXFormerStarBuses ("filename", Delimiter);

RenumberAreas (NumCI);

RenumberBuses (NumCI);

RenumberMSLineDummyBuses ("filename", Delimiter);

RenumberSubs (NumCI);

RenumberZones (NumCI);

SaveExternalSystem ("filename", Savefiletype, withties);

SplitBus ([element], NewBusNumber, InsertBusTieLine, LineOpen,

BranchDeviceType);

TapTransmissionLine ([element], PosAlongLine, NewBusNumber, ShuntModel,

TreatAsMSLine);

AppendCase("filename", OpenFileType, [StarBus, EstimateVoltages]);

AppendCase("filename", OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]);

Use this action to append a case to the currently open case. The optional parameters depend on the type

of file being appended.

"Filename" : File name of the case to be appended

OpenFileType : PWB – case file is a PowerWorld Binary file

 GE – case file is a GE .epc file. GExx where xx is the appropriate EPC file

version number can also be used.

 PTI – case file is a PTI .raw file. PTIxx where xx is the appropriate RAW

file version number can also be used.

 CF – case file is an IEEE common data format file

StarBus : Optional parameter – default is NEAR

 Only used for PTI RAW format, with the following options:

 NEAR – star buses are numbered starting after the near bus number

 MAX – star buses are numbered starting after the maximum bus number

 Value – star bus numbering will start at specified value

MSLine : Optional parameter – default is MAINTAIN

 Only used for the GE EPC format, with the following options:

 MAINTAIN – maintain multisection lines

 EQUIVALENCE – equivalence multisection lines

VarLimDead : Optional parameter – default is 2.0

 Only used for the GE EPC format

 NUMBER – set the GE var limit deadband to this value

PostCTGACG : Optional parameter – default is NO

 Only used for the GE EPC format. Set to YES to populate the generator

field Post-CTG Prevent Response based on the EPC file’s generator base

load flag.

 36

EstimateVoltages : Optional parameter – default is YES

 Used with either GE EPC or PTI RAW format with the following options:

 YES – voltages and angles are estimated for new buses that are created

when appending data to a case. Angle smoothing is done across new

lines that are created when appending data to a case. These operations

might be necessary if appending data that contains voltages that are not

consistent to the case into which it is being appended or contains no

voltages at all. This is the default.

 NO – no voltage and angle estimates are done and no angle smoothing

is done. This might be necessary when appending large sections of a

case, i.e. such as a new island, or providing voltages that are already

good estimates in the appended data.

Combine([elementA], [elementB]);

NOTE: THIS ACTION IS ONLY AVAILABLE FOR GENERATORS

Use this action to combine two generators, two loads, or two transmission line. Note that elementA and

elementB must be of the same object type. You cannot combine a BRANCH and a LOAD.

[elementA] : The object that should be moved. See the format for [elementA] in the

Move script command for information on the formatting of this string.

[elementB] : The object that element A should be combined with. Same format as for

elementA.

DeleteExternalSystem;

This action will delete part of the power system. It will delete those buses whose property Equiv must is

set true.

Equivalence;

This action will equivalence a power system. All options regarding equivalencing are handled by the

Equiv_Options objecttype. Use the SetData action, or a DATA section to set these options prior to using

the Equivalence() action. Also, remember that the property Equiv must be set true for each bus that you

want to equivalence.

InterfacesAutoInsert(Type, DeleteExisting, UseFilters, "Prefix", Limits);

Use this action to auto-insert interfaces

Type : AREA – insert area-to-area tieline interfaces.

 ZONE – insert zone-to-zone tieline interfaces.

DeleteExsiting : YES – to delete existing interfaces; NO – to leave existing interfaces alone.

UseFilters : YES – to user Area/Zone Filters; NO – to insert for entire case.

"Prefix" : Enter a string which will be a prefix on the interface names.

Limits : ZEROS – to make all limits zero.

 AUTO – limits will be set to the sum of the branch limits.

[lima, limb, limc, limd, …] – Enter 8 limits enclosed in brackets, separated

by commas. This will set the limits as specified.

MergeBuses([element], Filter);

Use this action to merge buses

Element : The bus object that will be created when the buses meeting the Filter are

merged.

 37

Filter : Optional parameter – default is to merge all buses into a single bus

AREAZONE : Only buses that meet the area/zone/owner filters will

be merged

SELECTED : Only buses whose Selected field = YES will be merged

"FilterName" : Only buses that meet the specified filter will be

merged. See Using Filters in Script Commands section

for more information on specifying the filtername.

MergeLineTerminals(Filter);

Use this action to merge line terminals. This action can be used to remove a line by merging the terminal

buses of that line into a single bus. The only parameter of the script command is a filter parameter, which

must be populated with either the name of an advanced filter (with the name in quotation marks) or the

text SELECTED (with no quotation marks). If an advanced filter is given, then Simulator will find all

branches that meet the advanced filter definition and will individually merge the line terminals of each line

one at a time.

Filter : Any multi-section lines meeting this filter will be merged.

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

SELECTED : Select objects that have the selected property set to

true

MergeMSLineSections(Filter);

Use this action to eliminate multi-section line records. If possible, the individual sections will be merged

into a single line record between the from and to bus and the multi-section line record will be removed. If

a multi-section line contains series capacitors or transformers, the multi-section line record will be

retained.

Filter : Any multi-section lines meeting this filter will be merged.

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

SELECTED : select objects that have the selected property set to

true

Move([elementA], [destination parameters], HowMuch);

Use this action to move a generator, load, transmission line, or switched shunt.

[elementA] : The object that should be moved. Must be one of the following formats:

[GEN busnum id], [GEN "name_nomkv" id],

[GEN "label"]

[LOAD busnum id] , [LOAD "name_nomkv" id],

[LOAD "label"],

[BRANCH busnum1 busnum2 ckt],

[BRANCH "name_kv1" "name_kv2" ckt],

[BRANCH "label"]

[SHUNT busnum id], [SHUNT "name_nomkv" id],

[SHUNT "label"],

[MULTISECTIONLINE busnum1 busnum2 ckt],

[MULTISECTIONLINE "name_kv1" "name_kv2" ckt],

[MULTISECTIONLINE "label"],

[3WXFORMER busnum1 busnum2 busnum3 ckt],

[3WXFORMER "name_kv1" "name_kv2" "name_kv3" ckt]

[3WXFORMER "label"]

 38

[destination parameters]

 : These parameters have different meanings depending on object type of

the element. Must use bus numbers here:

GEN : [busnum id]

LOAD : [busnum id]

BRANCH : [busnum1 busnum2 ckt]

SHUNT : [busnum id]

MULTISECTIONLINE : [busnum1 busnum2 ckt]

3WXFORMER : [busnum1 busnum2 busnum3 ckt]

HowMuch : The amount of the element to move. A value of 100 indicates that 100%

should be moved. This parameter is only valid for generators and loads.

It is ignored for lines and switched shunts.

ReassignIDs(objecttype, field, filter, UseRight);

Use this action to set the IDs of specified objects to the first two characters of a specified field.

Objecttype : The type of object for which to assign IDs. BRANCH, GEN, LOAD, and

SHUNT are allowed.

field : The field that contains the IDs that will be assigned. Only the first two

characters of the field will be assigned. Field is specified in format

variablenamelegacy:location or concisename

Filter : (optional) Any objects meeting this filter will have their IDs reassigned.

Blank is the default value:

Blank : means all objects will be modified

ALL : means all objects will be modified

SELECTED : means only branches whose Selected field = YES will

be modified

AREAZONE : means only branches that meet the area/zone/owner

filters will be modified

"FilterName" : means only objects that meet the specified filter will be

modified. See the Using Filters in Script Commands

section for more information on specifying the

filtername.

UseRight : Optional parameter – default is NO

 Set to YES or NO. If set to YES, the last two characters of the specified

field will be assigned.

Remove3WXformerContainer(filter);

Use this action to delete the three-winding transformers matching the specified filter while leaving the

internal two-winding transformers intact.

Filter : (optional) Any three-winding transformers meeting this filter will be

deleted. Default is blank:

Blank : means all three-winding transformers will be deleted

ALL : means all three-winding transformers will be deleted

SELECTED : means only three-winding transformers whose

Selected field = YES will be deleted

AREAZONE : means only three-winding transformers that meet the

area/zone/owner filters will be deleted

"FilterName" : means only three-winding transformers that meet the

specified filter will be deleted. See the Using Filters in

Script Commands section for more information on

specifying the filtername.

 39

Renumber3WXFormerStarBuses("filename", Delimiter);

Use this action to renumber star buses based on user-specified values.

"filename" : The name of the file containing the renumbering

Delimiter : Optional parameter – default is BOTH

 Set to COMMA, SPACE, or BOTH to indicate the delimiter to use to

separate data in the file.

The file may be comma or space delimited. The contents of the file should be formatted using the format

below.

primary bus, secondary bus, tertiary bus, circuit, new starbus number, new starbus

name

or
pribusname_nomkV, secbusname_nomkV, terbusname_nomkV, circuit ID, newstarbusnum,

newstarbusname

Either the bus number or the name_nominalkV identifier may be used to identify the buses. Each bus may

be identified using either method even for the same transformer. Lines starting with two slashses (//) will

be ignored. The next two lines are sample file contents using different methods to identify buses.

11037, 11038, 11199, "1", 11202, "Ki star"

"WESTWING_500.00" "WESTWNGW_230.00" "WESTWG 4_34.50" "2" 99823 "KI STAR 3"

RenumberAreas(NumCI);

Renumber Areas using the new number for the Area located in the Custom Integer field of the area.

NumCI : Custom Integer field containing the new numbers.

RenumberBuses(NumCI);

Renumber Buses using the new number for the bus located in the Custom Integer field of the bus.

NumCI : Custom Integer field containing the new numbers.

RenumberMSLineDummyBuses("filename", Delimiter);

Use this action to renumber dummy buses or a multisection line based on user-specified values.

"filename" : The name of the file containing the renumbering

Delimiter : Optional parameter – default is BOTH

 Set to COMMA, SPACE, or BOTH to indicate the delimiter to use to

separate data in the file.

The file may be comma or space delimited. Buses may be identified using bus numbers or using the

BusName_NominalkV combination. The file format is below:

from bus, to bus, circuit //identifiy multi-section line

dummybusnumber1, dummybusname1

dummybusnumber2, dummybusname2

where the dummy bus numbers and names give the numbers and names that will be assigned for the

dummy buses of a multi-section line. An example of the file contents is below:

40039 , 40141, 1 // ALFALFA 230 N BONNVL 230 #1

 49997, "ALFN B11"

40062 , 40699, 2 // ASHE R1 500 MARION 500 #2

 49990, ASHMAR21

 49989, ASHMAR22

 49988, ASHMAR23

 40

RenumberSubs(NumCI);

Renumber Substations using the new number for the substation located in the Custom Integer field of the

substation.

NumCI : Custom Integer field containing the new numbers.

RenumberZones(NumCI);

Renumber Zones using the new number for the Zone located in the Custom Integer field of the zone.

NumCI : Custom Integer field containing the new numbers.

SaveExternalSystem("Filename", SaveFileType, WithTies);

This action will save part of the power system to a "filename". It will save only those buses whose

property Equiv must is set true.

filename : The file name to save the information to.

SaveFileType : An optional parameter saying the format of the file to be saved. If none

is specified, then PWB will be assumed. May be one of the following

strings

PWB, PWB5-PWB20

PTI23-PTI33

GE14-GE21, CF, AUX

WithTies : An optional parameter. The user must specify the file type explicitly in

order to use the WithTies parameter. Allows saving a transmission line

that ties a bus marked with Equiv as false and one marked true. This

must be a string which starts with the letter Y, otherwise NO will be

assumed.

SplitBus([element], NewBusNumber, InsertBusTieLine, LineOpen, BranchDeviceType);

Use this action to split buses

Element : Enter the description of which bus to split by enclosing in brackets the

word bus and an identifier. The format looks as follows:

[BUS num]

[BUS "name_nomkv"]

[BUS "buslabel"]

NewBusNumber : This is the number of the new bus to create

InsertBusTieLine : Optional parameter – default is YES

 Set to YES or NO. YES will insert a low impedance tie line between the

buses; NO will not.

LineOpen : Optional parameter – default is NO

 Set to YES or NO. YES set the status of the inserted bus tie to OPEN. NO

will set the status of the inserted bus tie to CLOSED.

BranchDeviceType : Optional parameter – default is "Line"

 Specify the Branch Device Type of the branch inserted for the bus tie.

Options are: "Line", "Transformer", "Breaker", "Disconnect", "ZBR", "Fuse",

“Load Break Disconnect", and "Ground Disconnect".

 41

TapTransmissionLine([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine);

Use this action to tap a transmission line by adding in a new bus and splitting the line in two.

Element : A description of the branch being tapped. The first bus listed will be

treated as the nearbus that is used as the reference for the PosAlongLine.

If the branch is identified by label, the from bus will be used as the

reference for the PosAlongLine.

 Enclose description in brackets:

[BRANCH busnum1 busnum2 ckt]

[BRANCH "name_kv1" "name_kv2" ckt]

[BRANCH "buslabel1" "buslabel2" ckt]

[BRANCH "label"]

PosAlongLine : The percent distance along the branch at which the line will be tapped.

NewBusNumber : The number of the new bus created at the tap point.

ShuntModel : Optional parameter – default is CAPACITANCE

 How should the shunt charging capacitance values be handled for the

split lines:

LINESHUNTS : Line shunts will be created (keeps exact power flow

model).

CAPACITANCE : Convert shunt values capacitance in the PI model.

TreatAsMSLine : Optional parameter – default is NO

 Set to YES or NO. If set to YES, the two newly created lines will be made

part of a mulit-section line.

 42

Run Mode Actions

The following script commands are available while in Run Mode.
Animate (DoAnimate);

CalculatePTDF ([transactor seller], [transactor buyer], LinearMethod);

CalculatePTDFMultipleDirections(StoreValuesForBranches,StoreValuesForInterfaces,LinearMethod);

CalculateLODF ([BRANCH nearbusnum farbusnum ckt], LinearMethod,

PostClosureLCDF);

CalculateLODFMatrix (WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed,

LinearMethod, filterMonitorInterface, PostClosureLCDF);

CalculateLODFScreening (filterProcess, filterMonitor, IncludePhaseShifters,

IncludeOpenLines, UseLODFThreshold, LODFThreshold,

UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile,

FileLocation, CustomFieldHighLODF, CustomFieldHighLODFLine,

CustomFieldHighOverload, CustomFieldHighOverloadLine,

DoUseCTGName, CustomFieldOrigCTGName);

CalculateLODFAdvanced (IncludePhaseShifters, FileType, MaxColumns, MinLODF,

NumberFormat, DecimalPoints, OnlyIncludingLinesIncreasing,

"FileName", IncludeIslandingCTG);

CalculateTLR ([flowelement], direction, [transactor], LinearMethod,

SetOutOfServiceBuses, filter, AbortOnError);

CalculateTLRMultipleElement (TypeElement, WhichElement, direction, [transactor],

LinearMethod);

CalculateVoltSense ([BUS num]);

CalculateFlowSense ([flowelement], FlowType);

CalculateLossSense (FunctionType);

CalculateVoltToTransferSense ([transactor seller], [transactor buyer], TransferType,

TurnOffAVR);

CalculateVoltSelfSense (filter);

DeleteState (WhichState, StateName);

RestoreState (WhichState, StateName);

SetInterfaceLimitToMonitoredElementLimitSum(filter);

SetSensitivitiesAtOutOfServiceToClosest(filter);

StoreState (StateName);

ZeroOutMismatches;

Animate(DoAnimate);

Use this action to animate all the open oneline diagrams.

DoAnimate : Set to YES or NO. YES means to start the animation of the open oneline

diagrams, while NO means that the animation will be paused.

CalculatePTDF([transactor seller], [transactor buyer], LinearMethod);

Use this action to calculate the PTDF values between a seller and a buyer. You may optionally specify the

linear calculation method. Note that the buyer and seller must not be same thing. If no Linear Method is

specified, Lossless DC will be used.

[transactor seller] : The seller (or source) of power. There are six possible settings:

[AREA num], [AREA "name"], [AREA "label"]

[ZONE num], [ZONE "name"], [ZONE "label"]

[SUPERAREA "name"], [SUPERAREA "label"]

[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]

[BUS num], [BUS "name_nomkv"], [BUS "label"]

[SLACK]

[transactor buyer] : The buyer (or sink) of power. There are six possible settings which are

the same as for the seller.

LinearMethod : The linear method to be used for the PTDF calculation. The options are:

AC : for calculation including losses

DC : for lossless DC

DCPS : for lossless DC that takes into account phase shifter operation

 43

CalculatePTDFMultipleDirections(StoreForBranches, StoreForInterfaces, LinearMethod);

Use this action to calculate the PTDF values between all the directions specified in the case. You may

optionally specify the linear calculation method. If no Linear Method is specified, Lossless DC will be used.

StoreForBranches : Specify YES to store the values calculated for each branch.

StoreForInterfaces : Specify YES to store the values calculated for each interface.

LinearMethod : the linear method to be used for the PTDF calculation. The options are:

AC : for calculation including losses.

DC : for lossless DC.

DCPS : for lossless DC that takes into account phase shifter operation.

CalculateLODF([BRANCH nearbusnum farbusnum ckt], LinearMethod, PostClosureLCDF);

Use this action to calculate the Line Outage Distribution Factors (or the Line Closure Distribution Factors)

for a particular branch. If the branch is presently closed, then the LODF values will be calculated,

otherwise the LCDF values will be calculated. You may optionally specify the linear calculation method as

well. If no Linear Method is specified, Lossless DC will be used.

[BRANCH nearbusnum farbusnum ckt]

 : the branch whose status is being changed. Can also use strings

[BRANCH "nearbusname_kv" "farbusname_kv" ckt]

[BRANCH "nearbuslabel" "farbuslabel" ckt]

[BRANCH "label"]

LinearMethod : The linear method to be used for the LODF calculation. The options are:

DC : for lossless DC.

DCPS : for lossless DC that takes into account phase shifter operation.

 Note: AC is NOT an option for the LODF calculation.

PostClosureLCDF : Optional parameter – default is YES

 Set to YES to calculate any line closure sensitivies relative to post-closure

flow on the line being closed. This is known as the LCDF value.

 Set to NO to calculate any line closure sensitivities based on calculating

the flow on the line being closed from pre-closure voltages and angles.

This is known at the MLCDF value.

CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod,

filterMonitorInterface, PostClosureLCDF);

Use this action to calculate the Line Outage Distribution Factors (or the Line Closure Distribution Factors)

for a particular branch. If the branch is presently closed, then the LODF values will be calculated,

otherwise the LCDF values will be calculated. You may optionally specify the linear calculation method as

well. If no Linear Method is specified, Lossless DC will be used.

WhichOnes : Specify the type of sensitivities to be calculated.

OUTAGES : Outage sensitivities will be calculated for those branches

meeting the filterProcess.

CLOSURES : Closure sensitivities will be calculated for those branches

meeting the filterProcess.

filterProcess : Specify a filter for the branches for which the outages or closures will be

implemented.

ALL : All AC transmission lines.

SELECTED : Only those branches whose Selected field is YES.

AREAZONE : Only those branches meeting the area/zone filter.

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

 44

filterMonitor : Specify a filter for the branches for which the impact of the outages or

closures will be determined.

ALL : All AC transmission lines.

SELECTED : Only those branches whose Selected field is YES.

AREAZONE : Only those branches meeting the area/zone filter.

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

SAME : Same as set of branches to process as specified by

filterProcess.

MonitorOnlyClosed : Set to YES to monitor only those branches that are closed. Set to NO to

monitor branches regardless of their status.

LinearMethod : Optional parameter – default is DC

 The linear method to be used for the LODF calculation.

DC : for lossless DC.

DCPS : for lossless DC that takes into account phase shifter operation.

 Note: AC is NOT an option for the LODF calculation.

filterMonitorInterface : Optional parameter – default is to not monitor interfaces

 Specify a filter for the interfaces for which the impact of the outages or

closures will be determined. Using this option will add the individual

lines in the interface to the list of lines to monitor.

ALL : All interfaces.

SELECTED : Only those interfaces whose Selected field is YES.

AREAZONE : Only those interfaces meeting the area/zone filter.

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

PostClosureLCDF : Optional parameter – default is YES

 Set to YES to calculate any line closure sensitivies relative to post-closure

flow on the line being closed. This is known as the LCDF value.

 Set to NO to calculate any line closure sensitivities based on calculating

the flow on the line being closed from pre-closure voltages and angles.

This is known at the MLCDF value.

CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines,

UseLODFThreshold, LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile,

FileLocation, CustomFieldHighLODF, CustomFieldHighLODFLine, CustomFieldHighOverload,

CustomFieldHighOverloadLine, DoUseCTGName, CustomFieldOrigCTGName);

Use this action to do the LODF Screening calculation. This calculation uses LODF/LCDF factors to

determine how significant a branch open/close action will be on monitored lines. The significance of the

action can be determined by LODF/LCDF magnitude or line loading on monitored lines. Significant single

contingency actions can then be combined to form pairs of contingency actions that will be used to

create new contingencies that can be saved to an auxiliary file.

filterProcess : Specify a filter for the branches for which the outage or closure impact

will be determined.

ALL : All AC transmission lines.

AREAZONE : Only those branches meeting the area/zone filter.

CTG : Only those branches included in any currently

defined contingency.

LIMITMONITOR : Only those branches meeting the Limit Monitoring

Settings.

SELECTED : Only those branches whose Selected field is YES.

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

 45

filterMonitor : Specify a filter for the branches on which the impact of the outages or

closures will be determined.

ALL : All AC transmission lines.

AREAZONE : Only those branches meeting the area/zone filter.

LIMITMONITOR : Only those branches meeting the Limit Monitoring

Settings.

SAME : Same as branches to process specified by

filterProcess.

SELECTED : Only those branches whose Selected field is YES.

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

IncludePhaseShifters : Set to YES to calculate the LODF/LCDF values assuming that phase

shifters are allowed to operate and will see no impact due to an outage

or closure. Set to NO to not enforce the flow on phase shifters.

IncludeOpenLines : Set to NO to monitor only those branches that are closed. Set to YES to

monitor branches regardless of their status.

UseLODFThreshold : Set to YES to screen outages/closures by LODF/LCDF magnitude. Set to

NO to not screen by LODF/LCDF magnitudes.

LODFThreshold : Threshold above which LODF/LCDF magnitudes are considered

significant.

UseOverloadThreshold

 : Set to YES to screen outages/closures by monitored branch loading. Set

to NO to not screen by branch loading.

OverloadLow : Threshold above which a monitored branch loading is considered

significant. This value should be entered as a percent.

OverloadHigh : Threshold below which a monitored branch loading is considered

significant. This value should be entered as a percent.

DoSaveFile : Set to YES to save an auxiliary file of new contingencies created by

joining pairs of significant single outage/closure actions. Set to NO to

not save the file.

FileLocation : Specify a directory path where the auxiliary file containing new

contingencies will be saved. The filename will be determined by

Simulator.

CustomFieldHighLODF

 : Optional parameter that is 0 by default. Integer indicating which Custom

Floating Point field for a processed branch will store the highest

magnitude LODF/LCDF determined for any monitored branch.

CustomFieldHighLODFLine

 : Optional parameter that is 0 by default. Integer indicating which Custom

String field for a processed branch will store the identifier for the

monitored branch that has the highest magnitude LODF/LCDF.

CustomFieldHighOverload

 : Optional parameter that is 0 by default. Integer indicating which Custom

Floating Point field for a processed branch will store the highest overload

determined for any monitored branch.

CustomFieldHighOverloadLine

 : Optional parameter that is 0 by default. Integer indicating which Custom

String field for a processed branch will store the identifier for the

monitored branch that has the highest overload.

 46

DoUseCTGName : Optional parameter – default is NO

 Set to YES to use the available active contingency names available in the

CTG Tool. If a contingency in the CTG Tool has the same branch as the

only contingency element it will use the contingency name in the tool to

create the new CTG Label for the new contingency combination of

branches. Set to NO to only use the branch info to create the new CTG

Label for the combination of branches.

(Following added in July 23, 2020 patch of Simulator 21)

CustomFieldOrigCTGName

 : Optional parameter that is 0 by default. Integer indicating which Custom

String field for a processed branch will store the name of the contingency

from which the branch originated.

CalculateLODFAdvanced(IncludePhaseShifters, FileType, MaxColumns, MinLODF, NumberFormat,

DecimalPoints, OnlyIncludingLinesIncreasing, "FileName", IncludeIslandingCTG);

Use this action to to mimic what is done on the Advanced LODF Calculation dialog in the GUI.

IncludePhaseShifters : Set to YES to calculate the LODF/LCDF values assuming that phase

shifters are allowed to operate and will see no impact due to an outage

or closure. Set to NO to not enforce the flow on phase shifters.

FileType : Either PROMOD or MATRIX. For PROMOD, save only “Monitored Branch,

Contingency” pairs for PROMOD; and for MATRIX save Matrix as comma-

delimited text file.

MaxColumns : Maximum number of columns per text file.

MinLODF : Only Save pairs with an LODF whose absolute value is greater than this

minimum.

NumberFormat : LODF Number format, either, EXPONENTIAL or DECIMAL

DecimalPoints : Fixed Decimals Points.

OnlyIncludingLinesIncreasing: Only include monitored branches whose MW flow increases.

"FileName" : The name of the text file to write.

IncludeIslandingCTG : Optional parameter – default is YES

 LODF values cannot be calculated for contingencies that will cause a new

island to be created. When including these contingencies in the results,

the LODF will be reported as a very large number to indicate that these

values were not actually calculated. Set to NO to completely omit these

contingencies from the results.

CalculateTLR([flow element], direction, [transactor], LinearMethod, SetOutOfServiceBuses, filter,

AbortOnError);

Use this action to calculate the TLR values a particular flow element (transmission line or interface). You

also specify one end of the potential transfer direction. You may optionally specify the linear calculation

method. If no Linear Method is specified, Lossless DC will be used.

[flow element] : This is the flow element we are interested in. Choices are:

[INTERFACE "name"]

[INTERFACE "label"]

[BRANCH nearbusnum farbusnum ckt]

[BRANCH "nearbusname_kv" "farbusname_kv" ckt]

[BRANCH "nearbuslabel" "farbuslabel" ckt]

[BRANCH "label"]

direction : The type of the transactor. Either BUYER or SELLER.

 47

[transactor] : The transactor of power. There are six possible settings:

[AREA num], [AREA "name"], [AREA "label"]

[ZONE num], [ZONE "name"], [ZONE "label"]

[SUPERAREA "name"], [SUPERAREA "label"]

[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]

[BUS num], [BUS "name_nomkv"], [BUS "label"]

[SLACK]

LinearMethod : Optional parameter – default is DC

 The linear method to be used for the calculation. The options are:

AC : for calculation including losses

DC : for lossless DC

DCPS : for lossless DC that takes into account phase shifter operation

SetOutOfServiceBuses : Optional parameter – default is NO

 Set to YES or NO. If YES then set the sensitivities for out-of-service buses

equal to the sensitivity to the value at the closest in-service bus. The

"distance" to the in-service buses will be measured by the number of

nodes. If an out-of-service bus is equally close to a set of buses, then the

average of that set of buses will be used.

filter : Optional parameter – default is to include all buses

 The filter that will determine the buses for which sensitivities will be set

when SetOutOfServiceBuses = YES. In addition to meeting the filter, only

out-of-service buses will be included.

blank : All buses

AREAZONE : Only those buses meeting the area/zone filter

SELECTED : Only those buses whose Selected field is YES

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

AbortOnError : Optional parameter – default is YES

 Set to YES or NO. If YES, the script command will fail and the auxiliary file

containing the script command will terminate without processing the

remainder of the file. If NO, an error message is printed to the message

log but the command is not treated as failing and the remainder of the

auxiliar file containing the command will be processed.

CalculateTLRMultipleElement(TypeElement,WhichElement,direction,[transactor],LinearMethod);

Use this action to calculate the TLR values a multiple elements similar to as is done on the TLR multiple

elements dialog. You also specify one end of the potential transfer direction. You may optionally specify

the linear calculation method. If no Linear Method is specified, Lossless DC will be used.

TypeElement : May be either INTERFACE, BRANCH, or BOTH

WhichElement : There are three choices which represent which elements of the

TypeElement specified will have TLR calculations performed.

SELECTED : Only branches or interfaces with their Selected Field

= YES will be used.

OVERLOAD : Only branches that are presently overloaded using

their normal ratings will be used

CTGOVERLOAD : You must have first run the contingency analysis. A

branch or interface is included in the calculation if it

has been overloaded during at least one

contingency.

Direction : the type of the transactor. Either BUYER or SELLER.

 48

[transactor buyer] : the transactor of power. There are six possible settings.

[AREA num], [AREA "name"], [AREA "label"]

[ZONE num], [ZONE "name"], [ZONE "label"]

[SUPERAREA "name"], [SUPERAREA "label"]

[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]

[BUS num], [BUS "name_nomkv"], [BUS "label"]

[SLACK]

LinearMethod : The linear method to be used for the calculation. The options are:

AC : for calculation including losses.

DC : for lossless DC.

DCPS : for lossless DC that takes into account phase shifter operation.

CalculateVoltSense([BUS num]);

This calculates the sensitivity of a particular buses voltage to real and reactive power injections at all buses

in the system. (Note: this assumes that the power is injected at a given bus and taken out at the slack

bus).

[BUS num] : the bus to calculate sensitivities for.

CalculateFlowSense([flow element], FlowType);

This calculates the sensitivity of the MW, MVAR, or MVA flow of a line or interface to an real and reactive

power injections at all buses in the system. (Note: this assumes that the power is injected at a given bus

and taken out at the slack bus).

[flow element] : This is the flow element we are interested in. Choices are:

[INTERFACE "name"]

[INTERFACE "label"]

[BRANCH busnum1bus num2 ckt]

[BRANCH "name_kv1" "name_kv2" ckt]

[BRANCH "buslabel1" "buslabel2" ckt]

[BRANCH "label"]

FlowType : The type of flow to calculate this for. Either MW, MVAR, or MVA.

CalculateLossSense(FunctionType);

This calculates the loss sensitivity at each bus for an injection of power at the bus. The parameter

FunctionType determines which losses are referenced.

FunctionType : This is the losses for which sensitivities are calculated.

NONE : all loss sensitivities will be set to zero

ISLAND : all loss sensitivities are referenced to the total loss in the

island

AREA : For each bus it calculates how the losses in the bus’ area

will change (Note: this means that sensitivities at buses in

two different areas cannot be directly compared because

they are referenced to different losses)

AREASA : same as Each Area, but if a Super Area exists it will use this

instead (Note: this means that sensitivities at buses in two

different areas cannot be directly compared because they

are referenced to different losses)

SELECTED : Calculates how the losses in the areas selected on the Loss

Sensitivity Form will change

 49

CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR);

This calculates the sensitivity of bus voltage to a real or reactive power transfer between a seller and a

buyer. The sensitivity is calculated for all buses in the system.

[transactor seller] : This is the seller (or source) of power. There are six possible settings:

[AREA num], [AREA "name"], [AREA "label"]

[ZONE num], [ZONE "name"], [ZONE "label"]

[SUPERAREA "name"], [SUPERAREA "label"]

[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]

[BUS num], [BUS "name_nomkv"], [BUS "label"]

[SLACK]

[transactor buyer] : This is the buyer (or sink) of power. There are six possible settings, which

are the same as for the seller.

TransferType : The type of power transfer. The options are:

P : real power transfer

Q : reactive power transfer

PQ : both real and reactive power transfer. (Note: Real and reactive

power transfers are calculated independently, but both are

calculated.)

TurnOffAVR : Set to YES or NO. Set to YES to turn off AVR control for generators

participating in the transfer. Set to NO to leave the AVR control

unchanged for generators participating in the transfer.

CalculateVoltSelfSense(filter);

This calculates the sensitivity of a particular bus’ voltage to real and reactive power injections at the same

bus. (Note: This assumes that the power is injected at a given bus and taken out at the slack bus.)

filter : Optional parameter – default is to calculate sensitivities for all buses in

the system

AREAZONE : Only buses that meet the area/zone/owner filters will

be included

SELECTED : Only buses whose Selected field = YES will be included

“FilterName" : Only buses that meet the specified filter will be

included. See Using Filters in Script Commands

section for more information on specifying the

filtername.

DeleteState(WhichState, StateName);

Apply this script command to delete a specified system state that is currently in memory. This script

command will fail if the specified state has not been set. The following options are available for specifying

which system state to delete:

WhichState : Optional parameter – default is USER. This determines which state to

restore.

USER : Delete the user set system state that is set with

the StoreState script command.

BEFOREFAILED : Before the power flow is solved, either through

the GUI or the SolvePowerFlow script command,

a system state will be stored in the event that

the power flow solution fails. This pre-solution

state is deleted with this option. If the power

flow is successful in solving at any time after this

pre-solution state is stored, this pre-solution

state is removed automatically.

 50

LASTSUCCESSFUL : If the power flow solution is successful when

solving the power flow either through the GUI or

the SolvePowerFlow script command, a system

state will be stored with this successful solution.

This post-solution state is deleted with this

option.

StateName : Optional parameter – default is blank

 This option is only used when WhichState = USER. This specifies a

named system state that was stored using the StoreState script

command. If no name is specified, the unnamed system state stored

using StoreState will be deleted.

RestoreState(WhichState, StateName);

Apply this script command to restore a specified system state that is currently in memory. This script

command will fail if the specified state has not been set. The following options are available for specifying

which system state to restore:

WhichState : Optional parameter – default is USER. This determines which state to

restore.

USER : Restore the user set system state that is set with

the StoreState script command.

BEFOREFAILED : Before the power flow is solved, either through

the GUI or the SolvePowerFlow script command,

a system state will be stored in the event that

the power flow solution fails. This pre-solution

state is restored with this option. If the power

flow is successful in solving at any time after this

pre-solution state is stored, this pre-solution

state is removed and cannot be restored.

LASTSUCCESSFUL : If the power flow solution is successful when

solving the power flow either through the GUI or

the SolvePowerFlow script command, a system

state will be stored with this successful solution.

This post-solution state is restored with this

option.

StateName : Optional parameter – default is blank

 This option is only used when WhichState = USER. This specifies a

named system state that was stored using the StoreState script

command. If no name is specified, the unnamed system state stored

using StoreState will be restored.

SetInterfaceLimitToMonitoredElementLimitSum(filter);

This sets the limits of the interface to the sum of the limits of all branches within the interface. This only

includes branches that are monitored and excludes any contingency branches. All limits A through H will

be set.

Filter : This parameter is used to specify which interfaces have their limits set.

ALL : all interfaces will be set

SELECTED : only interfaces whose Selected field = YES will be set

AREAZONE : only interfaces that meet the area/zone/owner filters

will be set

"FilterName" : only interfaces that meet the specified filter will be set.

See the Using Filters in Script Commands section for

more information on specifying the filtername.

 51

SetSensitivitiesAtOutOfServiceToClosest(filter);

This will take the P Sensitivity and Q Sensitivity values calculated using the CalculateTLR,

CalculateFlowSense, or CalculateVoltSense actions and then populate the respective values at out-of-

service buses so that they are equal to the value at the closest in service bus. The "distance" to the in-

service buses will be measured by the number of nodes. If an out-of-service bus is equally close to a set

of buses, then the average of that set of buses will be used.

filter : Optional parameter – default is to include all buses

 The filter that will determine the buses for which sensitivities will be set.

In addition to meeting the filter, only out-of-service buses will be

included.

Blank : All buses

AREAZONE : Only those buses meeting the area/zone filter

SELECTED : Only those buses whose Selected field is YES

"filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.

StoreState(StateName);

Apply this script command to store the current system state to memory. Use the RestoreState script

command to restore the state. Multiple states can be stored by providing a unique name.

StateName : Optional parameter

 Multiple states can be stored by providing a unique name for each state.

If StateName is not specified, an unnamed state is stored.

ZeroOutMismatches(ObjectType);

With this script command, bus shunts or loads are changed at each bus that has a mismatch greater than

the MVA convergence tolerance so that the mismatch at that bus is forced to zero.

ObjectType : Optional parameter – default is BUSSHUNT

 Set to BUSSHUNT or LOAD to indicate how the mismatch should be

adjusted. When set to BUSSHUNT the Bus Shunt fields at each bus

where there is a mismatch are adjusted to eliminate the mismatches.

When set to LOAD, a new load is added to a bus where there is a

mismatch to eliminate the mismatches. The new loads are identified by a

unique ID of Q1. If a load with this ID already exists, a unique ID is

determined by incrementing the ID until a unique ID is found.

 52

Power Flow Related Actions

ClearPowerFlowSolutionAidValues;

DiffFlowClearBase;

DiffFlowKeyType (KeyType);

DiffFlowMode (diffmode);

DiffFlowSetAsBase;

DiffFlowShowPresentAndBase (How);

DiffFlowRefresh;

DiffFlowWriteCompleteModel ("filename", AppendFile, SaveAdded, SaveRemoved, SaveBoth,

KeyFields, "ExportFormat", UseAreaZone, UseDataMaintainer,

AssumeBaseMeet, IncludeClearPowerFlowSolutionAidValues);

DiffFlowWriteBothEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter,

Append);

DiffFlowWriteNewEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter,

Append);

DiffFlowWriteRemovedEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter,

Append);

DoCTGAction ([contingency action]);

ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle);

SolvePowerFlow (SolMethod, "filename1", "filename2", CreateIfNotFound1,

CreateIfNotFound2);

ClearPowerFlowSolutionAidValues;

PowerWorld Simulator maintains several internal flags that keep track of which branches are closed or

opened, as well as information to help estimate the generation change needed in a system after making

changes to load or generation. PowerWorld uses this to help with various pre-processing steps in the

power flow solution. This information is related to angle smoothing and generator MW estimation

features of the power flow solution. Typically, this information is a great aid in getting successful power

flow solutions, however in some circumstances you may be using an AUX file to edit information you

know is good and would not want PowerWorld to modify the initial bus voltage and angle nor the

generator MW outputs before a solution is attempted. To clear all this internally stored information so

that PowerWorld does not do any of this, call the ClearPowerFlowSolutionAidValues script command.

DiffFlowClearBase;

Call this action to clear the base case for the difference flows abilities of Simulator.

DiffFlowKeyType(KeyType);

Use this action to change the key type that should be used when comparing fields when using the

difference flows abilities of Simulator.

KeyType : String that starts with ‘P’ changes key field type to PRIMARY.

String that starts with ‘S’ changes key field type to SECONDARY.

String that starts with ‘L’ changes key field type to LABEL.

DiffFlowMode(diffmode);

Call this action to change the mode for the difference flows abilities of Simulator.

diffmode : String that starts with ‘P’ changes it to PRESENT.

 String that starts with ‘B’ changes it to BASE.

 String that starts with ‘D’ changes it to DIFFERENCE.

 String that starts with ‘C’ changes it to CHANGE.

DiffFlowSetAsBase;

Call this action to set the present case as the base case for the difference flows abilities of Simulator.

DiffFlowShowPresentAndBase(How);

Call this action with the parameter of either YES or NO to toggle the difference flows options “Show

Present|Base in Difference and Change Mode”.

 53

DiffFlowRefresh;

Call this action to refresh the linking between the base case and the present case. This should be used

before saving data that identifies objects as being added or removed, especially if any topological

differences have been made that affect the comparison.

DiffFlowWriteCompleteModel ("filename", AppendFile, SaveAdded, SaveRemoved, SaveBoth,

KeyFields, "ExportFormat", UseAreaZone, UseDataMaintainer, AssumeBaseMeet,

IncludeClearPowerFlowSolutionAidValues);

Use this action to create an auxiliary file that contains information about objects that have been added or

removed when comparing the present case to the base case when using the difference case comparison.

Fields that have changed for objects that exist in both the present and base case can also be written to

this auxiliary file. This auxiliary file can then be used to modify cases with these same changes.

"filename" : Name of the auxiliary file to create.

AppendFile : Set to YES or NO. YES means to append the saved information to

"filename". NO means that "filename" will be overwritten.

SaveAdded : Set to YES or NO. YES means to save the added objects to the file. NO

means to exclude the added objects.

SaveRemoved : Set to YES or NO. YES means to save the removed objects to the file.

NO means to exclude the removed objects.

SaveBoth : Set to YES or NO. YES means to save the changed fields for the objects

that exist in both the present and base case. NO means to exclude

objects that occure in both cases.

KeyFields : Optional parameter – default is Primary

 Set to Primary or Secondary to specify the key field identifiers to use for

objects in the resulting file.

"ExportFormat" : Optional parameter – default is blank

 This is the name of the Auxiliary File Export Format Description to use for

defining the object types and fields that should be included in the

auxiliary file.

UseAreaZone : Optional parameter – default is NO

 Set to YES or NO. YES means to use the Area/Zone/Owner filter for

including objects in the file. NO means to ignore this filter.

UseDataMaintainer : Optional parameter – default is NO

 Set to YES or NO. YES means to use the Data Maintainer filter for

including objects in the file. NO means to ignore the Data Maintainer

filter.

AssumeBaseMeet : Optional parameter – default is YES

 Set to YES or NO. YES means that areas/zones/owners and data

maintainers that are in the base case and not in the present case meet

the Area/Zone/Owner and Data Maintainer filters.

(Following added in January 31, 2020 patch of Simulator 21)

IncludeClearPowerFlowSolutionAidValues

 : Optional parameter – default is YES

 Set to YES or NO. YES means that the ClearPowerFlowSolutionAidValues

script command is included in the auxiliary file.

DiffFlowWriteBothEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);

Call this action to save any elements in both the base and present cases as determined using the

difference flows functionality. The elements are saved in the GE EPC format. See the

DiffFlowWriteRemovedEPC script command for the descriptions of the parameters.

 54

DiffFlowWriteNewEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);

Call this action to save any new elements determined using the difference flows functionality. The

elements are saved in the GE EPC format. See the DiffFlowWriteRemovedEPC script command for the

descriptions of the parameters.

DiffFlowWriteRemovedEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);

Call this action to save any removed elements determined using the difference flows functionality. The

elements are saved in the GE EPC format.

"filename" : The path and name of the file to save.

GEFileType : Optional parameter – default is to save with the latest version. Valid

options:

GE (latest version), GE14-GE21

UseAreaZone : Optional parameter – default is NO.

Set to YES or NO. YES means to save only those objects that meet the

Area/Zone/Owner filter.

BaseAreaZoneMeetFilter

 : Optional parameter – default is NO.

Set to YES or NO. YES means that areas or zones that are not in the

difference flows base case will be treated as meeting the Area/Zone filter

if that is used.

Append : Optional parameter – default is YES.

Set to YES or NO. YES means to append data to an existing file. NO

means to overwrite an existing file.

DoCTGAction([contingency action]);

Call this action to use the formats seen in the CTGElement subdata record for Contingency Data. Note

that all actions are supported, except COMPENSATION sections are not allowed.

ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle);

Use this action to initialize the Power Flow Solution to a "flat start." The parameters are all optional and

specify a conditional response depending on whether the solution is successfully found. If parameters are

not passed then default values will be used.

FlatVoltagesAngles : Set to YES or NO. YES means setting all the voltage magnitudes and

generator setpoint voltages to 1.0 per unit and all the voltage angles to

zero. Default Value = YES.

ShuntsToMax : Set to YES or NO. YES means to increase Switched Shunts Mvar half way

to maximum. Default Value = NO.

LTCsToMiddle : Set to YES or NO. YES means setting the LTC Transformer Taps to middle

of range. Default Value = NO.

PSAnglesToMiddle : Set to YES or NO. YES means setting Phase Shifter angles to middle of

range. Default Value = NO.

 55

SolvePowerFlow (SolMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

Call this action to perform a single power flow solution. The parameters are all optional and specify a

conditional response depending on whether the solution is successfully found. If parameters are not

passed then default values will be used.

SolMethod : The solution method to be used for the Power Flow calculation. The

options are:

RECTNEWT : for Rectangular Newton-Raphson.

POLARNEWTON : for Polar Newton-Raphson.

GAUSSSEIDEL : for Gauss-Seidel.

FASTDEC : for Fast Decoupled.

ROBUST : for attempting the robust solution process

DC : for DC power flow calculation

 Default = RECTNEWT.

"filename1" : The filename of the auxiliary file to be loaded if there is a successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default = "".

"filename2" : The filename of the auxiliary file to be loaded if there is a NOT successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default = "".

CreateIfNotFound1 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename1. Default = NO.

CreateIfNotFound2 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename2. Default = NO.

 56

Contingency Related Actions

CTGApply ("ContingencyName");

CTGAutoInsert;

CTGCalculateOTDF ([transactor seller], [transactor buyer], LinearMethod);

CTGClearAllResults;

CTGCompareTwoListsofContingencyResults(PRESENT or "ControllingFilename", PRESENT or

"ComparisonFilename");

CTGConvertAllToDeviceCTG (KeepOriginalIfEmpty);

CTGCreateContingentInterfaces (filter, maxOption);

CTGCreateExpandedBreakerCTGs;

CTGCreateStuckBreakerCTGs (filter, AllowDuplicates, "PrefixName", IncludeCTGLabel,

BranchFieldName, "SuffixName", "PrefixComment",

BranchFieldComment, "SuffixComment");

CTGJoinActiveCTGs (InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename");

CTGProcessRemedialActionsAndDependencies(DoDelete, filter);

CTGProduceReport ("filename");

CTGReadFilePSLF ("filename");

CTGReadFilePTI ("filename");

CTGRelinkUnlinkedElements;

CTGRestoreReference;

CTGSaveViolationMatrices ("filename", filetype, UsePercentage, [ObjectTypesToReport],

SaveContingency, SaveObjects, FieldListObjectType, [FieldList]);

CTGSetAsReference;

CTGSolve ("ContingencyName");

CTGSolveAll (DoDistributed, ClearAllResults);

CTGWriteAllOptions ("filename", KeyField, UseSelectedDataMaintainers,

SaveDependencies);

CTGWriteFilePTI ("filename", BusFormat, TruncateCTGLabels);

CTGWriteResultsAndOptions ("filename", [opt1…opt19], KeyField, UseDATASection, UseConcise,

UseObjectIDs, UseSelectedDataMaintainers, SaveDependencies);

CTGApply("ContingencyName");

Call this action to apply the actions in a contingency without solving the power flow.

"ContingencyName" : This is the name of the contingency to apply.

CTGAutoInsert;

This action will auto insert contingencies for you case. Prior to calling this action, all options for this

action must be specified in the Ctg_AutoInsert_Options object using the SetData script command or DATA

sections.

CTGCalculateOTDF([transactor seller], [transactor buyer], LinearMethod);

This action first performs the same action as done by the CalculatePTDF([transactor seller], [transactor

buyer], LinearMethod) call. It then goes through all the violations found by the contingency analysis tool

and determines the OTDF values for the various contingency/violation pairs.

CTGClearAllResults;

This action will delete all contingency violations and any contingency comparison results.

CTGCompareTwoListsofContingencyResults (PRESENT or "ControllingFilename",PRESENT or

"ComparisonFilename");

This command compares two different contingency result lists. The first parameter is to set the Controlling

List. The second parameter is to set the Comparison List.

PRESENT or "ControllingFilename"

 : PRESENT wil set the present contingency analysis results as the

Controlling List. If the results are in a file then you can set the path to the

list as the “ControlingFilename”. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

 57

PRESENT or "ComparisonFilename"

 : PRESENT wil set the present contingency analysis results as the

Comparison List. If the results are in a file then you can set the path to

the list as the “ComparisonFilename”. See the Specifying File Names in

Script Commands section for special keywords that can be used when

specifying the file name.

The file types allowed are: Simulator Contingency File (*.aux), Simulator (Ver 5,6,7) Contingency Files

(*.ctg), PTI Contingency Files (*.con), PTI Load Throw Over Files (*.thr;*.dat), and GE Contingency Files

(*.otg).

CTGConvertAllToDeviceCTG(KeepOriginalIfEmpty);

This command is intended for use with full topology models, where breakers and disconnects are defined

in addition to generators, loads, transmission lines, and so on. This function would have no affect on a

traditional planning model representation, which has no breakers or disconnects explicitly defined.

The purpose of the function is to allow the user to take a contingency set that is defined with outages of

breakers and disconnects in a full topology model and convert them to outages of the traditional

planning model elements, such as generators, loads, transmission lines, etc. This would be used in

conjunction with the ability to save a full topology model as a consolidated model. A consolidated model

reduces the full model down to a traditional planning model by examining the breaker and disconnect

statuses, and reducing the system down by consolidating breakers and disconnects that are in service. The

resulting model is a smaller model with the traditional planning elements represented, but breakers and

disconnects have been removed and nodes aggregated into bus representations. This function will also

take the breaker and disconnect statuses and convert contingencies defined with the breakers and

disconnects and convert them into contingencies of the planning model devices affected by opening the

original breakers and disconnects. Thus you could create a contingency set that is defined for the

consolidated model, and can be run on the consolidated model with the same results as if the original

contingency set is run on the full topology model.

The parameter KeepOriginalIfEmpty is a YES or NO option to retain or not the original contingency

definitions for any contingencies that do not end up isolating any devices. This is an optional parameter

that is NO by default if it is not specified.

Note that the contingency set generated depends on the statuses of the breakers and disconnects, and

that the contingencies created will be different for different statuses of breakers and disconnects in the

full topology model.

CTGCreateContingentInterfaces(filter, maxOption);

This command creates an interface based on contingency violations. The contingency elements are

included as contingent elements in the new interface, and the violated element is included as a monitored

element.

filter : This is the name of an Advanced Filter. Only violation objects of type

ViolationCTG that meet the named filter will be used to create new

interfaces.

maxOption : Set to BRANCH, CTG, BRANCHCTG, or leave blank to select all violations.

 BRANCH – for each branch, this selects the worst violation out of all

contingency violations for that branch.

 CTG – for each contingency, this selects the worst violation out of all

branch violations for that contingency.

 BRANCHCTG – union of violations selected in both BRANCH and CTG.

 58

CTGCreateExpandedBreakerCTGs;

This will convert any “Open with Breakers” or “Close with Breakers” contingency actions into OPEN or

CLOSE actions on explicit breakers. This will permanently modify the contingency definitions.

CTGCreateStuckBreakerCTGs(filter, AllowDuplicates, "PrefixName", IncludeCTGLabel,

BranchFieldName, "SuffixName", "PrefixComment", BranchFieldComment, "SuffixComment");

This command creates new contingencies from contingencies that have explicit breaker outages defined.

New contingencies will be created by treating each breaker as stuck in turn. The new contingencies will

be comprised of all existing elements, minus the stuck breaker outage, plus open actions for breakers that

are identified to isolate the stuck breakers. Only branches with Branch Device Type of Breaker will be

considered in determining the stuck breakers.

All of the following parameters are optional. If not specified, the defaults will be used.

filter : Only contingencies that meet the specified filter will be set. See the

Using Filters in Script Commands section for more information on

specifying the filtername. Default is to process all contingencies.

AllowDuplicates : Set to YES or NO. YES means that contingencies with the same actions as

existing or newly created contingencies will be allowed. Default is NO.

"PrefixName", IncludeCTGLabel, BranchFieldName, and "SuffixName" are used to name the new

contingencies in the format: PrefixName_Contingency Label_BranchFieldName_SuffixName.

"PrefixName" : string that is used as the prefix of the new contingency name. Default is

blank.

IncludeCTGLabel : Set to YES or NO. YES means that the name of the existing contingency

will be used as part of the new contingency. Default is YES.

BranchFieldName : variablename of the Branch field whose value will be used in the naming

of the new contingency in the format

variablenamelegacy:location:digits:rod or

concisename:digits:rod. The Branch used to evaluate the

variablename is the stuck breaker. Default is blank.

"SuffixName" : string that is used as the suffix of the new contingency name. Default is

"STK".

"PrefixComment", BranchFieldComment, and "SuffixComment" are used to create a comment for new

contingency actions in the format: PrefixComment_BranchFieldComment_SuffixComment.

"PrefixComment" : string that is used as the prefix of the new contingency action comment.

Default is blank.

BranchFieldComment : variablename of the Branch field whose value will be used in the naming

of the new contingency action comment in the format

variablenamelegacy:location:digits:rod or

concisename:digits:rod. The Branch used to evaluate the

variablename is the breaker in the new contingency action. Default is

blank.

"SuffixComment" : string that is used as the suffix of the new contingency action comment.

Default is blank.

CTGJoinActiveCTGs(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename");

This command creates new contingencies that are a join of the current contingency list and a list read in

from an auxiliary file or the current list itself. Contingencies with their Skip field set to YES will not be

included in the join.

InsertSolvePowerFlow : Set to YES or NO. YES means to insert the solve power flow solution

action between the joined contingency actions.

DeleteExisting : Set to YES or NO. YES means to delete the existing contingencies and

only keep the joined contingencies.

 59

JoinWithSelf : Set to YES or NO. YES means that the current contingency list will be

joined with itself instead of contingencies specified in a file. If set to YES,

the "filename" parameter does not have to be specified.

"filename" : Name of auxiliary file containing contingencies to join with the current

contingency list. This does not have to be specified if JoinWithSelf = YES.

CTGProcessRemedialActionsAndDependencies(DoDelete, filter);

Added in the May 12, 2020 patch of Simulator 21

Remedial Actions and any Model Conditions, Model Filters, Model Expressions, and Model Planes being

used by the specified Remedial Actions will be deleted or have their Selected field set to YES. Model

Conditions, Model Filters, Model Expressions, and Model Planes that are being used by other objects or

not being used by a specified Remedial Action will not be deleted or marked.

DoDelete : Set to YES to delete remedial actions and dependencies. Set to NO to set

the Selected field to YES instead of deleting.

filter : Optional parameter - default is blank

 Only Remedial Actions that meet the specified filter will be processed.

See the Using Filters in Script Commands section for more information

on specifying the filtername. AREAZONE is not a valid filter. Default is to

process all remedial actions.

CTGProduceReport("filename");

Produces a text-based contingency analysis report using the settings defined in CTG_Options.

CTGReadFilePSLF("filename");

Use this action to load a file in the PSLF OTG format and create contingencies.

“filename” : Name of the file to read. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

CTGReadFilePTI("filename");

Use this action to load a file in the PTI CON format and create contingencies.

“filename” : Name of the file to read. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

CTGRelinkUnlinkedElements;

This will attempt to relink unlinked elements in the contingency records.

CTGRestoreReference;

Call this action to reset the system state to the reference state for contingency analysis.

CTGSaveViolationMatrices("filename", filetype, UsePercentage, [ObjectTypesToReport],

SaveContingency, SaveObjects, FieldListObjectType, [FieldList], IncludeUnsolvableCTGs);

This command will save contingency violations in a matrix format. Multiple files can be created for each

type of violation as well as a file showing all contingencies that have violations and the objects that are

violations under each contingency.

"filename" : Base name of the files to save. It is possible to save multiple files. This

file name will be appended with an underscore and name of the object

type that is being saved in the file.

filetype : There following options are available:

CSVNOHEADER : save as a normal CSV text file, without the AUX file formatting. The object

name and field variable names are NOT included.

CSVCOLHEADER : save as a normal CSV without the AUX syntax and with the first row

showing column headers you would see in a case information display

 60

UsePercentage : Set to YES or NO. Set to YES the values will be reported as a percentage

loading. If NO, the actual values will be reported.

 [ObjectTypesToReport]

 : Comma delimited list of object types to include in the results. Options

are BRANCH, BUS, INTERFACE, and CUSTOMMONITOR. If saving results

by contingency (rows show contingencies that contain violations), the

columns will only contain objects of these specified types. If saving

results by object (row show objects that are violated under any

contingency), files will only be created for these specified types.

SaveContingency : Set to YES or NO. Set to YES to save a file containing all contingencies

that have at least one violation. The results will be reported as

contingencies in rows and the violated elements in columns. Only

violations of the specified [ObjectTypesToReport] will be included.

Contingencies that have no violations because they failed to solve can be

included by setting the IncludeUnsolvableCTGs to YES.

SaveObjects : Set to YES or NO. Set to YES to save a file for each of the object types

specified in [ObjectTypesToReport]. The objects will be in rows and the

columns will be the contingencies under which the objects are violated.

FieldListObjectType : Optional parameter – default is blank.

 Additional fields can be included depending on the object type that is

being saved in the rows of each file. This parameter specifies the object

type associated with the FieldList. Valid options are BRANCH, BUS,

INTERFACE, CUSTOMMONITOR, or CONTINGENCY. As an example,

suppose that this parameter is set to BRANCH and a FieldList is specified.

If SaveObjects is also YES, a file will be saved showing branch violations

in each row of the file. In addition to columns showing contingencies

and the violation value of the branch, columns will be added showing the

value of the branch in the present system state for each of the fields in

the FieldList.

FieldList : Optional parameter – default is blank.

 Additional fields can be included depending on the object type that is

being saved in the rows of each file. This parameter specifies the

additional fields to save. See the FieldListObjectType parameter for an

explanation of how these extra fields are saved to file.

IncludeUnsolvableCTGs

 : Optional parameter – default is NO.

 Set to YES or NO. Set to YES to include contingencies that have been

processed but did not solve either because the power flow failed or an

abort action took place. The Solved field will be automatically added to

the file that lists results by contingency. Set to NO to only include

contingencies that solved. This option is only relevant if the

SaveContingency option is set to YES.

CTGSetAsReference;

Call this action to set the present system state as the reference for contingency analysis.

CTGSolve("ContingencyName");

Call this action solve a particular contingency. The contingency is denoted by the "Contingency Name"

parameter. The system state remains in the post-contingency state following the application of this

command.

 61

CTGSolveAll(DoDistributed, ClearAllResults);

Call this action to solve all of the contingencies that are not marked to be skipped.

DoDistributed : Optional parameter – default is NO

 Set to YES or NO. If set to YES, distributed methods will be used to solve

contingency analysis if the Distributed Contingency Analysis add-on is

installed. Distributed analysis requires the proper configuration and

security settings to work.

ClearAllResults : Optional parameter – default is YES

 Set to YES or NO. If set to YES, all existing contingency results will be

cleared even if a contingency is marked to be skipped. If set to NO, only

those contingencies that are marked to not be skipped will have their

results cleared.

CTGWriteAllOptions("filename", KeyField, UseSelectedDataMaintainer, SaveDependencies,

UseAreaZoneFilters);

Writes out all information related to contingency analysis as an auxiliary file using concise variable names

and headers. Data is written using DATA sections instead of SUBDATA sections.

"filename" : Name of the auxiliary file to save.

 KeyField : Optional parameter – default is PRIMARY

Indicates the identifier that should be used for the data. Valid entries are

PRIMARY, SECONDARY, or LABEL. PRIMARY will save using bus numbers

and other primary key fields. SECONDARY will save using bus name and

nominal kV and other secondary fields. LABEL will save using device

labels. If no labels are specified then the primary key field will be used.

 UseSelectedDataMaintainer

 : Optional parameter – default is NO

 Set to YES or NO. YES means to save only the information belonging to

Data Maintainers where the Selected field is set to YES. NO means to

save all information. Default is NO.

SaveDependencies : Optional parameter – default is NO

 Set to YES or NO. YES means that all relevant objects that are required to

define the selected objects will also be saved. NO means to only save

the selected objects.

UseAreaZoneFilters : Optional parameter – default is NO

 Set to YES or NO. YES means to save only the information for objects

that meets the Area, Zone, Owner filters for Contingency Options and

Limit Monitoring Settings related to the Area, Zone, Bus, Gen, and Shunt

Objects. (Opt2 and Opt3 of CTGWriteResultsAndOptions)

See the CTGWriteResultsAndOptions script command for a list of the option settings that are considered.

The equivalent options are set as follows for this script command:

Opt1 = NO , Opt2 = YES, Opt3 = YES, Opt4 = YES ,Opt5 = NO ,Opt6 = NO, Opt7 = NO, Opt8

= YES, Opt9 = YES , Opt10 = NO , Opt11 = NO, Opt12 = YES, Opt13 = YES, Opt14 = YES,

Opt15 = YES, Opt16 = YES, Opt17 = NO, Opt18 = YES, Opt19 = YES

The UseObjectIDs parameter with the CTGWriteResultsAndOptions script command is set automatically

for this script command. The equivalent setting is YES_MS_3W.

CTGWriteFilePTI("filename", BusFormat, TruncateCTGLabels);

Write contingencies to file in the PTI CON format.

"filename" : The name of the text file to write out.

 62

BusFormat : How to identify buses:

Number : Using numbers

Name8 : Using BusName_NomkV strings truncated to 8 characters

Name12 : Using BusName_NomkV strings truncated to 12 characters

TruncateCTGLabels : Set to YES or NO. YES means that the contingency labels will be

truncated after 12 characters.

CTGWriteResultsAndOptions("filename", [opt1, opt2, opt3, …, opt19], KeyField, UseDATASection,

UseConcise, UseObjectIDs, UseSelectedDataMaintainers, SaveDependencies, UseAreaZoneFilters);

Writes out all information related to contingency analysis as an auxiliary file.

"filename" : Name of the auxiliary file to save.

[opt1, opt2, …, opt19] : Each entry in the Option Settings parameter is either a YES or NO entry

corresponding to the following options. These are all optional

parameters, so if they are not specified or blank, the default entry given

for each will be used.

Opt1 : Save Unlinked Contingency Actions, default = NO

Opt2 : Save Contingency Options, default = YES

Opt3 : Save Limit Monitoring Settings, default = NO

Opt4 : Save General Power Flow Solution Options, default = YES

Opt5 : Save List Display Settings, default = NO

Opt6 : Save Contingency Results, default = YES

Opt7 : Save Inactive Violations, default = YES

Opt8 : Save Interface Definitions, default = NO

Opt9 : Save Injection Group Definitions, default = NO

Opt10 : Save Distributed Computing Options, default = YES

Opt11 : Suppress Gen and Load options when writing out Options,

default = NO

Opt12 : Save Contingency Definitions, default = YES

Opt13 : Save Remedial Actions and Global Actions, default = YES

Opt14 : Save Custom Monitor Definitions, default = YES

Opt15 : Save Model Conditions, Model Filters, and Model

Expressions, default = YES

Opt16 : Save Advanced Filters used as part of Custom Monitors,

Model Conditions, Remedial Actions, and Global Actions,

default = YES

Opt17 : Save Limit Cost Functions with Limit Sets, default = YES

Opt18 : Automatically Convert Contingency Blocks and Global

Actions, default = NO

Opt19 : Save Voltage Control Groups, default = YES

KeyField : Optional parameter – default is PRIMARY

 Indicates the identifier that should be used for the data. Valid entries are

PRIMARY, SECONDARY, or LABEL. PRIMARY will save using bus numbers

and other primary key fields. SECONDARY will save using bus name and

nominal kV and other secondary fields. LABEL will save using device

labels. If no labels are specified then the primary key field will be used.

UseDATASection : Optional parameter – default is NO

 Set this to YES or NO. If YES, data that by default is specified using

SUBDATA sections will instead be specified using DATA sections. For

example, the actions that define a contingency by default are specified

using a SUBDATA section. If choosing to use the DATA section instead,

each action will be specified in a DATA record belonging to the

ContingencyElement objecttype.

 63

UseObjectIDs : Optional parameter – default is NO

 Possible settings are YES, NO, YES_MS, YES_3W, and YES_MS_3W.

YES : Any input with YES means to use the ObjectID field when

writing objects with contingency settings instead of using

multiple key fields to identify an object. The advantage to

using ObjectIDs is that you only have one field to be used as

an identifier rather than a changing number of fields that

depends on the type of object. This will simplify your auxiliary

file.

NO : This means to use the specified key fields to identify an object.

MS : Any input with MS means to write out a multi-section line by

identifying it by the from bus, to bus, and circuit ID of the

multi-section followed by the number of the particular section.

This follows the PSLF format. If not writing out in this manner,

individual sections will be written based on their from bus, to

bus, and circuit ID.

3W : Any input with 3W means to write out a three-winding

transformer using the buses at the three terminals of the

transformer followed by the circuit ID with the first bus listed

being the particular winding that is desired. If not writing out

in this manner, a particular winding will be written with its

terminal bus, the star bus of the transformer, and the circuit ID

of the transformer.

UseSelectedDataMaintainer

 : Optional parameter – default is NO

Set to YES or NO. YES means to save only the information belonging to

Data Maintainers where the Selected field is set to YES. NO means to

save all information.

SaveDependencies : Optional parameter – default is NO

 Set to YES or NO. YES means that all relevant objects that are required to

define the selected objects will also be saved. NO means to only save

the selected objects.

UseAreaZoneFilters : Optional parameter – default is NO

 Set to YES or NO. YES that to save only the information for objects that

meets the Area, Zone, Owner filters for Contingency Options and Limit

Monitoring Settings related to the Area, Zone, Bus, Gen, and Shunt

Objects. (Opt2 and Opt3)

 64

Fault Related Actions

Fault ([BUS num], faulttype, R, X);

Fault ([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R,

X);

LoadPTISEQData ("filename", version);

Fault([Bus num], faulttype, R, X);

Fault([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X);

Call this function to calculate the fault currents for a fault. If the fault element is a bus then do not specify

the fault location parameter. If the fault element is a branch, then the fault location is required.

[BUS num] : This specifies the bus at which the fault occurs. You may also specify the

bus using secondary keys or labels.

[BUS "name_nomkv"]

[BUS "label"]

[BRANCH nearbusnum farbusnum ckt]

 : This specifies the branch on which the fault occurs. You may also specify

the branch using secondary keys or labels.

[BRANCH "name_kv1" "name_kv2" ckt]

[BRANCH "buslabel1" "buslabel2" ckt]

[BRANCH "label"]

Faultlocation : This specifies the percentage distance along the branch where the fault

occurs. This percent varies from 0 (meaning at the nearbus) to 100

(meaning at the far bus)

Faulttype : This specified the type of fault which occurs. There are four options:

SLG : Single Line To Ground fault

LL : Line to Line Fault

3PB : Three Phase Balanced Fault

DLG : Double Line to Group Fault.

R, X : These parameters are optional and specify the fault impedance. If none

are specified, then a fault impedance of zero is assumed.

LoadPTISEQData("filename", version);

Added in the October 21, 2019 patch of Simulator 21

Loads sequence data in the PTI format.

"filename" : Name of file containing sequence data.

version : Integer representing the version of the SEQ file to open.

 65

ATC (Available Transfer Capability) Related Actions

ATCCreateContingentInterfaces (filter);

ATCDetermine ([transactor seller], [transactor buyer], DoDistributed);

ATCDetermineATCFor (RL, G, I, ApplyTransfer);

ATCIncreaseTransferBy (amount);

ATCRestoreInitialState;

ATCTakeMeToScenario (RL, G, I);

ATCWriteAllOptions ("filename", AppendFile, KeyField);

ATCWriteResultsAndOptions ("filename", AppendFile);

ATCWriteToExcel ("worksheetname", [fieldlist]);

ATCWriteToText ("filename", filetype, [fieldlist]);

ATCSetAsReference;

ATCCreateContingentInterfaces(filter);

This command creates an interface based Transfer Limiter results from an ATC run. Each Transfer Limiter

is comprised of a Limiting Element/Contingency pair. Each interface is then created with contingent

elements from the contingency and the Limiting Element included as the monitored element.

filter : This is the name of an Advanced Filter. Only objects of type

TransferLimiter that meet the named filter will be used to create new

interfaces.

ATCDetermine([transactor seller], [transactor buyer], DoDistributed);

Use this action to calculate the Available Transfer Capability (ATC) between a seller and a buyer. The

buyer and seller must not be the same. Other options regarding ATC calculations should be set using a

DATA section via the ATC_Options object type. If the distributed ATC add-on is installed, the optional

DoDistributed flag may bet set to indicate that the ATC should be solved using the distributed methods.

[transactor seller] : The seller (or source) of power. There are six possible settings:

[AREA num], [AREA "name"], [AREA "label"]

[ZONE num], [ZONE "name"], [ZONE "label"]

[SUPERAREA "name"], [SUPERAREA "label"]

[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]

[BUS num], [BUS "name_nomkv"], [BUS "label"]

[SLACK]

[transactor buyer] : The buyer (or sink) of power. There are six possible settings, which are

the same as for the seller.

DoDistributed : Set to YES to use the distributed ATC solution method.

ATCDetermineATCFor(RL, G, I, ApplyTransfer);

Call this action to determine the ATC for Scenario RL, G, I.

ApplyTransfer : Set this value to YES to leave the system state at the transfer level that

was determined. When using the Iterated Linear then Full Contingency

solution method, the system state will retain the transfer level but the

contingency will not be applied.

ATCIncreaseTransferBy(amount);

Call this action to increase the transfer between the buyer and seller .

ATCRestoreInitialState;

Call this action to restore the initial state for the ATC tool.

ATCTakeMeToScenario(RL, G, I);

Call this action to set the present case according to Scenario RL, G, I.

 66

ATCWriteAllOptions("filename", AppendFile, KeyField);

Added in the May 4, 2020 patch of Simulator 21

Writes out all information related to ATC analysis to an auxiliary file. Saves the same information as the

ATCWriteResultsAndOptions script command. Auxiliary file is formatted using the concise format for

DATA section headers and variable names. Data is written using DATA sections instead of SUBDATA

sections.

"filename" : Name of auxiliary file.

AppendFile : Optional parameter - default is YES

 YES means to append results to existing "filename." NO means to

overwrite "filename" with the results.

KeyField : Optional parameter – default is PRIMARY

Indicates the identifier that should be used for the data. Valid entries are

PRIMARY, SECONDARY, or LABEL. PRIMARY will save using bus numbers

and other primary key fields. SECONDARY will save using bus name and

nominal kV and other secondary fields. LABEL will save using device

labels. If no labels are specified then the primary key field will be used.

ATCWriteResultsAndOptions("filename", AppendFile);

Writes out all information related to ATC analysis to an auxiliary file. This includes Contingency

Definitions, Remedial Action Definitions, Limit Monitoring Settings, Solution Options, ATC Options, ATC

results, as well as any Model Criteria that are used by the Contingency and Remedial Action Definitions.

(Following changes made with the May 4, 2020 patch of Simulator 21)

Contingency and Remedial Action definitions will always be saved along with dependencies and only

those object types that are dependencies will be saved. This means that if a Remedial Action definition

uses a Model Filter, that Model Filter along with any Model Filter Conditions, i.e. other Model Filters or

Model Conditions, will be saved. If a model criteria object is not being used by a Remedial Action or

Contingency it will not be saved. Objects that are saved if they are dependencies include: Model

Conditions, Model Filters, Model Planes, Model Expressions, Model Result Overrides, Interfaces, Injection

Groups, Calculated Fields, and Expressions.

Dependencies for the ATC setup are also included. This includes Injection Groups that are used as the

seller or buyer, Interfaces that are used in ATC Extra Monitor definitions, and Interfaces that are used in

Multiple ATC Scenario definitions.

"filename" : Name of auxiliary file.

AppendFile : Optional parameter - default is YES

 YES means to append results to existing "filename." NO means to

overwrite "filename" with the results.

ATCWriteToExcel("worksheetname", [fieldlist]);

Sends ATC analysis results to an Excel spreadsheet. This script command is available only for Multiple

Scenarios ATC analysis.

"worksheetname" : The name of the Excel sheet where the results will be sent to.

(Following added in October 11, 2019 patch of Simulator 21)

fieldlist : Optional parameter

 If specified, the results will be saved including this list of fields. If not

specified, the results will be saved with the fields that are specified with

the TransferLimiter DataGrid. It is possible that the results could be blank

if the TransferLimiter DataGrid has not been initialized by either opening

the ATC dialog or loading the DataGrid settings from an auxiliary file. To

make sure that results are stored and the desired fields are included, it is

suggested that the fieldlist option be used.

 67

ATCWriteToText("filename", filetype, [fieldlist]);

This is used with Multiple Scenario ATC analysis. Multiple files are created with "filename" as the primary

identifier and the Interface scenario label appended to the end of the filename. Separate files are created

for each of the Interface scenarios. Results inside the files are separated into sections based on the

number of Rating/Load scenarios.

"filename" : Primary identifier for the name of the file in which to save the results.

"filename" gets appended with the Interface scenario label to complete

the filename.

filetype : Either TAB or CSV. This indicates the delimiter to use when writing out

the file(s). This is an optional parameter with TAB being the default if

omitted.

(Following added in October 11, 2019 path of Simulator 21)

fieldlist : Optional parameter

 If specified, the results will be saved including this list of fields. If not

specified, the results will be saved with the fields that are specified with

the TransferLimiter DataGrid. It is possible that the results could be blank

if the TransferLimiter DataGrid has not been initialized by either opening

the ATC dialog or loading the DataGrid settings from an auxiliary file. To

make sure that results are stored and the desired fields are included, it is

suggested that the fieldlist option be used.

ATCSetAsReference;

Call this action to set the present system state to the reference state for ATC analysis.

 68

GIC (Geomagnetically Induced Current) Related Actions

GICCalculate (MaxField, Direction, SolvePF);

GICClear;

GICLoadAERData ("CoarseGridFileName", "FineGridPointsFileName",

"FineGridEastVectorFileName", "FineGridNorthVectorFileName");

GICTimeVaryingCalculate (TheTime, SolvePF);

GICTimeVaryingAddTime (NewTime);

GICTimeVaryingDeleteAllTimes;

GICTimeVaryingEFieldCalculate (TheTime, SolvePF);

GICWriteOptions ("FileName", KeyField);

GICCalculate(MaxField, Direction, SolvePF);

Calculates the "Single Snapshot" using GICSolution Options

MaxField : Maximum Electric Field in Volts/km

Direction : Storm Direction, Degrees from 0 to 360

SolvePF : Select YES or NO to include GIC in the Power Flow

GICClear;

Clear GIC Values

GICLoadAERData(CoarseFile, FineFilePoints, FineFileEast, FineFileNorth);

Allows loading of time varying electric field inputs.

"CoarseGridFileName" : contains an origin point (latitude and longitude), grid spacing in units of

degrees longitude, and data points for e-field strength and orientation

"FineGridPointsFileName"

 : a list of latitude and longitude coordinates for which fine grid data is

provided. The fine grid has a higher resolution than the coarse grid.

"FineGridEastVectorFileName"

 : a list of the eastward rectangular component for the e-field at each point

listed in the "FineGridPointsFileName"

"FineGridNorthVectorFileName"

 : a list of the northward rectangular component for the e-field at each

point listed in the "FineGridPointsFileName"

GICTimeVaryingCalculate(TheTime,SolvePF);

Calculates "Time Varying Input" GIC at specified time

TheTime : Specified Time Point

SolvePF : Select YES or NO to include GIC in the Power Flow

GICTimeVaryingAddTime(NewTime);

Adds a new input values at specified time

NewTime : New Time for new input values

GICTimeVaryingDeleteAllTimes;

Delete All Input Time values

GICTimeVaryingEFieldCalculate(TheTime,SolvePF);

Run the GIC solution using the time varying non-uniform AER data.

TheTime : Specified Time Point

SolvePF : Select YES or NO to include GIC in the Power Flow

 69

GICWriteOptions(“FileName”, KeyField);

Calculates the "Single Snapshot" using GICSolution Options

FileName : Name of Aux file name to write out the options

KeyField : KeyField indicates the identifier that should be used for the data. Valid

entries are PRIMARY, SECONDARY, or LABEL. The default setting is

PRIMARY. PRIMARY will save using bus numbers and other primary key

fields. SECONDARY will save using bus name and nominal kV and other

secondary fields. LABEL will save using device labels. If no labels are

specified then the primary key field will be used.

 70

ITP (Integrated Topology Processing) Related Actions

CloseWithBreakers (objecttype, filter or [object identifier],

OnlyEnergizeSpecifiedObjects, [SwitchingDeviceTypes],

CloseNormallyClosedDisconnects);

ExpandAllBusTopology;

ExpandBusTopology (BusIdentifier, TopologyType);

OpenWithBreakers (objecttype, filter or [object identifier],

[SwitchingDeviceTypes], OpenNormallyOpenDisconnects);

SaveConsolidatedCase ("filename", filetype, [BusFormat, TruncateCtgLabels,

AddCommentsForObjectLabels]);

CloseWithBreakers(objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects,

[SwitchingDeviceTypes], CloseNormallyClosedDisconnects);

This action is used to specify which objects are to be energized by closing breakers and to actually close

those breakers. The status of an object will be set to closed if necessary in addition to closing the

breakers. If only the status of an object needs to be changed to close an object, that will occur without

requiring any breakers to be closed.

objecttype : Objects that are valid to be energize. Only allowed for Buses, Generators,

Loads, Transmission Lines, Switched Shunts, DC Lines, Injection Groups,

and Interfaces.

Filter : The second parameter can either be a filter specification or an object

identifier. When specifying a filter, the following options are available:

SELECTED : only objects whose Selected field = YES will be

energized

AREAZONE : only objects that meet the area/zone/owner filters will

be energized

"FilterName" : only objects that meet the specified filter will be

energized. See the Using Filters in Script Commands

section for more information on specifying the

filtername.

 71

[object identifier] : The second parameter can either be a filter specification or an object

identifier. When using an object identifier, the objecttype is applicable

and no further specification of the type needs to be included with the

object identifier as is done with some other script commands. The

following describe the possible objecttypes and identifier options:

BUS : [busnum]

 ["name_nomkv"]

 ["label"]

GEN : [busnum id]

 ["name_nomkv" id]

 ["buslabel" id]

 ["label"]

LOAD : [busnum id]

 ["name_nomkv" id]

 ["buslabel"]

 ["label"]

BRANCH : [busnum1 busnum2 ckt]

 ["name_kv1" "name_kv2" ckt]

 ["buslabel1" "buslabel2" ckt]

 ["label"]

SHUNT : [busnum id]

 ["name_nomkv" id]

 ["buslabel" id]

 ["label"]

INJECTIONGROUP : ["name"]

INTERFACE : ["name"]

DCLINE : [num rectnum invnum]

 [num "rectnam_nomkv" "invname_nomkv"]

 [num "rectlabel" "invlabel"]

 ["label"]

OnlyEnergizeSpecifiedObjects

 : optional parameter, default is NO.

YES : No extra objects in addition to those specified in the filter can

be energized. Each object will be evaluated individually.

NO : Extra objects could be energized in addition to those specified

if a group of breakers required to energize a specified object

also causes other objects to be energized. All objects will be

evaluated collectively for determining which objects can be

energized, i.e. breakers that cause one object to be energized

might also be needed for another object to be energized.

[SwitchingDeviceTypes]

 : optional parameter, default is "Breaker". This is a comma-separated list

naming the Branch Device Types for switching devices that should be

included when determining which devices to close to energize objects.

Options include "Breaker" and "Load Break Disconnect".

 72

CloseNormallyClosedDisconnects

 : optional parameter, default is NO.

YES : When searching for the specified SwitchingDeviceTypes and a

Disconnect is encountered that is open but normally closed, it

will be closed and the search for open switching devices will

continue past the Disconnect. Additionally, Disconnects that

are in series with any open devices of the specified

SwitchingDeviceTypes will be closed if they are normally open.

NO : Only switching devices of the specified SwitchingDeviceTypes

will be closed.

ExpandAllBusTopology;

This action is used to expand the topology around all buses in the case according to a topology type that

is specified with a custom string field (currently Custom String 5) for the bus. New breakers and nodes

(buses) will be inserted as necessary.

ExpandBusTopology(BusIdentifier, TopologyType);

This action is used to expand the topology around the specified bus according to the specified topology

type. New breakers and nodes (buses) will be inserted as necessary.

BusIdentifier : A bus can be identified in one of these formats: BUS busnum, BUS

name_nomkv, BUS label.

TopologyType : These types of breaker configurations are allowed:

DOUBLEBUSDOUBLEBREAKER, MAINTRANSFER, RINGBUS,

BREAKERANDAHALF, SINGLEBUS, and SECTIONALIZEBUS.

OpenWithBreakers(objecttype, filter or [object identifier], [SwitchingDeviceTypes],

OpenNormallyOpenDisconnects);

This action is used to specify which objects are to be disconnected by opening breakers and to actually

open those breakers.

objecttype : Objects that are valid to be disconnected. Only allowed for Buses,

Generators, Loads, Transmission Lines, Switched Shunts, DC Lines,

Injection Groups, and Interfaces.

Filter : The second parameter can either be a filter specification or an object

identifier. When specifying a filter, the following options are available:

SELECTED : only objects whose Selected field = YES will be

energized

AREAZONE : only objects that meet the area/zone/owner filters will

be energized

"FilterName" : only objects that meet the specified filter will be

energized. See the Using Filters in Script Commands

section for more information on specifying the

filtername.

 73

[object identifier] : The second parameter can either be a filter specification or an object

identifier. When using an object identifier, the objecttype is applicable

and no further specification of the type needs to be included with the

object identifier as is done with some other script commands. The

following describe the possible objecttypes and identifier options:

BUS : [busnum]

 ["name_nomkv"]

 ["label"]

GEN : [busnum id]

 ["name_nomkv" id]

 ["buslabel" id]

 ["label"]

LOAD : [busnum id]

 ["name_nomkv" id]

 ["buslabel"]

 ["label"]

BRANCH : [busnum1 busnum2 ckt]

 ["name_kv1" "name_kv2" ckt]

 ["buslabel1" "buslabel2" ckt]

 ["label"]

SHUNT : [busnum id]

 ["name_nomkv" id]

 ["buslabel" id]

 ["label"]

INJECTIONGROUP : ["name"]

INTERFACE : ["name"]

DCLINE : [num rectnum invnum]

 [num "rectnam_nomkv" "invname_nomkv"]

 [num "rectlabel" "invlabel"]

 ["label"]

[SwitchingDeviceTypes]

 : Optional parameter – default is "Breaker"

 This is a comma-separated list naming the Branch Device Types for

switching devices that should be included when determining which

devices to open to disconnect objects. Options include "Breaker" and

"Load Break Disconnect".

OpenNormallyOpenDisconnects

 : optional parameter, default is NO.

YES : When searching for the specified SwitchingDeviceTypes and a

Disconnect is encountered that is closed but normally open, it

will be opened and the search for closed switching devices will

terminate along that path.

NO : Only switching devices of the specified SwitchingDeviceTypes will

be opened.

SaveConsolidatedCase("filename", filetype, [BusFormat, TruncateCtgLabels,

AddCommentsForObjectLabels]);

 This action saves the full topology model into a consolidated case.

"filename" : The name of the consolidated case file to be saved.

 74

Filetype : Optional parameter to specifiy the type of the file to be saved. If

omitted, the latest version of the PWB will be used.

PWB : save a pwb file with the most recent version

PWBX : save a pwb with version X

PTIXX : save the file with PTI version XX, where XX is between 23 and

33

GEXX : save the file with GE PSLF version XX, where XX is between 14

and 19

BusFormat : optional parameter used to specifiy the bus identifier format in the .CON

file used to store contingencies when saving a PTI file

Number : identify buses using number

Name8 : identify buses using the Name_kV identifier truncated to 8

characters

Name12 : identify buses usingthe Name_kV identifier truncated to 12

characters

TruncateCTGLabels : optional parameter used to specify if the contingency labels should be

truncated to 12 characters when saving the contingencies in PTI format

YES : truncate the contingency labels to 12 characters

NO : do not truncate the contingency labels

AddCommentsForObjectLabels

 : (optional) YES adds object labels to the end of data records when saving

a RAW file. (default NO)

 75

OPF (Optimal Power Flow) and SCOPF Related Actions

SolvePrimalLP ("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

InitializePrimalLP ("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

SolveSinglePrimalLPOuterLoop ("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

SolveFullSCOPF (BCMethod, "filename1", "filename2", CreateIfNotFound1,

CreateIfNotFound2);

OPFWriteResultsAndOptions ("filename");

SolvePrimalLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

Call this action to perform a primal LP OPF solution. The parameters are all optional and specify a

conditional response depending on whether the solution is successfully found. If parameters are not

passed then default values will be used.

"filename1" : The filename of the auxiliary file to be loaded if there is a successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default Value = "".

"filename2" : The filename of the auxiliary file to be loaded if there is a NOT successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default Value = "".

CreateIfNotFound1 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename1. Default Value =

NO.

CreateIfNotFound2 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename2. Default Value =

NO.

InitializeLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

This commands clears all the structures and results of previous primal LP OPF solutions. The parameters

are all optional and specify a conditional response depending on whether the solution is successfully

found. If parameters are not passed then default values will be used.

"filename1" : The filename of the auxiliary file to be loaded if there is a successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default Value = "".

"filename2" : The filename of the auxiliary file to be loaded if there is a NOT successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default Value = "".

CreateIfNotFound1 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename1. Default Value =

NO.

CreateIfNotFound2 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename2. Default Value =

NO.

SolveSinglePrimalLPOuterLoop("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

This action is basically identical to the SolvePrimalLP action, except that this will only perform a single

optimization. The SolvePrimalLP will iterate between solving the power flow and an optimization until this

iteration converges. This action will only solve the optimization routine once, then resolve the power flow

once and then stop.

 76

SolveFullSCOPF (BCMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

Call this action to perform a full Security Constrained OPF solution. The parameters are all optional and

specify a conditional response depending on whether the solution is successfully found. If parameters are

not passed then default values will be used.

BCMethod : The solution method to be used for solving the base case. The options

are:

POWERFLOW : for single power flow algorithm (default)

OPF : for the optimal power flow algorithm.

"filename1" : The filename of the auxiliary file to be loaded if there is a successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default Value = "".

"filename2" : The filename of the auxiliary file to be loaded if there is a NOT successful

solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default Value = "".

CreateIfNotFound1 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename1. Default Value =

NO.

CreateIfNotFound2 : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections of filename2. Default Value =

NO.

OPFWriteResultsAndOptions("filename");

Writes out all information related to OPF analysis as an auxiliary file. This includes Limit Monitoring

Settings, options for Areas, Buses, Branches, Interfaces, Generators, SuperAreas, OPF Solution Options.

 77

PV Related Actions

PVClear;

PVDestroy;

PVQVTrackSingleBusPerSuperBus;

PVRun ([elementSource], [elementSink]);

PVSetSourceAndSink ([elementSource], [elementSink]);

PVStartOver;

PVWriteInadequateVoltages ("filename", AppendFile, InadequateType);

PVWriteResultsAndOptions ("filename", AppendFile);

RefineModel (objecttype, filter, Action, Tolerance);

Changes were made with Simulator version 14 to eliminate the need for a PV study name. To maintain functionality with

any existing processes that users might have in place using older script definitions, scripts from older versions of Simulator

will still be supported if the name is specified. However, the name will just be ignored. The script formats given here

reflect the changes for versions 14 and later.

The PVCreate script required in previous versions is no longer necessary starting with Simulator version 14. Versions

starting with 14 will still recognize this action if is included and will simply set the source and sink for the study. This does

the same thing as PVSetSourceAndSink.

It is highly recommended that for any new processes the new script formats specified here be used.

PVClear;

Call the function to clear all the results of the PV study.

PVDestroy;

Call the function to destroy the PV study. This will remove all results and prevent any restoration of the

initial state that is stored with the PV study.

PVQVTrackSingleBusPerSuperBus;

If the topology processing add-on is installed, then this script command can be used to reduce the

number of monitored buses. The script action examines each monitored value for each bus and

determines if that bus is part of a super bus and selects monitored buses so that only the pnode is

monitored.

PVRun([elementSource], [elementSink]);

Call this function start the PV study and optionally specify the source and sink elements.

[elementSource] : Optional parameter – default to using element already set

 The source of power for the PV study. Only injection groups can be used:

[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"]

[elementSink] : Optional parameter – default to using element already set

 The sink of power for the PV study. Only injection groups can be used:

[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"]

PVSetSourceAndSink([elementSource], [elementSink]);

Call the function to specify the source and sink elements to perform the PV study.

[elementSource] : The source of power for the PV study. There is only one possible setting:

[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"]

[elementSink] : The sink of power for the PV study. There is only one possible setting,

which is the same as for the source.

PVStartOver;

Call the function to start over the PV study. This includes clear the activity log, clear results, restore the

initial state, set the current state as initial state, and initialize the step size.

 78

PVWriteInadequateVoltages("filename", AppendFile, InadequateType);

Call this action to save PV Inadequate Voltages in a CSV file.

 “filename” : Name of the CSV file to save. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

AppendFile : Optional parameter – default is YES

 Set this to YES or NO. Setting this to YES will cause the data to be

appended to an existing file. Setting this to NO will cause any existing

file to be overwritten.

InadequateType : Optional parameter – default is LOW

 Set this to HIGH or LOW to indicate the type of inadequate voltages to

save to file.

PVWriteResultsAndOptions("filename", AppendFile);

Call this action to save all of the PV results and options in an auxiliary file.

“filename” : Name of the auxiliary file to save. See the Specifying File Names in Script

Commands section for special keywords that can be used when

specifying the file name.

AppendFile : Optional parameter – default is YES

 Set this to YES or NO. Setting this to YES will cause the data to be

appended to an existing file. Setting this to NO will cause any existing

file to be overwritten.

RefineModel(objecttype, filter, Action, Tolerance);

Call this function to refine the system model to fix modeling idiosyncrasies that cause premature loss of

convergence during PV and QV studies.

Objecttype : The objecttype being selected:

AREA

ZONE

Filter : Specify a filter to limit the objects that will be included.

Blank : Select all objects of specified type

AREAZONE : Only objects that meet the area/zone/owner filters will

be selected

SELECTED : Only objects whose Selected field = YES will be

selected

“FilterName" : Only objects that meet the specified filter will be

selected. See Using Filters in Script Commands section

for more information on specifying the filtername.

Action : The way the model will be refined. Choices are:

TRANSFORMERTAPS : Fix all transformer taps at their present values

if their Vmax – Vmin is less than or equal to

the user specified tolerance.

SHUNTS : Fix all shunts at their present values if their

Vmax – Vmin is less than or equal to the user

specified tolerance.

OFFAVR : Remove units from AVR control, thus locking

their MVAR output at its present value if their

Qmax – Qmin is less or equal to the user

specified tolerance.

Tolerance : Tolerance value.

 79

QV Related Actions

QVRun ("filename", InErrorMakeBaseSolvable);

QVWriteResultsAndOptions ("filename");

QVSelectSingleBusPerSuperBus;

QVRun("filename", InErrorMakeBaseSolvable);

Call the function to start a QV study for the list of buses whose SELECTED field is set to YES.

"filename" : This specifies the file to which to save a comma-delimited version of the

results.

InErrorMakeBaseSolvable

 : This specifies whether to perform a solvability analysis of the base case if

the pre-contingency base case cannot be solved. If not specified, then

YES is assumed.

QVWriteResultsAndOptions("filename");

Call this action to save all the QV results and options in the auxiliary file "filename".

QVSelectSingleBusPerSuperBus;

If the QV tool is being used on a full topology model, this action can be used to modifiy the monitored

buses. This action examines the monitored buses and sets the monitored status so that only one bus is

monitored for each pnode.

 80

TS (Transient Stability) Related Actions

TSAutoCorrect;

TSAutoInsertDistRelay (Reach, AddRelayAtFromBus, AddRelayAtToBus, DoTransferTrip, Shape,

filter);

TSAutoInsertZPOTT (Reach, filter);

TSCalculateCriticalClearTime ([branch] or filter);

TSCalculateSMIBEigenValues;

TSClearAllModels;

TSGetVCurveData ("FileName", filter);

TSGetResults ("FileName", Single/Separate, [contingencies], [plots], StartTime,

EndTime);

TSLoadBPA ("FileName");

TSLoadGE ("FileName", GENCCYN, EnableOutOfOrderModels);

TSLoadPTI ("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename",

"BASEGENfilename", "MODREMOVEfilename");

TSLoadRDB ("FileName", ModelType, filter);

TSLoadRelayCSV ("FileName", ModelType, filter);

TSResultStorageSetAll (objecttype, YES/NO);

TSRunUntilSpecifiedTime ("ContingencyName", [StopTime, StepSize, StepsInCycles,

ResetStartTime, NumberofTimeStepstoDo]);

TSSaveBPA ("FileName", DiffCaseModifiedOnly);

TSSaveGE ("FileName", DiffCaseModifiedOnly);

TSSavePTI ("FileName", DiffCaseModifiedOnly);

TSSaveTwoBusEquivalent ("AuxFileName",[BUS]);

TSSolve ("ContingencyName", [StartTime, StopTime, StepSize,StepInCycles]);

TSSolveAll (DoDistributed);

TSWriteModels ("FileName", DiffCaseModifiedOnly);

TSWriteOptions ("FileName",[SaveDynamicModel, SaveStabilityOptions,

SaveStabilityEvents, SaveResultsSettings, SavePlotDefinitions],

KeyField);

TSSetSelectedForTransientReferences(SetWhat, SetHow, [ObjectType List], [ModelType List])

TSAutoCorrect;

Runs the auto correction of parameters for a transient stability run. If there are still validation errors after

running this script that would prevent the stability simulation from running, then the remainder of a script

will be aborted.

TSAutoInsertDistRelay(Reach, AddRelayAtFromBus, AddRelayAtToBus, DoTransferTrip, Shape, filter);

Inserts DistRelay models on the lines meeting the specified filter.

Reach : Zone 1 reach

AddRelayAtFromBus : Add relay at the FROM bus: YES/NO.

AddRelayAtToBus : Add relay at the TO bus: YES/NO.

DoTransferTrip : Do transfer trip: YES/NO

Shape : Shape: 0 - Circle; 1 - Rectangle; 2 - Reactance Distance; 3 - Impedance

Distance.

filter : Lines meeting this filter will have DistRelay models inserted. See the

Using Filters in Script Commands section for information on specifying

the filter.

TSAutoInsertZPOTT(Reach, filter,);

Inserts ZPOTT models on the lines meeting the specified filter.

Reach : Zone 1 reach

filter : Lines meeting this filter will have ZPOTT models inserted. See the Using

Filters in Script Commands section for information on specifying the

filter.

 81

TSCalculateCriticalClearTime([branch] or filter,);

Use this action to calculate critical clearing time for faults on the lines that meet the specified filter.

[line] or filter : A single line can be specified in the format [BRANCH keyfield1 keyfield2

ckt] or [BRANCH label]. Multiple lines can be selected by specifying a

filter. See the Using Filters in Script Commands section for information

on specifying the filter. For the specified lines, this calculation will

determine the first time a violation is reached (critical clearing time),

where a violation is determined based on all enabled Transient Limit

Monitors. For each line, results are saved as a new Transient Contingency

(named CritCTG) on a line, with the fault duration equal to the critical

clearing time.

TSCalculateSMIBEigenValues;

Calculate single machine infinite bus eigenvalues. Initialization to the start time is always done before

calculating eigenvalues.

TSClearAllModels;

Clears all the transient stability models and contingencies.

TSGetVCurveData("FileName", filter);

For a synchronous generator a curve of points for field current and field voltage is created from a fixed

terminal voltage and MW (P) power output and varying Mvar (Q) output.

FileName : Name of file to create. If no file extension is specified this defaults to

CSV.

filter : Specifies for which generators to create curves.

SELECTED : only generators whose Selected field = YES will be

included

AREAZONE : only generators that meet the area/zone/owner filters

will be included

"FilterName" : only generators that meet the specified filter will be

included. See the Using Filters in Script Commands

section for more information on specifying the

filtername.

TSGetResults("FileName", SINGLE/SEPARATE/JSIS/INTEGRATED, [Contingencies], [Plots, ObjectFields],

StartTime, EndTime]);

Use this to save out results for specific variables from plots, subplots, and object/field pairs after a

transient stability simulation has been run. If StartTime and StopTime are not specified, results for the

entire simulation time are obtained.

FileName : Name of the CSV result file to write out

SINGLE/SEPARATE/JSIS/INTEGRATED

 : Determines whether the results are all saved in one file (SINGLE) with

name “filename” or whether results for each transient contingency is

saved in a separate file (SEPARATE) with name “filename_ctgname.csv.”

A separate header file is also saved out, with a name of

“filename_Header.csv”.

If using the INTEGRATED format, then one file is written with the name

“filename”, but the information about each value is written out in the first

several rows with each column corresponding to the results that follow.

Added in August 4, 2020 Patch of Version 21.

If using the JSIS format, a single file with the name “filename” is written in

the WECC JSIS format.

Contingencies : A list of contingency names for which to save out results

 82

Plots, ObjectFields : A list of plots and object/field pairs to save out for the specified

contingencies. For plots, write PLOT and then the name of the plot. For

ObejctsFields you need the Obejct name followed by the key fields and a

vertical line (|), then the field.

StartTime : Start of the window of simulation time from which the results are to be

retrieved

EndTime : End of the window of simulation time from which the results are to be

retrieved

TSGetResults("D:\Cases\Scripts\Test.CSV",SINGLE,["My Transient Contingency"], ["PLOT

Gen_Rotor Angle","Bus 4 | frequency","PLOT Bus_Frequency","GEN 1 '1'|

TSGenMachineState:2"],0,10);

TSLoadBPA("FileName");

Loads transient stability data stored in the BPA format.

FileName : Name of the BPA file to load

TSLoadGE("FileName", GENCCYN, EnableOutOfOrderModels);

Loads transient stability data stored in the GE DYD format.

FileName : Name of the DYD file to load

GENCCYN : YES to split combined cycle units, NO to leave them alone

EnableOutOfOrderModels

 : (optional) Default is YES. If set to YES, models that are specified out of

order in the file will be enabled. If set to NO, out of order models will be

disabled.

TSLoadPTI("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename", "BASEGENfilename",

“MODREMOVEfilename);

Loads transient stability data in the PTI format.

FileName : Name of the DYR file to load

MCREfilename : (optional) If not loading a MCRE file, specify ""

MTRLOfilename : (optional) If not loading a MTRLO file, specify ""

GNETfilename : (optional) If not loading a GNET file, specify ""

BASEGENfilename : (optional) If not loading a BASEGEN file, specify ""

MODREMOVEfilename : (optional) if not loading a MODREMOVE file, specify ""

TSLoadRDB("filename", ModelType, filter);

Loads a SEL RDB file. The RDB file is a Schweitzer format for describing a relay. This command will load

the file and translate the relay settings into a PowerWorld transient stability model. An attempt is made

to match up the protected lines in the power flow model with the SID field in the RDB data. A SID in the

format "FROM SUB/BREAKERS/TO SUB" is expected. If the SID does not match this format, or a match is

not found in the case, the objects can be linked to the transient stability model in the user interface

manually.

"filename" : The directory path or filename of the RDB file(s). If pointed to a

directory, the script command will load every RDB file in that directory. If

pointed to a file, the script command will load the single RDB file. See

the Specifying File Names in Script Commands section for special

keywords that can be used when specifying the file name.

ModelType : One of the following:

DISTRELAY : create a Simulator DistRelay model from the RDB data

ZPOTT : create a Simulator ZPOTT model from the RDB data

filter : Optional parameter

 83

 Lines meeting this filter are searched to find ones matching the SID. See

the Using Filters in Script Commands section for information on

specifying the filter.

TSLoadRelayCSV("filename", ModelType, filter);

This is a quicker alternative to using the TSLoadRDB command for loading RDB files. Relevant relay data

can be exported to a CSV file so that a single CSV file contains multiple relay models. This is much faster

because it does not contain the unused data that an RDB file contains.

"filename" : Name of the CSV file to load

ModelType : One of the following:

DISTRELAY : create a Simulator DistRelay model from the RDB data

ZPOTT : create a Simulator ZPOTT model from the RDB data

filter : Optional parameter

 Lines meeting this filter are searched to find ones matching the SID. See

the Using Filters in Script Commands section for information on

specifying the filter.

TSResultStorageSetAll(objecttype, YES/NO);

This command will allow setting which object types are stored in memory during a transient stability run.

This will affect all fields and states for the specified objecttype.

objecttype : Specifies which objects to set. The objecttype is the object name of

supported objects such as GEN, BUS, BRANCH, etc. ALL can be used to

set all supported object types.

YES/NO : Using this command will toggle all the “Save All” fields to YES/NO. It will

also toggle all the “state” fields (such as exciter, machine, governor, etc.)

to YES/NO.

TSRunUntilSpecifiedTime("ContingencyName", [StopTime, StepSize, StepsInCycles, ResetStartTime,

NumberOfTimeStepsToDo]);

This command allows manual control of the transient stability run. The simulation can be run until a

specified time or number of times steps and then paused for further evaluation.

ContingencyName : The name of the contingency to solve.

StopTime : (optional) This is the time to which the simulation will be run. This should

be entered in seconds. If NumberOfTimeStepsToDo > 0, this field will be

ignored. If not specified, the stop time specified with the contingency

will be used.

StepSize : (optional) Simulation step size in either seconds or cycles. If

StepsInCycles = YES this should be specified in cycles. If not specified,

the step size specified with the contingency will be used.

StepsInCycles : (optional) Set to YES to specify StepSize in cycles. If not specified, the

units of the step size specified with the contingency will be used.

ResetStartTime : (optional) Set to YES to reset the simulation start time. Default value is

NO.

NumberOfTimeStepsToDo

 : (optional) Number of time steps to run. If NumberOfTimeStepsToDo > 0,

StopTime is ignored. Default value is 0.

TSSaveBPA("FileName", DiffCaseModifiedOnly);

Save transient stability data stored in the BPA IPF format.

FileName : Name and path for the output file. Typically this will be an *.swi file

extension.

 84

DiffCaseModifiedOnly : (optional) Default is NO. When set to YES, it will only save models that

are either new or models which have had a parameter modified as

compared to the difference case tool base case.

TSSaveGE("FileName", DiffCaseModifiedOnly);

Save transient stability data stored in the GE DYD format.

FileName : Name and path for the output file. Typically this will be an *.dyd file

extension.

DiffCaseModifiedOnly : (optional) Default is NO. When set to YES, it will only save models that

are either new or models which have had a parameter modified as

compared to the difference case tool base case.

TSSavePTI("FileName", DiffCaseModifiedOnly);

Save transient stability data stored in the PTI DYR format.

FileName : Name and path for the output file. Typically this will be an *.dyr file

extension.

DiffCaseModifiedOnly : (optional) Default is NO. When set to YES, it will only save models that

are either new or models which have had a parameter modified as

compared to the difference case tool base case.

TSSaveTwoBusEquivalent ("AuxFileName", [BUS]);

Save the two bus equivalent model of a specified bus to a PWB file. Initialization to the start time is

always done before saving the two bus equivalent.

AuxFileName : Name and path for the output AUX file

BUS : Bus can be specified in three ways:

Number : [BUS busnum]

Name/NomkV : [BUS "busname_nominalKV"]

Label : [BUS "buslabel"]

TSSolve("ContingencyName", [StartTime, StopTime, StepSize, StepInCycles]);

Solves only the specified contingency.

ContingencyName : The name of the contingency to solve

Times : (optional) Pararmer is a comma delimited list of strings enclosed in

square brackets. This string then consists of 4 optional parameters which

override the corresponding property of the contingency.

StartTime : (optional) Start time in seconds

StopTime : (optional) Stop time in seconds

StepSize : (optional) Step size (in seconds unless StepInCycles =

YES)

StepInCycles : (optional) Set to YES to mean that the StepSize is given

in cycles

TSSolveAll(DoDistributed);

Solves all defined transient contingencies that are not set to skip.

DoDistributed : (optional) Set to YES to use Distributed Computing with the transient

analysis. Default is NO.

TSWriteModels("FileName", DiffCaseModifiedOnly);

Save transient stability dynamic model records only the auxiliary file format.

FileName : Name and path for the output file. Typically this will be an *.aux file

extension.

DiffCaseModifiedOnly : (optional) Default is NO. When set to YES, it will only save models that

are either new or models which have had a parameter modified as

compared to the difference case tool base case.

 85

TSWriteOptions("FileName",[SaveDynamicModel, SaveStabilityOptions, SaveStabilityEvents,

SaveResultsEvents, SavePlotDefinitions], KeyField);

Save the transient stability option settings to an auxiliary file.

FileName : Name and path of the file to save

SaveDynamicModel : (optional) NO doesn’t save dynamic model (default YES)

SaveStabilityOptions : (optional) NO doesn’t save stability options (default YES)

SaveStabilityEvents : (optional) NO doesn’t save stability events (default YES)

SaveResultsSettings : (optional) NO doesn’t save results settings (default YES)

SavePlotDefinitions : (optional) NO doesn’t save plot definitions (default YES)

KeyField : (optional) Specifies key: can be Primary, Secondary, or Label (default

Primary)

TSSetSelectedForTransientReferences(SetWhat, SetHow, [ObjectType List],[ModelType List]);

Set the Custom Integer field to a corresponding integer or Selected field to Yes/No for objects referenced

in a transient stability model with extra objects.

SetWhat : Either Selected or Custom Integer number (1, 2, 3…). Default is number 1

for the Custom Integer.

SetHow : when SetWhat = Selected, will be either YES or NO. Otherwise it will be

an integer to be used with Custom Integer. Default is 1.

[ObjectType List] : A comma-delimited list of objecttypes. These are the objects on which

the custom field will be set.

[ModelType List] : A comma-delimited list of transient stability model types on which

references will be queried.

 86

Scheduled Actions Related Actions

IdentifyBreakersForScheduledActions(IdentifyFromNormalStatus);

SetScheduleView (ViewTime, ApplyActions, UseNormalStatus, ApplyWindow);

SetScheduleWindow (StartTime, EndTime, Resolution, ResolutionUnits);

IdentifyBreakersForScheduledActions(IdentifyFromNormalStatus);

For each Scheduled Outage, identifies breakers that are necessary to implement OpenBreakers and

CloseBreakers actions. New Scheduled Actions are added to the Scheduled Outage if new breakers are

identified that do not already exist as actions.

IdentifyFromNormalStatus

 : Set to YES to return all branches to their normal status before searching

for breakers. If using this option, all branches will be returned to their

current status at the end of the process. Set to NO to leave all branches

at their current status before searching for breakers.

SetScheduleView(ViewTime, ApplyActions, UseNormalStatus, ApplyWindow);

Sets the View Time for Scheduled Actions.

ViewTime : The desired view time. Must be between the currently configured Start

and End times, and fall on a valid view point given current resolution

settings.

ApplyActions : (optional) Set to YES or NO to override current “Apply Actions” settings

to either apply actions at this view time or suppress the application of

actions at this time. If left blank, current “Apply Actions” settings will be

used.

UseNormalStatus : (optional) Set to YES or NO to override current “Use Normal Status”

settings to either restore devices to their Normal Status after they are

restored, or to use whatever status they had before the action was

applied. If left blank, current “Use Normal Status” settings will be used.

ApplyWindow : (optional) Set to YES or NO to override current “Apply Window” settings

to either apply any actions active in the window starting at this View Time

and extending forward one Resolution step forward in time, or only apply

actions active at the specific View Time specified. If left blank, current

“Apply Window” settings will be used.

SetScheduleWindow(StartTime, EndTime, Resolution, ResolutionUnits);

Defines the window of interest for Scheduled Actions.

StartTime : Defines the start of the window.

EndTime : Defines the end of the window. Must fall on a valid time relative to the

Start Time as defined by the Resolution (e.g. if the Start Time is 5/20/17

8:00 and the resolution is 1 DAY, the End Time must be at 8:00 as well on

a later date.)

Resolution : (optional) Decimal value defining the time step between the Start Time

and any valid View Time.

ResolutionUnits : (optional but must be specified if Resolution is specified) May be

MINUTES, HOURS, or DAYS

 87

DATA Section

Concise Auxiliary File Header

PowerWorld defaults to using a concise header that starts with the object_type string followed by the

list_of_fields as the argument between the parentheses.

object_type DataName(list_of_fields)

{

data_list_1

 .

 .

 .

data_list_n

}

Simulator Version 19 and later support reading both this syntax and the older Legacy header. Older versions of Simulator

only support the Legacy Auxiliary File Header below. All versions of Simulator support reading the legacy header format.

When writing out an auxiliary file there is an option starting in Simulator Version 19 called Use Concise Variable Names

and Auxiliary File Headers that determines whether to write out the DATA keyword and other arguments or to write out

the concise auxiliary file header. See the online help documentation for more details:

http://www.powerworld.com/WebHelp/#MainDocumentation_HTML/Auxiliary_Files.htm

When using the concise format, the data between the curly braces is always written using space delimiter and the

Create_if_not_found is always assumed to be YES.

Legacy Auxiliary File Header
DATA DataName(object_type, [list_of_fields], file_type_specifier, create_if_not_found)

{

data_list_1

 .

 .

 .

data_list_n

}

Immediately following the DATA keyword, you may optionally include a DataName. By including the DataName, you can

make use of the script command LoadData("filename", DataName) to call this particular data section from another

auxiliary file. Following the optional DataName is an argument list. The argument list is contained inside left and right

parentheses "()". There are 4 arguments in this list which will be described shortly: object_type, [list_of_fields],

file_type_specifier, and create_if_not_found.

ObjectType

The object_type parameter identifies the type of object or data element the information section describes or models.

For example, if object_type equals BUS, then the data describes BUS objects.

There are some special object types that start with the keyword REMOVED. If these are loaded into Simulator while in Edit

mode, the corresponding objects will be deleted. For example REMOVEDBUS will delete BUS objects, REMOVEDBRANCH

will delete BRANCH objects, etc. Not all object types have a corresponding REMOVED object type, and simply prepending

this keyword to the front of an object_type will not allow this functionality. The objects that exist of this with this

functionality are the ones that allow comparison of topological changes through the Difference Flows tool.

The list of object types Simulator’s auxiliary file parser can recognize will grow as new applications are developed. Within

Simulator, you will always be able to obtain a list of the available object types by going to the main menu and choosing

Window, Export Case Object Fields, and then exporting the objects to Excel or a text file.

http://www.powerworld.com/WebHelp/#MainDocumentation_HTML/Auxiliary_Files.htm

 88

File_Type_Specifier

When using the Legacy Auxiliary File Header, the file_type_specifier parameter distinguishes the information

section as containing custom auxiliary data (as opposed to Simulator’s native auxiliary formats), and indicates the format

of the data. The parser recognizes two values for file_type_specifier:

(blank) or AUXDEF or DEF Data fields are space delimited

AUXCSV or CSV or CSVAUX Data fields are comma

delimited

Required Fields and Create_if_not_found

Each ObjectType in PowerWorld has a set of Required Fields that must be included in the List_of_Fields when using an

Auxiliary File to create a new object. These Required Fields are highlighted in green in the user interface. If these Required

Fields are not included in the List_of_Fields, then new objects will never be created, and the Auxiliary file will only edit

existing objects. When using the Concise Auxiliary File Header, if the required fields are given, then new objects will be

created. There are also some restrictions for objects that defined the network topology and these objects may only be

created while in Run Mode: Bus, Gen, Load, Shunt, Branch, LineShunt, DCTransmissionLine, VSCDCLine, MSLine,

3WXFormer, MTDCRecord, MTDCBus, MTDCLine, and MTDCConverter.

In addition to specifying these fields, when using the Legacy Auxiliary File Header, an optional field

Create_if_not_found must be specified. In the Legacy header, objects will only be created if all Required Fields are

given and the Create_if_not_found=YES. If the value is NO, objects will not be created. If Create_if_not_found

is omitted in the Legacy header a prompt dialog will appear when loading the file asking the user what to do if an object is

encountered that does not exist. If loading an auxiliary file using the LoadAux script command, the

Create_if_not_found field for the data section will override the Create_if_not_found field with the script.

To repeat, regardless of the choice of CreateIfNotFound, a new object will only be created if a particular list of

Required Fields is in the List_of_Fields.

List_of_Fields

The list_of_fields parameter lists the types of values the ensuing records in the data section contain. The order in

which the fields are listed in list_of_fields dictates the order in which the fields will be read from the file. Simulator

currently recognizes many different field types, each identified by a specific field variable name. Because the available

fields for an object may grow as new applications are developed for the convenience of our customers, you will always be

able to obtain a list of the available object types and fields by going to the main menu and choosing Window, Export

Object Fields, and then choosing to export to Excel or a text file. Certainly, only a subset of these fields would be found in

a typical custom auxiliary file. In crafting applications to export custom auxiliary files, developers need concern themselves

only with the fields they need to communicate between their applications and Simulator. A few points of interest

regarding the list_of_fields are:

• The list_of_fields may take up several lines of the text file.

• When using the older heading starting with the keyword DATA, the list_of_fields should be enclosed by

square brackets []. When using the concise heading these square brackets are not used.

• When encountering the PowerWorld comment string ‘//’ in one of these lines of the text file, all text to the right is

ignored.

• Blank lines, or lines whose first characters are ‘//’ will be ignored as comments.

• Field variable names must be separated by commas.

Example: the following are equivalent representations

 DATA (BUS, [NomKV, Number, // comment here

 VAngleA, VAngleB, VpuA, VpuB,

 // comments allowed here to

 // note that blank rows are ignored

 AreaNum, VAngle, ActB, Equiv, ActG,

 kV, MargCostMW, LoadMVA, // more comment

 LoadMW, LongName])

BUS (NomKV, Number, // comment here

 VAngleA, VAngleB, VpuA, VpuB,

 // comments allowed here to

 // note that blank rows are ignored

 AreaNum, VAngle, ActB, Equiv, ActG,

 kV, MargCostMW, LoadMVA, // more comment

 LoadMW, LongName)

 89

Concise Field Variable Names

Variable names within Simulator were overhauled starting with Version 19. Most no longer utilize the special location

integer and instead spell out such information in the field variable name. In general, the variable names have been made

more concise or at least more understandable. Therefore what was once called for a BRANCH object LineMW:1 is now

called MWTo. Similarly LineMW:2 is now called MWFromCalc (representing the MW flow at the from bus of branch

calculated from the terminal voltages). The only fields that continue to use the location integer are those that represent

fields for which a dynamic number of fields are available. Examples of this include the CustomInteger, CustomString, and

CustomFloat fields which use the location integer to specify which value is used. Other examples include the multiple

direction PTDF results fields PTDFMult:0, PTDFMult:1, and so on.

When writing out an auxiliary file there is an option within Simulator Version 19 called Use Concise Variable Names and

Auxiliary File Headers that determines whether to write out the DATA keyword and other arguments or to write out the

concise auxiliary file header. See the online help documentation for more details:

http://www.powerworld.com/WebHelp/#MainDocumentation_HTML/Auxiliary_Files.htm

Legacy Field Variable Naming

When listing fields, some field variable names may be augmented with a field location. These are in the format

variablename:location. One example of this is the field LineMW. For a branch, there are two MW flows associated

with the line: one MW flow at the from bus, and one MW flow at the to bus. So that the number of fields does not

become huge, the same field variable name is used for both of these values. For the from bus flow, we write LineMW:0,

and for the to bus flow, we write LineMW:1. Note that field variable names using a location of 0, such as LineMW:0, may

simply leave off the :0.

These field variable names have been updated with Concise Field Variable Names starting in Simulator version 19. These

are described in the next section. The Legacy field variable names can still be used to support existing auxiliary files or

files needed for loading into earlier versions of Simulator.

Special Naming

There are several fields that can be referred to by the user-defined name for the field rather than using the location

number. These are fields that might have their location numbers change when different auxiliary files are merged in the

same case. Referring to these by name can eliminate this possible confusion. These fields can be defined in the format

variablename:location_by_name. They can also be referred to by location number as well.

Fields that allow referring to the location by name are:

• Expressions – "CustomExpression:my expression name"

• String Expressions – "CustomExpressionStr:my string expression name"

• Custom fields (Floating Point, Integer, and String) – "CustomSingle:my custom single name". Using this

format for custom fields requires that Custom Field Descriptions be created for the fields to be used.

• Calculated Fields – "BGCalcField:my calculated field variable name"

Key Fields

Simulator uses certain fields to identify the specific object being described. These fields are called key fields. For example,

the key field for BUS objects is BusNum, because a bus can be identified uniquely by its number. The key fields for GEN

objects are BusNum and GenID. To properly identify each object, the object’s key fields must be present. They can

appear in any order in the list_of_fields (i.e. they need not be the first fields listed in list_of_fields). As long as the

key fields are present, Simulator can identify the specific object. By going to the main menu and choosing Window and

then Export Case Object Fields you will obtain a list of fields available for each object type in either Excel or text format. In

this output, the key fields will appear with asterisks *.

http://www.powerworld.com/WebHelp/#MainDocumentation_HTML/Auxiliary_Files.htm

 90

Data List

After the data argument list is completed, the Data list is given. The data section lists the values of the fields for each

object in the order specified in list_of_fields. The data section begins with a left curly brace and ends with the a

right curly brace. A few points of interest regarding the value_list:

• The value_list may take up several lines of the text file.

• Each new data object must start on its own line of text.

• When encountering the PowerWorld comment string ‘//’ in one of these lines of the text file, all text to the right

of this is ignored.

• Blank lines, or lines whose first characters are ‘//’ will be ignored as comments.

• Remember that the right curly brace must appear on its own line at the end of the data_list.

• If the file_type_specifier is CSV, the values should be separated by commas. Otherwise, separate the field

variable names using spaces.

• Strings can be enclosed in double quotes, but this is not required. You should however always inclose strings that

contain spaces (or commas) in quotes. Otherwise, strings containing commas would cause errors for comma-

delimited files, and spaces would cause errors for space-delimited formatted files.

Special Data List Entries

When specifying values in case information displays, AUX files, and script commands, there are some special formats that

can be used. These formats will allow the value of a model or object field to be used instead of specifying an explicit

value. Formats that are allowed include those described in the Special Identifiers for Model Fields in Data section as

well as others mentioned below in this section.

A string of the format "@Variablenamelegacy:location:digits:decimals"

Or "@concisename:location:digits:decimals"

will be treated as though the value of the named variable is entered in the field, with digits total and decimals digits

to the right of the decimal point. This format may be used in case information displays, AUX files, and script commands

that set values. String fields that can be converted to a valid numeric value can be used to populate either floating point

or integer fields. Floating point values that are used to populate integer fields are truncated before populating the integer

field.

When parsing an AUX file while reading, the treatment of concise and legacy variable names is automatically handled by

the parser.

There are specific fields for specific object types that allow referencing a model field definition as the value of the field.

The model field definition is specified in this syntax: @MODELFIELD<objecttype 'key1' 'key2' variablename:digits:rod>.

The model field definition and not the value of the model field itself is used as the value of the field until the field is used

for its intended purpose. The fields that can be specified in this manner include those that specify directory paths and file

locations. When an action is carried out that requires using the directory path or file location, the model field definition is

converted to the value that it represents and that gets used as the location of the file or directory path.

The following object types and fields (given by variable name) can use this special model field syntax: Transient_Options

(RSHD_Directory), PVCurve_Options (PVCOutFile, PVCStoreStatesWhere), QVCurve_Options (QVOutputDir,

QVOutputFileName), CTG_Options (PostCTGSolAuxFile, PostCTGAuxFile, HardDriveFileName), Sim_Environment_Options

(SEOSpecifiedAuxFile:0, SEOSpecifiedAuxFile:1, SEOSpecifiedAuxFile:2) and MessLog_Options (LogAutoFileName).

Special Identifiers for Model Fields in Data

The following special formats can be used in case information displays, AUX files, and script commands that set values.

They are also used in some script commands as part of parameters that input text. These formats will allow the value of a

model or object field to be used instead of specifying an explicit value.

 91

A string in the format "&ModelExpressionName:digits:decimals" will be treated as though the value of the

named model expression is entered in the field, with digits total and decimals digits to the right of the decimal point.

If no digits or decimals are specified, 7 decimal places will be used. Trailing zeros will be removed if no decimals are

specified.

A string of the format "&Objecttype 'key fields' variablenamelegacy:location:digits:decimals"

Or "&Objecttype 'key fields' concisename:digits:decimals"

will be treated as though the value of the named object and object field is entered in the field, with digits total and

decimals digits to the right of the decimal point. If no digits or decimals are specified, 7 decimal places will be used.

Trailing zeros will be removed if no decimals are specified.

Using Labels for Identification

Most data objects (such as buses, generators, loads, switched shunts, transmission lines, areas, zones, and interfaces) may

have an alternative names assigned to them. These alternative names are called labels. Labels allow you to refer to

equipment in the model in a way that may be unique to your organization. Labels may thus help clarify which elements

are described by a particular set of data, especially when the short names employed by the power system model prove

cryptic. Furthermore, since labels are likely to change less frequently than bus numbers, and since a label must, by

definition, identify only one power system component, they may function as an immutable key for importing data from

auxiliary files into different cases, even when bus numbering schemes change between the cases. Labels must be unique

for devices of the same type, but the same label can be used for a device of a different type.

Information dialogs corresponding to buses, generators, loads, switched shunts, transmission lines, areas, zones, and

interfaces feature a button called Labels. If you press this button, the device’s Label Manager Dialog will appear. The Label

Manager Dialog lists the labels associated with the device. You can delete a label from the list by selecting it and pressing

the delete key on the keyboard or clicking the Delete button. You may add a label to the device by typing its name in the

textbox and pressing the Add New button. You will not be allowed to add a Label that already exists for the same type of

device. A single power system device may have multiple labels, but each label may be associated with only one device of a

given type. For example, a bus could have the label Bus North while a generator could also have the same label, but there

could not be another bus or generator with this same label.

You also may designate a particular label to be the primary label for the device by checking the box Primary before adding

the label. Alternatively, you can select the device from the list and click the Make Primary button. A device’s primary label

is the one that is listed first in the Labels (All) field (variablename = LabelsAll) in a Case Information Display. This

field lists all labels assigned to a device as a comma-delimited string. Any label can be used to import data from auxiliary

data files.

Labels can be used to map data from an auxiliary data file to a power system device. Recall that auxiliary data files require

you to include a device’s key fields in each data record so that data may be mapped to the device. Labels provide an

alternative key. Instead of supplying the bus number to identify a bus, for example, you can supply one of the bus’s labels.

The label will enable Simulator to associate the data with the device associated with that label. This mechanism performs

most efficiently when the primary label is used, but other labels will also provide the mapping mechanism. The Label (for

use in input from AUX or Paste) field (variablename = Label) is used for importing data using labels and is blank

when viewing in a case information display. Keep in mind that all devices read via an auxiliary file using the label field

should have a non-blank label. Otherwise, information for that device will not be read. Even if the primary or secondary

key fields are provided with the device, as long as the label field is present, that is the only field that will be used to

identify the device. New devices cannot be created by simply identifying them by label. Either the primary or secondary

key fields must be present to create a new device and the label field should not be present.

Again, it is important to remember this: a single power system device may have multiple labels, but each label may be

associated with only one device of a particular type. This is the key to enabling data to be imported from an auxiliary file

using labels.

 92

Saving Auxiliary Files Using Labels

All devices that can be identified by labels will have the Labels (All) and Label (for use in input from AUX or Paste) fields

available in their case information displays. In order to save auxiliary files that identify devices by label, the two label fields

should be added to the case information display prior to saving the data in an auxiliary file. Because the Label (for use in

input from AUX or Paste) field will be blank when saved in the auxiliary file, this field must be populated with one of the

labels in the Labels (All) field before loading the auxiliary file back in. Keep in mind that devices with blank labels cannot

be identified when loading in an auxiliary file, so avoid saving auxiliary files by label if all devices do not have labels. Note

that when saving out an entire case as an auxiliary file, the field "AllLabels" is included for each object type that allows

labels and has some labels defined.

Many devices require SUBDATA sections. These sections have custom formats specific to the type of information that they

contain. When saving auxiliary files with devices that require SUBDATA sections, the user can choose to use primary or

secondary key fields or labels to identify devices in the SUBDATA sections. The user will either be prompted when saving

the devices, or there is an option to change the key field to use when saving subdata sections on the PowerWorld

Simulator Options dialog under the Case Information Displays category. When choosing to use labels, if a device has a

label, it will be used. If it is a device that can be identified by buses and bus labels exist, bus labels will be used. Finally, if

the device does not have a label and the buses do not have labels, the primary key for the device will be used for

identification.

Devices that have SUBDATA sections that contain other devices that can be identified by labels include: contingencies,

interfaces, injection groups, post power flow solution actions, and owners.

The setting to choose which identifier to use for the SUBDATA sections does not just apply to SUBDATA sections. Often

when saving groups of options, this setting will apply to everything being saved with those options and not just the

SUBDATA sections. This includes contingency options, ATC options, limit monitoring settings, and PVQV options. In these

cases, there will be a prompt asking the user to decide which identifier to use in the auxiliary file.

Loading Auxiliary Files SUBDATA Sections Using Labels

The various SUBDATA sections that represent references to other objects can also be read using labels. Examples include

contingencies, interfaces, injection groups, post power flow solution actions, and owners. When reading a

SUBDATA section such as this, PowerWorld makes no assumption ahead of time about what identification was used to

write this SUBDATA section. Instead, an order of precedence for the identification is as follows

 Identification Explanation Example

1 Key Fields assumes that the strings represent Key Fields BRANCH 8 9 1

2 Secondary

Key Fields

assumes that the strings represent Secondary

Key Fields

BRANCH Eight_138 Nine_230 1

3 Labels for

component

objects

the key/secondary key fields for some objects

consist of references to other objects. An

example of this is the BRANCH object that is

described by the From Bus, To Bus, and

Circuit ID. This assumes that labels of the

component objects are used.

BRANCH Label8 Label9 1

4 Labels Assumes that the string represents one of the

Labels of the object

BRANCH LabelForBranch

 93

Special Use of Labels in SUBDATA

There are a few special cases where objects have fields that identify other devices. These devices can be identified by label

but not in the conventional means because the label field applies to the object that contains the device and a SUBDATA

section is not necessary. These special cases include: (Note all fields given below are by variable name because the use of

labels is most relevant with auxiliary files.)

ATC Scenarios

ATC Scenario change records usually contain primary key fields to identify the devices that should be

adjusted during the scenario. If using labels, these primary key fields will be replaced with a single Label

field. The use of this field is different because the Label field refers to the device in the change record and

not to the change record itself. When labels are used with ATC scenarios, device labels only can be used.

Bus labels cannot be used to identify devices for which no label exists but a bus label does.

ATC Extra Monitors

ATC Extra Monitors identify either branches or interfaces to monitor during the ATC analysis. These

devices are identified in the WhoAmI field of ATC Extra Monitor records. Usually, the WhoAmI field is a

special format that contains key field tags. Optionally, this field can use the label of the device for the

extra monitor. If the device label is not available, the standard format will be used. There is no option to

use bus labels if they exist and the device labels do not.

Model Conditions

Devices in Model Conditions are usually identified by the WhoAmI field which is in a special format that

contains key field tags. Optionally, this field can use the label of the device. If the device label does not

exist, the standard format will be used. There is no option to use bus labels if they exist and the device

labels do not.

Model Expressions

Model Expressions contain Model Fields. Model Fields are identified by the WhoAmI fields in the Model

Expressions. Usually, the WhoAmI fields are in a special format that contains key field tags. Optionally,

these fields can use the label of the device associated with the Model Field. If the device does not exist,

the standard format will be used. There is no option to use bus labels if they exist and the device labels do

not.

Bus Load Throw Over Records

Bus Load Throw Over Records are used with contingency analysis. These records have an option to

identify the bus to which the load will be transferred by either number or name_kV combination. If

choosing to identify objects by label, the BusName_NomVolt:1 field will contain the label of the bus

instead of the name_kV combination. Bus Load Throw Over Records will be saved in an auxiliary file if

choosing to Save settings on the Contingency Analysis dialog.

Injection Group Participation Points

All participation points and the injection groups to which they belong can be listed on the Injection Group

Display. Load, generator, bus, and shunt devices that can be assigned to a participation point must be

identified by bus and ID. The bus can be identified by either the number or name. When identifying by

name, the BusName_NomVolt field is used to provide the name_kV combination for the bus. If choosing

to identify devices by label, this field instead will contain the label of the device. If the device does not

have a label but the bus does, the bus label will be used instead in conjunction with the ID of the device.

Even if the device does contain a label, the ID field must be included in any auxiliary file that is going to

be loaded because it is a key field. Injection groups can be included in other injection groups. Injection

groups can be identified by label, even though this is not a normal thing to do. If any injection groups

have labels and these injection groups are included in other injection groups, their labels will also appear

in the BusName_NomVolt field. If they do not have labels, they will be identified by the injection group

name that appears in the PPntID field.

 94

SubData Sections

The format described thus far works well for most kinds of data in Simulator. It does not work as well however for data

that stores a list of objects. For example, a contingency stores some information about itself (such as its name), and then a

list of contingency elements, and possible a list of limit violations as well. For data such as this, Simulator allows

<SubData>, </SubData> tags that store lists of information about a particular object. This formatting looks like the

following

object_type (list_of_fields)

{

value_list_1

 <SUBDATA subobject_type1>

 precise format describing an object_type1

 precise format describing an object_type1

 .

 .

 .

 </SUBDATA>

 <SUBDATA subobject_type2>

 precise format describing an object_type2

 precise format describing an object_type2

 .

 .

 .

 </SUBDATA>

value_list_2

 .

 .

 .

value_list_n

}

Note that the information contained inside the <SubData>, </SubData> tags may not be flexibly defined. It must be

written in a precisely defined order that will be documented for each SubData type. The description of each of these

SubData formats follows.

 95

ATC_Options

RLScenarioName

GScenarioName

IScenarioName

These three sections contain the pretty names of the RL Scenarios, G Scenarios, and I Scenarios. Each line

consists of two values: Scenario Number and a name string enclosed in quotes.

Scenario Number : The scenarios are number 0 through the number of scenarios minus 1.

Scenario Name : These represent the names of the various scenarios.

Example:
<SUBDATA RLScenarioName>

//Index Name

 0 "Scenario Name 0"

 1 "Scenario Name 1"

</SUBDATA>

ATCMemo

This section contains the memo text for the ATC analysis.

Example:
<SUBDATA ATCMemo>

//Memo

"Comments for the ATC analysis"

</SUBDATA>

ATCExtraMonitor

ATCFlowValue

This subdata section contains a list of a flow values for specified transfer levels. Each line consists of two

values: Flow Value (flow on the monitored element) and a Transfer Level (in MW).

Flow Value : Contains a string describing which monitor this belongs to.

Transfer Level : Contains the value for this extra monitor at the last linear iteration.

Example:
<SUBDATA ATCFlowValue>

//MWFlow TransferLevel

 94.05 55.30

 105.18 80.58

 109.02 107.76

</SUBDATA>

 96

ATCScenario

TransferLimiter

This subdata section contains a list of the TransferLimiters for this scenario. Each line contains fields

relating one of the Transferlimiters. The fields are written out in the following order:

Limiting Element : Contains a description of the limiting element. The possible values are:

"PowerFlow Divergence"

"AREA num"

"SUPERAREA name"

"ZONE num"

"BRANCH num1 num2 ckt"

"INJECTIONGROUP name"

"INTERFACE name"

Limiting Contingency : The name of the limiting contingency. If blank, then this means it’s a

limitation in the base case.

MaxFlow : The transfer limitation in MW in per unit.

PTDF : The PTDF on the limiting element in the base case (not in percent).

OTDF : The OTDF on the limiting element under the limiting contingency.

LimitUsed : The limit which was used to determine the MaxFlow in per unit.

PreTransEst : The estimated flow on the line after the contingency but before the

transfer in per unit.

MaxFlowAtLastIteration

 : The total transfer at the last iteration in per unit.

IterativelyFound : Either YES or NO depending on whether it was iteratively determined.

Example:
<SUBDATA TransferLimiter >

 "BRANCH 40767 42103 1" "contin" 2.84 -0.0771 -0.3883 -4.35 -4.35 -0.01 "-55.88"

YES

 "BRANCH 42100 42321 1" "Contin" 4.42 0.1078 0.5466 6.50 5.64 1.57 " 22.59" NO

 "BRANCH 42168 42174 1" "Contin" 7.45 -0.0131 -0.0651 -1.39 -1.09 4.60 "-33.31" NO

 "BRANCH 42168 42170 1" "Contin" 8.54 0.0131 0.0651 1.39 1.02 5.69 " 26.10" NO

 "BRANCH 41004 49963 1" "Contin" 9.17 -0.0500 -0.1940 -4.39 -3.16 6.32 " 68.73" NO

 "BRANCH 46403 49963 1" "Contin" 9.53 0.0500 0.1940 4.46 3.16 6.68 "-68.68" NO

 "BRANCH 42163 42170 1" "Contin" 10.14 -0.0131 -0.0651 -1.39 -0.92 7.29 "-15.58" NO

</SUBDATA>

ATCExtraMonitor

This subdata section contains a list of the ATCExtraMonitors for this scenario. Each line contains three

fields relating one of the ATCExtraMonitors. The first field describes the ATCExtraMonitor which this

subdata corresponds to. The second and third variables are the initial value and sensitivity for this extra

monitor for the sceanario. An optional fourth field may be included if we are using one of the iterated

ATC solution options. This field must be the String "ATCFlowValue".

Monitor Description : Contains a string describing which monitor this belongs to.

InitialValue : Contains the value for this extra monitor at the last linear iteration.

Sensitivity : Contains the senstivity of this monitor.

ATCFlowValue : A string which signifies that a block will follow which stores a list of flow

values for specified transfer levels. Each line of the block consists of two

values: Flow Value (flow on the monitored element) and a Transfer Level

(in MW). The block is terminated when a line of text that starts with

‘END’ is encountered.

 97

Example:
<SUBDATA ATCExtraMonitor>

 "Interface<KEY1>Left-Right</KEY1>" 40.0735 0.633295

 "Branch<KEY1>2</KEY1><KEY2>5</KEY2><KEY3>1</KEY3>" 78.7410 0.266589

</SUBDATA>

AUXFileExportFormatData

DataBlockDescription

This subdata section is used to define the objects that should be included in an auxiliary file along with

their fields, subdata sections, and any filter used to specify which objects should be included. Each line

contains the following:

ObjectType : Name of the object to include in the auxiliary file.

[FieldList] : List of fields to include. Must be enclosed in brackets. This list can either

be space-delimited or comma-delimited.

[SubdataList] : List of subdata sections to include. This list must be enclosed in brackets

and can be either space-delimited or comma-delimited. Include empty

brackets to not include subdata or for objects that do not have any

subdata sections.

"Filter" : Description of the filter to use for determining which objects to include.

This must be enclosed in double quotes. If no filter is to be used, empty

double quotes should be included. Valid entries are: "", "filtername",

"AREAZONE", and "SELECTED". See the Using Filters in Script Commands

section for more information on specifying the filtername.

Example:
<SUBDATA DataBlockDescription>

 // ObjectType [FieldList] [SubdataList] "Filter"

 Area [AreaName, AreaNum] [] "SELECTED"

 Gen [BusNum, BusName, GenID] [BidCurve, ReactiveCapability] ""

</SUBDATA>

AUXFileExportFormatDisplay

DataBlockDescription

Same format as for the AUXFileExportFormatData subdata section.

Example:
<SUBDATA DataBlockDescription>

 // ObjectType [FieldList] [SubdataList] "Filter"

 DisplayArea [AreaName, AreaNum, SOAuxiliaryID] [] ""

 DisplayTransmissionLine [BusNum, BusNum:1, LineCircuit, SOAuxiliaryID]

 [Line] "Nominal Voltage > 138 kV"

</SUBDATA>

BGCalculatedField

Condition

Calculated Fields allow you to define a calculation over most network and aggregation objects along with

a few other types of objects. The calculation can then be used to show an aggregation calculation on

objects that link to these calculation objects in some manner. Part of the definition is a filter which

specifies which objects to operate over. This subdata section is identical to the Condition subdata section

of the Filter object type.

 98

Bus

MWMarginalCostValues

MvarMarginalCostValues

LPOPFMarginalControls

These three sections contain specific values computed for an OPF solution. In MWMarginalCostValues or

MvarMarginalCostValues these specific values are the MW or Mvar marginal prices for each constraint. In

LPOPFMarginalControls the values are the sensitivities of the controls with respect to the cost of each bus.

Example:
<SUBDATA MWMarginalCostValues>

 //Value

 16.53

 0.00

 21.80

</SUBDATA>

BusViewFormOptions

BusViewBusField

BusViewFarBusField

BusViewGenField

BusViewLineField

BusViewLoadField

BusViewShuntField

The values represent specific fields on the custom defined bus view onelines. Each line contains two

values:

Location : The various locations on the customized bus view contain slots for fields.

This is the slot number.

FieldDescription : This is a string enclosed in double quotes. The string itself is delimited

by the @ character. The string contains five values:

Name of Field : The name of the field. Special fields that appear

on dialog by default have special names.

Otherwise these are the same as the fieldnames of

the AUX file format (for the "other fields" feature

on the dialogs).

Total Digit : Number of total digits for a numeric field.

Decimal Points : Number of decimal points for a numeric field.

Color : This is the color of the field. It is not presently

used.

Increment Value : This is the "delta per mouse" click for the field.

Example:
<SUBDATA BusViewLineField>

 0 "MW Flow@6@1@0@0"

 1 "MVar Flow@6@1@0@0"

 2 "MVA Flow@6@1@0@0"

 3 "BusAngle:1@6@2@0@0"

</SUBDATA>

 99

ColorMap

ColorPoint

A colorpoint is simply described by a real number (between 0 and 100) indicating the percentage

breakpoint, an integer describing the color, and a field indicating if the color should be used or the

contour should be transparent. These three values are written on a single line of text. Each line contains

two values:

cmvalue : Real number between 0 and 100 (minimum to maximum value).

cmcolor : Integer between 0 and 16,777,216. Value is determined by taking the

red, green and blue components of the color and assigning them a value

between 0 and 255. The color is then equal to red + 256*green +

256*256*blue.

cmalpha : Integer between 0 and 255, where only 0 and 255 are valid values. A

value of 0 indicates that the color point is transparent, while a value of

255 indicates that the color point is opaque. If the alpha channel is

omitted, a default value of 255 (opaque) will be assigned.

Example:
<SUBDATA ColorPoint>

 // Value Color Alpha

 100.0000 127 255

 62.5000 65535 255

 50.0000 8388479 0

 12.5000 16711680 0

 0.0000 8323072 255

</SUBDATA>

Contingency

CTGElementAppend

Normally when reading in contingency definitions, the CTGElement SubData section is used to define the

list of elements. When reading a CTGElement SubData section, all existing elements of the contingency

are deleted are replaced with the ones read from the file. Using the CTGElementAppend as the SubData

section will modify this behavior so that the elements are appended to the existing ones instead of

deleted.

CTGElement

A contingency element is described by up to the following entries. All entries must be on a single line of

text:

Action : String describing the action associated with this element. See below for

actions available.

ModelCriteria : This is the name of a ModelFilter or ModelCondition under which this

action should be performed. This entry is optional. If it is not specified,

then a blank (or no criteria) is assumed. If you want to enter a Status,

then use must specify "" as the ModelCriteria.

 100

Status : The following options are available:

CHECK : perform action if ModelCriteria is true

ALWAYS : perform action regardless of ModelCriteria

NEVER : do not perform action

TOPOLOGYCHECK : perform action if ModelCriteria is true following

implementation of other actions and before

solving the power flow

POSTCHECK : perform action if ModelCriteria is true following

implementation of other actions and solving the

power flow

SOLUTIONFAIL : perform the action if ModelCriteria is true or not

defined following the failure of the power flow

solution.

 This entry is optional. If it is not specified, then CHECK is assumed.

InclusionFilter : This entry is optional and will only exist for elements of RemedialAction

or GlobalContingencyActions objects. This is the name of an advanced

filter or device filter that gets applied to each contingency. If the

contingency meets the filter, that contingency will include this element.

Otherwise, the element will be ignored.

TimeDelay : This entry is optional. If not specified, 0 is assumed. This entry will only

exist for elements of Contingency, RemedialAction, or

GlobalContingencyActions objects. This is the time delay in seconds to

wait before the action takes place.

Persistent : This entry is optional. It not specified, NO is assumed. Normally after a

contingency action has been implemented it will not be applied again.

Setting this option to YES to mark an action as persistent will change this

behavior. Any action marked as persistent that also has a Status of

TOPOLOGYCHECK, POSTCHECK, or SOLUTIONFAIL will be applied in the

appropriate section of the overall contingency process any time that its

ModelCriteria is met. An exception is that a SOLUTIONFAIL element will

only remain persistent until a solution is successfully achieved.

ArmingCriteria : This entry is optional and will only exist for elements of RemedialAction

objects. This is the name of a ModelFilter or ModelCondition under

which this action should be armed. If it is not specified, then a blank (or

no criteria) is assumed. If you want to enter a ArmingStatus, then use

must specify "" as the ArmingCriteria.

ArmingStatus : This entry is optional and will only exist for elements of RemedialAction

objects. If not specified, CHECK is assumed. The following options are

available:

CHECK : action is armed if ArmingCriteria is true

ALWAYS : action is considered armed regardless of ArmingCriteria

NEVER : action is not armed

Comment : All text to the right of the comment symbol (//) will be saved with the

CTGElement as a comment.

Possible Actions:

Many actions have a value field that can be specified. This value can be expressed in three ways:

1. A numerical value that will be used directly.

2. The variablename of a field for the object in the action preceded by the tag <Field>. This field

will be evaluated and that value will be used. Including the keyword REF in the appropriate place

in the action string will cause the field to be evaluated in the contingency reference case.

Otherwise, the field will be evaluated at the moment the action is implemented.

 101

3. The name of a Model Expression preceded by the tag <Expression>. Single quotes should

enclose the entirety of the tag and the name if the name contains spaces. The model expression

will be evaluated and the result will be used as the value. Including the keyword REF in the

appropriate place in the action string will cause the model expression to be evaluated in the

contingency reference case. Otherwise, the model expression will be evaluated at the moment

the action is implemented.

Transmission Line or Transformer outage or insertion

BRANCH | bus1# bus2# ckt | OPEN

 | | CLOSE

 | | OPENCBS

 | | CLOSECBS

 | | SET_TO | value | LimitMVA | REF

Takes branch out of service, or puts it in service. The contingency rating of the branch can also be set for

the duration of the contingency using the SET_TO action. Note: bus# values may be replaced by a string

enclosed in single quotes where the string is the name of the bus followed by an underscore character

and then the nominal voltage of the bus. These values may also be replaced by a string enclosed in single

quotes which represents the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be

replaced by the label of the branch.

Generator, Load, or Switched Shunt outage or insertion

GEN | bus# id | OPEN, CLOSE, OPENCBS, or CLOSECBS

LOAD | bus# id | OPEN, CLOSE, OPENCBS, or CLOSECBS

SHUNT | bus# id | OPEN, CLOSE, OPENCBS, or CLOSECBS

INJECTIONGROUP | name | OPEN, CLOSE, OPENCBS, or CLOSECBS

Takes a generator, load, or shunt out of service, or puts it in service. If specifying an injection group, the

status of all devices in the injection group will be changed. Note: bus# values may be replaced by a string

enclosed in single quotes where the string is the name of the bus followed by an underscore character

and then the nominal voltage of the bus. These values may also be replaced by a string enclosed in single

quotes which represents the label of the bus. Also, the sequence [bus1# ckt] or [name] may be replaced

by the label of the device.

Generator, Load or Switched Shunt movement to another bus

For the following set of actions, all of the object types can use the same action keywords which are

associated with the value keyword following the actual value. The move is based on specifying a bus:
GEN | bus1# | MOVE_P_TO | bus2# | value | MW | REF

LOAD | | MOVE_Q_TO | | | MVR |

SHUNT | | | | | |

For the following set of actions, all of the object types can use the same action keywords which are

associated with the value keyword following the actual value. The move is based on specifying a

particular device:
GEN | bus1# id | MOVE_P_TO | bus2# | value | MW | REF

LOAD | | MOVE_Q_TO | | | MVR |

SHUNT | | | | | |

Generator actions that move a generator by a percentage only apply to the generator MW:
GEN | bus1# | MOVE_P_TO | bus2# | value | PERCENT | REF

GEN | bus1# id | MOVE_P_TO | bus2# | value | PERCENT | REF

 102

The following set of actions are used for specifying a load move by maintaining a constant power factor:
LOAD | bus1# | MOVE_PQ_TO | bus2# | value | MW | REF

LOAD | bus1# id | MOVE_PQ_TO | bus2# | | MW |

The following set of actions apply to loads and shunts and are used to move a percentage of the entire

MW and Mvar output. The move is based on specifying a bus:
LOAD | bus1# | MOVE_PQ_TO | bus2# | value | PERCENT | REF

SHUNT | | | | | |

The following set of actions apply to loads and shunts and are used to move a percentage of the entire

MW and Mvar output. The move is based on specifying a particular device:
LOAD | bus1# id | MOVE_PQ_TO | bus2# | value | PERCENT | REF

SHUNT | | | | | |

Use to move generation, load or shunt at a bus1 over to bus2. This can be used on a bus or specific

device basis in specifying what to move. Note: bus# values may be replaced by a string enclosed in single

quotes where the string is the name of the bus followed by an underscore character and then the nominal

voltage of the bus. These values may also be replaced by a string enclosed in single quotes which

represents the label of the bus. When identifying specific devices, the device label can replace the bus

number and device id.

Generator, Load or Switched Shunt set or change a specific value

For the following set of actions, all of the object types can use the same action keywords which are

associated with the value keyword following the actual value. These changes are based on specifying a

bus:
GEN | bus# | SET_P_TO | value | MW | REF

LOAD | | SET_Q_TO | | MVR |

SHUNT | | CHANGE_P_BY | | MW |

 | | CHANGE_Q_BY | | MVR |

For the following set of actions, all of the object types can use the same action keywords which are

associated with the value keyword following the actual value. These changes are based on specifying a

bus:
GEN | bus# id | SET_P_TO | value | MW | REF

LOAD | | SET_Q_TO | | MVR |

SHUNT | | CHANGE_P_BY | | MW |

 | | CHANGE_Q_BY | | MVR |

The following set of actions are used to set or change the MW output of generation at a bus by a

percentage:
GEN | bus# | SET_P_TO | value | PERCENT | REF

GEN | | CHANGE_P_BY | | |

The following set of actions are used to set or change the MW output of a particular generator by a

percentage:
GEN | bus# id | SET_P_TO | value | PERCENT | REF

GEN | | CHANGE_P_BY | | |

The following set of actions apply to loads and shunts and are used to set or change a percentage of the

entire MW and Mvar output. This based on specifying a bus:
LOAD | bus# | SET_PQ_TO | value | PERCENT | REF

SHUNT | | CHANGE_PQ_BY | | |

The following set of actions apply to loads and shunts and are used to set or change a percentage of the

entire MW and Mvar output. This based on specifying a specific device:
LOAD | bus# id | SET_PQ_TO | value | PERCENT | REF

SHUNT | | CHANGE_PQ_BY | | |

The following set of actions are used to specify a load set or change by maintaining a constant power

factor. This is based on specifying a bus:
LOAD | bus# | SET_PQ_TO | value | MW | REF

 | | CHANGE_PQ_BY | | MW |

The following set of actions are used to specify a load set or change by maintaining a constant power

factor. This is based on specifying a specific load:

 103

LOAD | bus# id | SET_PQ_TO | value | MW | REF

 | | CHANGE_PQ_BY | | MW |

The following set of actions apply to generators and shunts and are used to set or change the setpoint

voltage of the devices at the specified bus:
GEN | bus# | SET_VOLT_TO | value | PU | REF

SHUNT | |CHANGE_VOLT_BY | | |

The following set of actions apply to generators and shunts and are used to set or change the setpoint

voltage of the specified device:
GEN | bus# id | SET_VOLT_TO | value | PU | REF

SHUNT | |CHANGE_VOLT_BY | | |

Note: bus# values may be replaced by a string enclosed in single quotes where the string is the name of

the bus followed by an underscore character and then the nominal voltage of the bus. These values may

also be replaced by a string enclosed in single quotes which represents the label of the bus. When

identifying specific devices, the device label can replace the bus number and device id.

Bus outage causes all lines connected to the bus to be outage

BUS | bus# | OPEN

 | OPENCBS

Takes all branches connected to the bus out of service. Also outages all generation, load, or shunts

attached to the bus. Note: bus# values may be replaced by a string enclosed in single quotes where the

string is the name of the bus followed by an underscore character and then the nominal voltage of the

bus. These values may also be replaced by a string enclosed in single quotes which represents the label of

the bus.

Interface outage or insertion

INTERFACE | name | OPEN

 | CLOSE

 | OPENCBS

 | CLOSECBS

Takes all monitored branches in the interface out of service, or puts them all in service. Open actions will

also open all generators and loads contained in the interface including generators and loads inside any

injection groups or other interfaces. Note: the [name] may be replaced by the label of the interface.

Interface change specific value

INTERFACE | name | CHANGE_P_BY | value | Option | REF | PPREF

 | SET_P_TO | | | |

The following Option settings are allowed to set or change the MW flow of an interface by or to a

particular value:
MWMERITORDEROPEN

 : Value will be interpreted as the amount of MW flow change or new MW

flow. The element in the interface with the highest participation factor

will be opened, followed by the second generator and so on. This will

continue until the amount of MW flow opened is as close to the desired

amount as possible without exceeding the amount of MW flow open. If

an element will cause a change in flow that is not in the desired direction,

that element is not opened and the next element is examined.

PERCENTMERITORDEROPEN or %MERITORDEROPEN

 : Same as MWMERITORDEROPEN except that the value will be interpreted

as percentage of the contingency reference state MW flow.
MWMERITORDEROPENEXCEED

 : Same as MWMERITORDEROPEN except that the amount of MW opened is

allowed to exceed the desired amount of change. Interface elements will

be opened in merit order until the desired amount is met or exceeded.

PERCENTMERITORDEROPENEXCEED or %MERITORDEROPENEXCEED

 104

 : Same as MWMERITORDEROPENEXCEED except that the value will be

interpreted as percentage of the contingency reference state MW

injection.
MWEFFECTOPEN

 : Value that is specified with the action is the desired MW Effect that the

action should have. The participation factors defined with the interface

elements will be interpreted as effectiveness factors akin to transfer

distribution factors. These factors are supplied as input by the user when

defining the interface. The effectiveness factors are multiplied by the

present MW flow of elements in the interface to determine how much

effect they will have if dropped. The flow of an element is determined by

its MW flow multiplied by the Weighting factor specified with the

element. If the effect of a particular element is in the opposite direction

of the desired effect, that element is skipped. The action will find the

smallest number of elements to drop that results in a total MW Effect

that is within 5% of the desired MW Effect, but does not exceed the

desired MW Effect.

 This option is not valid with SET_P_TO actions.
MWEFFECTOPENEXCEED

 : Same as MWEFFECTOPEN but it will ensure that the total MW Effect is

within 5% of the total desired MW Effect and also meets or exceeds the

desired MW Effect.

 This option is not valid with SET_P_TO actions.
MWBESTFITOPEN

 : Value will be interpreted as the amount of MW flow change or new MW

flow. When using this option the participation factors of interface

elements do not impact which elements are opened. The flow on an

element, which is determined by its MW flow multiplied by the weighting

factor specified with the element, is used to determine which elements

should be opened. If the follow on an element is in the appropriate

direction to achieve the desired flow change on the interface, that

element is eligible fo being opened. To determine if an element will

actually be opened, the best fit algorithm attempts to determine the

combination of elements that will achieve the desired flow change by

opening the least amount of elements and achieving an actual flow

change within 5% fo the desired flow change without exceeding the

desired amount.
MWBESTFITOPENEXCEED

 : Same as MWBESTFITOPEN except that the MW flow change is allowed to

exceed the desired amount of change.

PERCENTBESTFITOPEN or %BESTFITOPEN

 : Same as MWBESTFITOPEN except that the value will be interpreted as

percentage of the contingency reference state MW flow.

PERCENTBESTFITOPENEXCEED or %BESTFITOPENEXCEED

 : Same as PERCENTBESTFITOPEN except that the MW flow change is

allowed to exceed the desired amount of change.

When using an action that requires participation factors, an optional parameter PPREF can be specified.

This indicates that the participation factors should be determined in the contingency reference case.

Interfaces can contain other interfaces. The treatment of interfaces within interfaces is to open the entire

contained interface when using the MWMERITORDEROPEN type actions.

 105

Notes: The [name] may be replaced by the label of the interface.

Line Shunt outage or insertion

LINESHUNT | bus1# bus2# bus# ckt | OPEN

 | CLOSE

Takes a line shunt out of service, or puts it in service. bus1# and bus2# identify the line that the line shunt

is on and bus# identifies the side of the line that the line shunt is on. bus# values may be replaced by a

string enclosed in single quotes where the string is the name of the bus followed by an underscore

character and then the nominal voltage of the bus. bus# values may also be replaced by a string enclosed

in single quotes that represents the label of the bus. The sequence [bus1# bus2#] may be replaced by the

label of the line to which the line shunt is attached.

Injection Group outage or insertion

INJECTIONGROUP | name | OPEN

 | CLOSE | value | REF | PPREF

 | OPENCBS

 | CLOSECBS

 | OPEN | value | REF | PPREF

Takes all devices in the injection group out of service, or puts them all in service.

The OPEN action will open all devices in the injection group if no value is specified. If a value is specified,

only that number of devices will be opened in the order of highest to lowest participation factor. The

CLOSE action will close all devices in the injection group if no value is specified. If a value is specified,

only that number of devices will be closed in the order of highest to lowest participation factor. When

using an action that requires participation factors, an optional parameter PPREF can be specified. This

indicates that the participation factors should be determined in the contingency rerference case. This will

only be done for participation points using an AutoCalcMethod that indicates the factor should be

dynamically determined and the AutoCalc field is set to YES for the participation point.

The [name] may be replaced by the label of the injection group. Bus participation points will be

completely ignored in this process.

Injection Group change specific value

INJECTIONGROUP | name | CHANGE_P_BY | value | Option | REF | PPREF

 | SET_P_TO | | | |

The following Option settings are allowed to set or change the MW generation/load in an injection

group by or to a particular value:

MW : Value will be interpreted as the amount of MW injection change or new

MW injection. Each participation point in the injection group will be

changed in proportion to the participation factors of the group.

PERCENT or % : Same as MW except that the value will be interpreted as percentage of

the contingency reference state MW injection.

MWMERITORDER : Value will be interpreted as the amount of MW injection change or new

MW injection. Both generator and load points will be modified in the

injection group. Elements will be adjusted in order of highest

participation factor to lowest before moving to the next element. This

process continues until the desired injection is met. Generators will not

be opened in this process, which means all online generators will

continue to provide Mvar support. Loads that have both their minimum

and maximum MW limits set to zero will not be allowed to increase.

They can only decrease towards 0.

PERCENTMERITORDER or %MERITORDER

 : Same as MWMERITORDER except that the value will be interpreted as

percentage of the contingency reference state MW injection.

 106

MWMERITORDEROPEN

 : Value will be interpreted as the amount of MW injection change or new

MW injection. Both generator and load points can be modified in the

injection group. If the MW injection change is negative, the generator in

the injection group with the highest participation factor will have its

status changed to Open, followed by the second generator and so on.

This will continue until the amount of MW opened is as close to the

desired amount as possible without exceeding the desired amount of

drop. If the MW injection change is positive, loads will be opened in the

same manner. If an element would cause the desired gen drop amount

to be exceeded, that element is skipped and the next element in merit

order is processed. If the change requested is positive and there are no

loads in the injection group, generators will be increased toward their

maximum MW output in the same manner as MWMERITORDER as though

the OPEN option was not specified. If the change requested is negative

and there are no generators in the injection group, loads will be

increased toward their maximum MW output in the same manner as

MWMERITORDER as though the OPEN option was not specified.

PERCENTMERITORDEROPEN or %MERITORDEROPEN

 : Same as MWMERITORDEROPEN except that the value will be interpreted

as percentage of the contingency reference state MW injection.
MWMERITORDEROPENEXCEED

 : Same as MWMERITORDEROPEN except that the amount of MW opened is

allowed to exceed the desired amount of change. Generators or loads

will be opened in merit order until the desired amount is met or

exceeded.

PERCENTMERITORDEROPENEXCEED or %MERITORDEROPENEXCEED

 : Same as MWMERITORDEROPENEXCEED except that the value will be

interpreted as percentage of the contingency reference state MW

injection.

MWEFFECTOPEN : Value that is specified with the action is the desired MW Effect that the

action should have. The participation factors defined with the Injection

Group will be interpreted as effectiveness factors akin to transfer

distribution factors. These factors are supplied as input by the user when

defining the injection group. The effectiveness factors are multiplied by

the present output of generators (or loads) in the injection group to

determine how much effect they will have if dropped. The action will find

the smallest number of generators (or loads) to drop which results in a

total MW Effect that is within 5% of the desired MW Effect, but does not

exceed the desired MW Effect.

 This option is not valid with SET_P_TO actions.
MWEFFECTOPENEXCEED

 : Same as MWEFFECTOPEN but it will ensure that the total MW Effect is

within 5% of the total desired MW Effect and also meets or exceeds the

desired MW Effect.

 This option is not valid with SET_P_TO actions.

MWBESTFITOPEN : Value will be interpreted as the amount of MW injection change or new

MW injection. When using this option the participation factors do not

impact which elements are opened. All generators or loads defined with

the injection group can participate if they are online. Specifially which

generators or loads depends on an algorithm that attempts to get the

actual injection change within 5% of the desired injection change by

 107

opening the smallest number of generators or loads without exceeding

the desired amount.
MWBESTFITOPENEXCEED

 : Same as MWBESTFITOPEN except that the MW injection change is

allowed to exceed the desired amount of change.

PERCENTBESTFITOPEN or %BESTFITOPEN

 : Same as MWBESTFITOPEN except that the value will be interpreted as

percentage of the contingency reference state MW injection.

PERCENTBESTFITOPENEXCEED or %BESTFITOPENEXCEED

 : Same as PERCENTBESTFITOPEN except that the MW injection change is

allowed to exceed the desired amount of change.

When using an action that requires participation factors, an optional parameter PPREF can be specified.

This indicates that the participation factors should be determined in the contingency reference case. This

will only be done for participation points using an AutoCalcMethod that indicates the factor should be

dynamically determined and the AutoCalc field is set to YES for the participation point.

Injection Groups can contain participation points that reference another injection group. The treatment of

injection groups within injection groups will be to drop the entire contained injection group when using

the MWMERITORDEROPEN and MWEFFECTOPEN type actions.

Notes: The [name] may be replaced by the label of the injection group. Bus participation points will be

completely ignored in this process.

Series Capacitor Bypass or Inservice

SERIESCAP | bus1# bus2# ckt | BYPASS

 | INSERVICE

Bypasses a series capacitor, or puts it in service. Note: bus# values may be replaced by a string enclosed in

single quotes where the string is the name of the bus followed by and underscore character and then the

nominal voltage of the bus. Note: bus# values may also be replaced by a string enclosed in single quotes

which represents the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be replaced by

the label of the branch. Keyword SERIESCAP may also be replaced with BRANCH, which will allow

bypassing or not bypassing any branch and is not limited to series capacitors.

Series Capacitor set impedance

SERIESCAP | bus1# bus2# ckt | SET_X_TO | value | PERCENT | REF

 | | | PU |

Changes the impedance a series capacitor either specifying a new per unit value or specifying a

percentage of the value in the contingency reference case. Note: bus# values may be replaced by a string

enclosed in single quotes where the string is the name of the bus followed by and underscore character

and then the nominal voltage of the bus. Note: bus# values may also be replaced by a string enclosed in

single quotes which represents the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be

replaced by the label of the branch. Keyword SERIESCAP may also be replaced with BRANCH, which will

allow setting the impedance of any branch and is not limited to series capacitors.

DC Transmission or VSC DC Transmission Line outage

DCLINE | bus1# bus2# ckt | OPEN

 | OPENCBS

VSCDCLINE | 'Name' | OPEN

 | OPENCBS

Takes DC Line or VSC DC Line out of service. Note: bus# values may be replaced by a string enclosed in

single quotes where the string is the name of the bus followed by an underscore character and then the

nominal voltage of the bus. These values may also be replaced by a string enclosed in single quotes

 108

which represents the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be replaced by

the label of the dc transmission line. For the VSC DC Line, the identifiers are replaced simply with the

name of the VSCDCLINE instead.

DC Line set a specific value or insertion

DCLINE | bus1# bus2# ckt | SET_P_TO | value | MW | REF

 | CHANGE_P_BY | | PERCENT

 | SET_I_TO | | AMPS

 | CHANGE_I_BY |

 | CLOSE |

 | CLOSECBS |

 | SET_TO | value | OHMS | REF

VSCDCLINE | 'Name' | Same options as for the DC Line, except that

 the AMPS option are not avalailable for VSC

Use to set the DC Line setpoint to a particular value, or puts it in service. Note: bus# values may be

replaced by a string enclosed in single quotes where the string is the name of the bus followed by an

underscore character and then the nominal voltage of the bus. Note: bus# values may also be replaced

by a string enclosed in single quotes which represents the label of the bus. Also, the entire sequence

[bus1# bus2# ckt] may be replaced by the label of the dc transmission line. (Note: for the CLOSE and

CLOSECBS choice, only the units of MW or AMPS may be used.) For the VSC DC Line, the identifiers are

replaced simply with the name of the VSCDCLINE instead.

MTDC Converter outage

DCCONVERTER | rec# bus# | OPEN

 | OPENCBS

Takes multi-terminal DC converter out of service. The rec# specifies the multi-terminal DC line record,

while bus# specifies the AC bus to which the converter is connected. Note: bus# values may be replaced

by a string enclosed in single quotes where the string is the name of the bus followed by an underscore

character and then the nominal voltage of the bus. These values may also be replaced by a string

enclosed in single quotes which represents the label of the bus.

MTDC Converter set a specific value or insertion

DCCONVERTER | rec# bus# | SET_P_TO | value | MW | REF

 | CHANGE_P_BY | | PERCENT

 | SET_I_TO | | AMPS

 | CHANGE_I_BY |

 | CLOSE |

 | CLOSECBS |

Use to set the multi-terminal DC converter setpoint to a particular value, or puts it in service. The rec#

specifies the multi-terminal DC line record, while bus# specifies the AC bus to which the converter is

connected. Note: bus# values may be replaced by a string enclosed in single quotes where the string is

the name of the bus followed by an underscore character and then the nominal voltage of the bus. Note:

bus# values may also be replaced by a string enclosed in single quotes which represents the label of the

bus. (Note: for the CLOSE and CLOSECBS choice, only the units of MW or AMPS may be used.)

Phase Shifter set a specific value

PHASESHIFTER | bus1# bus2# ckt | SET_P_TO | value | MW | REF

 | CHANGE_P_BY | | PERCENT

 | SET_TO | value | DEG | REF

 | CHANGE_BY | | |

Use the MW and PERCENT options to change or set the middle of the phase shifter MW regulation range

to the specified value. Use the DEG option to change or set the phase shift angle in degrees to a particular

value.

Note: bus# values may be replaced by a string enclosed in single quotes where the string is the name of

the bus followed by an underscore character and then the nominal voltage of the bus. These values may

 109

also be replaced by a string enclosed in single quotes which represents the label of the bus. Also, the

entire sequence [bus1# bus2# ckt] may be replaced by the label of the branch.

Keyword PHASESHIFTER may also be replaced with BRANCH. If the branch is not a phase shifter, no

change will be made.

3-Winding Transformer outage or insertion

3WXFORMER | bus1# bus2# bus3# ckt | OPEN

 | CLOSE

 | OPENCBS

 | CLOSECBS

Takes all three windings of a 3-winding transformer out of service, or puts them in service. Note: bus#

values may be replaced by a string enclosed in single quotes where the string is the name of the bus

followed by an underscore character and then the nominal voltage of the bus. Note: bus# values may

also be replaced by a string enclosed in single quotes which represents the label of the bus. Also, the

entire sequence [bus1# bus2# bus#3 ckt] may be replaced by the label of the three winding transformer.

Area Control Type Change

AREA | area# | SET_TO | 'OFF'

 | 'PARTFAC'

 | 'AREASLACK bus#'

 | 'IGSLACK injectiongroup name'

Specify to change the make-up power for an area so that it is different during a contingency than the area

control settings used in the reference case. The area may be set to toggle the control setting to OFF,

PARTFAC, AREASLACK, and IGSLACK. The Area Control topic provides more information about these

control types. If selecting Area Slack is chosen, then a bus must be specified which will act as the area

slack during the contingency action. If selecting IG Slack, then an injection group must be specified by

name.

Note: bus# values may be replaced by a string where the string is the name of the bus followed by an

underscore character and then the nominal voltage of the bus. Note: bus# values may also be replaced

by a string which represents the label of the bus.

In order for the Area contingency action to work correctly, there are contingency and power flow solution

options that must be set correctly. Simulator does not automatically set these options so the user must

make sure they are set.

• Area control must be enabled in the contingency base case, i.e. the Power Flow Solution Option

for Island-Based AGC must be set to Disable (Use the Area and Super Area Dispatch settings).

• The contingency Make-Up Power option must be set to Same as Power Flow case.

• The option to Disable Automatic Generation Control (AGC) found with the Power Flow Solution

Options must NOT be selected.

Another suggestion, although not a strict requirement, is that the area should be on area control prior to

contingency analysis if a control type other than Off AGC is going to be set during a contingency. If a

large ACE exists in the base case with area control off, switching the area on control during the

contingency will zero out the ACE in addition to compensating for required make-up power.

Substation outage

SUBSTATION | sub# | OPEN

 | OPENCBS

 | SET_P_TO | value | MW | REF

 | CHANGE_P_BY | | PERCENT

OPEN and OPENCBS will take a substation out of service. The set and change actions will set the MW

output of online generators in the substation to the specified value. sub# is the number that identifies the

 110

substation. sub# can be replaced by a string enclosed in single quotes where the string is the name or

label of the substation.

Abort

ABORT

Include this action to cause the solution of the contingency to be aborted.

Execute a Power Flow Solution

SOLVEPOWERFLOW

Include this action to cause the solution of the contingency to be split into pieces. Actions that are listed

before each SOLVEPOWERFLOW call will be performed as a group.

Calling of a name ContingencyBlock

CONTINGENCYBLOCK | name

Calls a ContingencyBlock and executes each of the actions in that block.

Make-Up Power Compensation

Only valid immediately following a SET, CHANGE, OPEN or CLOSE action on a Generator, Shunt or Load.

This describes how the change in MW or MVAR are picked up by buses throughout the system. The values

specify participation factors. Note: bus# values may be replaced by a string enclosed in single quotes

where the string is the name of the bus followed by and underscore character and then the nominal

voltage of the bus.
COMPENSATION

bus#1 value1

bus#2 value2

...

END

Example:
<SUBDATA CTGElement>

 // just some comments

 // action Model Criteria Status TimeDelay comment

 "BRANCH 40821 40869 1 OPEN" "" ALWAYS 0 //Raver - Paul 500 kV

 "GEN 45041 1 OPEN" "" ALWAYS 0 //Trip Unit #2

 "BRANCH 42702 42727 1 OPEN" "Line X Limited" CHECK 0 //Open Fern Hill

 "GEN 40221 1 OPEN" "Interface L1" CHECK 0 //Drop ~600 MW

 "GEN 40227 1 OPEN" "Interface L2" CHECK 0 //Drop ~1200 MW

 "GEN 40221 1 OPEN" "Interface L3" CHECK 0 //Drop ~600 MW

</SUBDATA>

Note: ContingencyElement object types can also be directly created inside their own DATA section as well.

One of the key fields of the object is then the name of the contingency to which the ContingencyElement

belongs. The Action string will remain the same.

 111

LimitViol

A LimitViol is used to describe the results of a contingency analysis run. Each Limit Violation lists nine

possible values:

ViolType : One of six values describing the type of violation.

BAMP : branch amp limit violation

BMVA : branch MVA limit violation

VLOW : bus low voltage limit violation

VHIGH : bus high voltage limit violation

INTER : interface MW limit violation

CUSTOM : Custom Monitor value

ViolElement : This field depends on the ViolType.

for VLOW, VHIGH : "bus1#" or "busname_buskv" or "buslabel"

for INTER : "interfacename" or "interfacelabel"

for BAMP, BMVA : "bus1# bus2# ckt violationbus#

MWFlowDirection"

violationbus# is the bus number for the end of the branch which is

violated

MWFlowDirection is the direction of the MW flow on the line.

Potential values are "FROMTO" or "TOFROM".

Note: each bus# may be replaced with the name underscore nominal

kV string enclosed in single quotations. Or bus# values may be

replaced by a string enclosed in single quotes representing the label

of the bus. Also the entire sequence [bus1# bus2# ckt] may be

replaced by the label of the branch.

for CUSTOM : "custommonitorname deviceidentifier" where the

deviceidentifier will use the key fields or label as

specified by the option selected when saving

Limit : This is the numerical limit which was violated.

ViolValue : This is the numerical value of the violation.

PTDF : This field is optional. It only makes sense for interface or branch

violations. It stores a sensitivity of the flow on the violating element

during in the base case with respect to a transfer direction This must be

calculated using the Contingency Analysis Other Actions related to

Sensitivities.

OTDF : Same as for the PTDF.

InitialValue : This stores a number. This stores the base case value for the element

which is being violated. This is used to compare against when looking at

change violations.

Reason : This will say whether this was a pure violation, or is being reported as a

violation because the change from the base case is higher than a

specified threshold.

LIMIT : means this is a violation of a line/interface/bus limit or

simply a Custom Monitor

CHANGE : means this is being reported as a limit because the change

from the initial value is higher than allowed

CTG Specified Limit : This specifies if the Limit originated from a contingency action or from

the rating specified with the line and Limit Monitoring Settings.

NO : the Limit originated from the line and Limit Monitoring Settings

YES : the Limit originated from a contingency action

 112

Example:
<SUBDATA LimitViol>

 BAMP "1 3 1 1 FROMTO" 271.94031 398.48096 10.0 15.01 //Note OTDF/PTDF

 // values can also be specified with name underscore nominal kV string

 // enclosed inside a single quote as shown next

 BAMP "'One_138' 'Three_138' 1 1 FROMTO" 271.94031 398.48096 10.0 15.01

 INTER "Right-Top" 45.00000 85.84451 None None 56.000 LIMIT NO

</SUBDATA>

ViolationCTG object types can also be directly created inside their own DATA section as well. One of the

key fields of the object is then the name of the contingency to which the ViolationCTG belongs.

Sim_Solution_Options

These describe the power flow solution options which should be used under this particular contingency.

The format of the subdata section is two lines of text. The first line is a list of the fieldtypes for

Sim_Solution_Options which should be changed. The second line is a list of the values. Note that in

general, power flow solution options are stored at three different locations in contingency analysis. When

implementing a contingency, Simulator gives precendence to these three locations in the following order:

1. Contingency Record Options (stored with the particular contingency).

2. Contingency Tool Options (stored with CTG_Options).

3. The global solution options.

WhatOccurredDuringContingency

Each line of this subdata section is part of a text description of what actually ended up being

implemented for this contingency. This will list which actions were executed and which actions ended up

being skipped because of their model criteria. Each line of the subdata section must be enclosed in

quotes.

Example:
<SUBDATA WhatOccurredDuringContingency>

 "Applied: "

 " OPEN Branch Two (2) TO Five (5) CKT 1 | | CHECK | | ELEMENT"

</SUBDATA>

ContingencyMonitoringException

Each line of this subdata section contains a string identifying a specially handled monitored element for

this contingency followed by a string indicating how this monitored element should be handled with this

contingency. The elements can be identified by their primary or secondary key fields or by label. The

element descriptions should be enclosed in quotes because they contain spaces.

Example:
<SUBDATA ContingencyMonitoringException>

 "Branch '2' '3' '1'" "Exclude"

 "Branch 'Three_138.00' 'Four_138.00'" "Include"

 "Branch 'Line_2_5'" "Default"

</SUBDATA>

CTG_Options

Sim_Solution_Options

These describe the power flow solution options which should be used under this particular contingency.

The format of the subdata section is two lines of text. The first line is a list of the fieldtypes for

Sim_Solution_Options which should be changed. The second line is a list of the values. Note that in

general, power flow solution options are stored at three different locations in contingency analysis. When

implementing a contingency, Simulator gives precendence to these three locations in the following order:

1. Contingency Record Options (stored with the particular contingency).

2. Contingency Tool Options (stored with CTG_Options).

 113

3. The global solution options.

CTGElementBlock

CTGElement

This format is the same as for the Contingency objecttype, however, you cannot call a ContingencyBlock

from within a contingencyblock.

CTGElementAppend

When a subdata section is defined as CTGElementAppend rather than CTGElement, the actions of this

subdata section will be appended to the contingency actions, instead of replacing them. This format is

the same as for the Contingency objecttype, however, you cannot call a ContingencyBlock from within a

contingencyblock.

Note: CTGElementBlockElement object types can also be directly created inside their own DATA section as

well. One of the key fields of the object is then the name of the contingency block to which the

CTGElementBlockElement belongs.

CustomColors

CustomColors

These describe the customized colors used in Simulator, which are specified by the user. A custom color

is an integer describing a color. Each custom color is written on a single line of text and is an integer

between 0 and 16,777,216. The value is determined by taking the red, green, and blue components of the

color and assigning them a value between 0 and 255. The color is then equal to red + 256*green +

256*256*blue. Each line contains only one integer that corresponds to the color specified.

Example:
<SUBDATA CustomColors>

 9823301

 8613240

</SUBDATA>

CustomCaseInfo

ColumnInfo

Each line of this SUBDATA section can be used for specifying the column width of particular columns of

the respective Custom Case Information Sheet. The line contains two values – the column and then a

column width. This is shown in the following example.

Example:
<SUBDATA ColumnInfo>

 "SheetCol" 133

 "SheetCol:1" 150

 "SheetCol:2" 50

</SUBDATA>

DataGrid

ColumnInfo

Contains a description of the columns which are shown in the respective data grid. Each line of text

contains at least four fields: VariableName, ColumnWidth, TotalDigits, DecimalPoints. The remaining

fields are used when showing a Data View based on this DataGrid object. See help website for Data View

or the OpenDataView script command for more information about this.

Variablename : Contains the variable which is shown in this column.

 114

ColumnWidth : The column width.

TotalDigits : The total digits displayed for numerical values.

DecimalPoints : The decimal points shown for numerical values.

TabBreak : Optional. Default to NO. Set to YES to indicate that a new tab should be

started immediately before this field.

TabCaption : Optional. Default to blank string. Specifies a caption for the tabbed

control for fields occurring after the Tab Break.

RowBreak : Optional. Default to NO. Set to YES to indicate that a new row should be

started immediately before this field.

RowCaption : Optional. Default to blank string. Specifies a caption for a group box for

the fields occurring after the row break.

ColBreak : Optional. Default to NO. Set to YES to indicate that a new Column

should be started immediately before this field. Also, a special feature

for column breaks only is you may specify a number after YES to indicate

multiple column breaks to skip over a column. For example "YES 2" to

skip a column because there are 2 consecutive column breaks.

RowCaption : Optional. Default to blank string. Specifies a caption for a group box for

the fields occurring after the column break.

Example:
DataGrid (DataGridName)

{

 BUS

 <SUBDATA COLUMNINFO>

 BusNomVolt 100 8 2

 AreaNum 50 8 2 "YES" "Tab Caption" "NO" "" "NO" ""

 ZoneNum 50 8 2

 </SUBDATA>

 BRANCHRUN

 <subdata COLUMNINFO >

 BusNomVolt:0 100 8 2

 BusNomVolt:1 100 8 2 "NO" "" "NO" "" "YES 2" "Col Caption"

 LineMW:0 100 9 3 "NO" "" "YES" "Row Caption" "NO" ""

 </SUBDATA>

}

DynamicFormatting

DynamicFormattingContextObject

This subdata section contains a list of the display object types which are chosen to be selected. Each line

of the section consists of the following:
DisplayObjectType (WhichFields) (ListOfFields)

DisplayObjectType : The object type of the display object. These are generally the same as

the values seen in the subdata section SelectByCriteriaSetType of

SelectByCriteriaSet object types. The only exception is the string

CaseInfo, which is used for formatting applying to the case information

displays.

(WhichFields) : For display objects that can reference different fields, this sets which of

those fields it should select (e.g. select only Bus Name Fields). The value

may be either ALL or SPECIFIED.

(ListOfFields) : If WhichFields is set to SPECIFIED, then a delimited list of fields follows.

 115

Example:
<SUBDATA DynamicFormattingContextObject>

 // Note: CaseInfo applies to case information displays

 CaseInfo "SPECIFIED" BusName

 DisplayAreaField "ALL"

 DisplayBus

 DisplayBusField "SPECIFIED" BusName BusPUVolt BusNum

 DisplayCircuitBreaker

 DisplaySubstation

 DisplaySubstationField "SPECIFIED" SubName SubNum BusNomVolt BGLoadMVR

 DisplayTransmissionLine

 DisplayTransmissionLineField "ALL"

</SUBDATA>

LineThicknessLookupMap

LineColorLookupMap

FillColorLookupMap

FontColorLookupMap

FontSizeLookupMap

BlinkColorLookupMap

XoutColorLookupMap

FlowColorLookupMap

SecondaryFlowColorLookupMap

The values of the lookup table for the characteristics that can be modified by the dynamic formatting tool.

The first line contains the two following fields:

fieldname : It is the field that the lookup table is going to look for.

usediscrete : Set to YES or NO. If set to YES, the characteristic values will be discrete,

meaning that the characteristic value will correspond exactly to the one

specified in the table. If set to NO, the characteristic values will be

continuous, which means the characteristic value will be an interpolation

of the high and low closest values specified in the table.

The following lines contain two fields:

fieldvalue : The value for the field.

characteristicvalue : The corresponding characteristic value for such field value.

Example:
<SUBDATA LineColorLookupMap>

 // FieldName UseDiscrete

 BusPUVolt YES

 // FieldValue Color

 1.02 16711808

 1.05 8454143

 1.1 16744703

</SUBDATA>

 116

Filter

Condition

Conditions store the conditions of the filter. Each condition is described by one line of text which can

contain up to five fields:

variablename : It is one of the fields for the object_type specified. It may optionally be

followed by a colon and a non-negative integer. If not specified, 0 is

assumed.

Example: on a LINE, 0 = from bus, 1 = to bus

sgLineMW:0 = the MW flow leaving the from bus

sgLineMW:1 = the MW flow leaving the to bus

 Note: this value may also be the string "_UseAnotherfilter" which would

then be followed by either meets or notmeets and then the name of

another Filter.

Condition : Possible Values Alternate1 Alternate2 Requires

 othervalue

 between >< yes

 notbetween ~>< yes

 equal = ==

 notequal <> ~=

 greaterthan >

 lessthan <

 greaterthanorequal >=

 lessthanorequal <=

 about yes

 notabout yes

 contains

 notcontains

 startswith

 notstartswith

 inrange

 notinrange

 meets

 notmeets

 isblank

 notisblank

value : The value used for comparison.

 For fields associated with strings, this must be a string.

 For fields associated with real numbers, this must be a number.

 For fields associated with integers, this is normally an integer, except

when the Condition is "inrange" or "notinrange". In this case, value is a

comma/dash separated number string.

(othervalue) : If required, the other value used for comparison. For conditions "about"

and "notabout" this is the tolerance with which the value should be equal

or not equal.

(FieldOpt) : Optional string with following meanings. Unspecified means that strings

are case insensitive, use number fields directly (older files may have had

an integer 0 as well).

ABS : strings are case sensitive, take absolute value of field values

(older files may have had an integer 1 as well)

 117

Example:
FILTER (objecttype, filtername, filtertype, prefilter)

{

BUS "a bus filter" "AND" "no"

 <SUBDATA CONDITION>

 BusNomVolt > 100

 AreaNum inrange "1 – 5 , 7 , 90-95"

 ZoneNum between

 </SUBDATA>

BRANCH "a branch filter" "OR" "no"

 <subdata CONDITION>

 BusNomVolt:0 > 100 // Note location 0 means from bus

 BusNomVolt:1 > 100 // Note location 1 means to bus

 LineMW:0 > 100 1 // Note, final field 1 denotes absolute value

 _UseAnotherFilter meets

 </SUBDATA>

}

Gen

BidCurve

BidCurve subdata is used to define a piece-wise linear cost curve (or a bid curve). Each bid point consists

of two real numbers on a single line of text: a MW output and then the respective bid (or marginal cost).

Example:
<SUBDATA BidCurve>

 // MW Price[$/MWhr]

 100.00 10.6

 200.00 12.4

 400.00 15.7

 500.00 16.0

</SUBDATA>

ReactiveCapability

Reactive Capability subdata is used to the reactive capability curve of the generator. Each line of text

consists of three real numbers: a MW output, and then the respective Minimum MVAR and Maximum

MVAR output.

Example:
<SUBDATA ReactiveCapability>

 // MW MinMVAR MaxMVAR

 100.00 -60.00 60.00

 200.00 -50.00 50.00

 400.00 -30.00 20.00

 500.00 - 5.00 2.00

</SUBDATA>

Note: ReactiveCapability object types can also be directly created inside their own DATA section as well.

Two of the key fields of the object are then the bus number and generator ID of the generator to which

the ReactiveCapability point belongs.

 118

GeoDataViewStyle

TotalAreaValueMap

This subdata section is used to define the lookup table for determining the total area size of geographic

data view objects based on the value of a selected field. Two values are entered for each mapping:

FieldValue : Value of the field selected for the Total Area attribute.

TotalArea : The total area size of the object.

Example:
<SUBDATA TotalAreaValueMap>

// FieldValue TotalArea

1.000 0

4.000 23

7.000 46

</SUBDATA>

RotationRateValueMap

This subdata section is used to define the lookup table for determining the rotation rate of geographic

data view objects based on the value of a selected field. Two values are entered for each mapping:

FieldValue : Value of the field selected for the Rotation Rate attribute.

RotationRate : The rotation rate of the object. Entered in Hz.

Example:
<SUBDATA RotationRateValueMap>

// FieldValue RotationRate

1.000 0.00

4.000 0.10

7.000 0.20

</SUBDATA>

RotationAngleValueMap

This subdata section is used to define the lookup table for determining the rotation angle of geographic

data view objects based on the value of a selected field. Two values are entered for each mapping:

FieldValue : Value of the field selected for the Rotation Angle attribute.

RotationAngle : The rotation angle of the object. Entered in degrees.

Example:
<SUBDATA RotationAngleValueMap>

// FieldValue RotationAngle

1.000 -90.0

4.000 0.0

7.000 90.0

</SUBDATA>

 119

LineThicknessValueMap

This subdata section is used to define the lookup table for determining the thickness of the border line

around geographic data view objects based on the value of a selected field. Two values are entered for

each mapping:

FieldValue : Value of the field selected for the Line Thickness attribute.

LineThickness : The line thickness of the border line around the object. This should be an

integer value.

Example:
<SUBDATA LineThicknessValueMap>

// FieldValue LineThickness

1.000 1

4.000 2

7.000 3

</SUBDATA>

GlobalContingencyActions

CTGElementAppend

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not

allowed.

CTGElement

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not

allowed.

Note: GlobalContingencyActionsElement object types can also be directly created inside their own DATA

section as well.

HintDefValues

HintObject

Stores the values for the custom hints. Each line has one value:

FieldDescription : This is a string enclosed in double quotes. The string itself is delimited

by the @ character. The string contains five values:

Name of Field : The name of the field. Special fields that appear on

dialog by default have special names. Otherwise

these are the same as the fieldnames of the AUX file

format (for the "other fields" feature on the dialogs).

Total Digit : Number of total digits for a numeric field.

Decimal Points : Number of decimal points for a numeric field.

Include Suffix : Set to 0 for not including the suffix, and set to 1 to

include it.

Field Preffix : The prefix text.

Example:
<SUBDATA HintObject>

 "BusPUVolt@4@1@1@PU Volt ="

 "BusAngle@4@1@1@Angle ="

</SUBDATA>

 120

InjectionGroup

PartPoint

A participation point is used to describe the contents of an injection group. Each participation point lists

six values:

PointType : One of five values describing the type of point.

GEN : a generator

LOAD : a load

SHUNT : a switched shunt

BUS : a bus

INJECTIONGROUP : another injection group

PointBusNum : The bus number of the partpoint if the type is a GEN, LOAD, SHUNT, or

BUS. Value will be blank for an injection group type. Note: bus# values

may be replaced by a string enclosed in double quotes where the string

is the name of the bus followed by an underscore character and then the

nominal voltage of the bus. These values may also be replaced by a

string enclosed in double quotes that represents the label of the bus or a

string representing the label of the generator, load, or switched shunt.

PointID : For GEN, LOAD, or SHUNT type, this is the id for the partpoint. For an

INJECTIONGROUP type, this is the name or label of the injection group.

This is blank for a BUS type.

PointParFac : The participation factor for the point.

ParFacCalcType : How the participation factor is calculated. There are several options

depending on the PointType.

Generators : SPECIFIED, MAX GEN INC, MAX GEN DEC, or MAX

GEN MW

Loads : SPECIFIED or LOAD MW

Shunts : SPECIFIED, MAX SHUNT INC, MAX SHUNT DEC, or

MAX SHUNT MVAR

Bus : SPECIFIED

Injection Groups : SPECIFIED

 All PointTypes can also set their participation factor based on a field

associated with the device. To specify this, the tag <Field> should be

followed by the variable name of the field: <Field>variablename. All

PointTypes can also set their participation factor based on a Model

Expression. To specify this, the tag <Expression> should be followed

by the name of the Model Expression: <Expression>ModelExpression.

ParFacNotDynamic : Should the participation factor be recalculated dynamically as the system

changes.

Example:
<SUBDATA PartPoint>

 "GEN" 1 "1" 1.00 "SPECIFIED" "NO"

 "GEN" 4 "1" 104.96 "MAX GEN INC" "NO"

 "GEN" 6 "1" 50.32 "MAX GEN DEC" "YES"

 "GEN" 7 "1" 600.00 "MAX GEN MW" "NO"

 "LOAD" 2 "1" 5.00 "SPECIFIED" "NO"

 "LOAD" 6 "1" 200.00 "LOAD MW" "YES"

</SUBDATA>

Note: PartPoint object types can also be directly created inside their own DATA section as well. One of

the key fields of the PartPoint object is then the name of the injection group to which the participation

point belongs.

 121

Interface

InterfaceElement

A interfaces’s subdata contains a list of the elements in the interface. Each line contains a text

descriptions of the interface element. Note that this text description must be encompassed by quotation

marks. There are eleven kinds of elements allowed in an interface. Please note that the direction

specified in the monitoring elements is important.

"BRANCH num1 num2 ckt"

 : Monitor the MW flow on the branch starting from bus num1 going to

bus num2 with circuit ckt. (order of bus numbers defines the direction)

"AREA num1 num2" : Monitor the sum of the AC branches that connect area1 and area2.

"ZONE num1 num2" : Monitor the sum of the AC branches that connect zone1 and zone2.

"BRANCHOPEN num1 num2 ckt"

 : When monitoring the elements in this interface, monitor them under the

contingency of opening this branch.

"BRANCHCLOSE num1 num2 ckt"

 : When monitoring the elements in this interface, monitor them under the

contingency of closing this branch.

"DCLINE num1 num2 ckt"

 : Monitor the flow on a DC line.

"INJECTIONGROUP 'name'"

 : Monitor the net injection from an injection group (generation contributes

as a positive injection, loads as negative).

"GEN num1 id" : Monitor the net injection from a generator (output is positive injection)

"LOAD num1 id" : Monitor the net injection from a load (output is negative injection).

"MSLINE num1 num2 ckt"

 : Monitor the MW flow on the multi-section line starting from bus num1

going to bus num2 with circuit ckt.

"INTERFACE 'name' " : Monitor the MW flow on the interface given by name.

"GENOPEN num1 id" : When monitoring the elements in this interface, monitor them under the

contingency of opening this generator.

"LOADOPEN num1 id" : When monitoring the elements in this interface, monitor them under the

contingency of opening this load.

Note: bus# values may be replaced by a string enclosed in single quotes where the string is the name of

the bus followed by an underscore character and then the nominal voltage of the bus. Labels may also be

use as follows.

• bus# values for all element types may be replaced by a string enclosed in single quotes where the

string is the label of the bus.

• for GEN or LOAD elements, the section num1 id may be replaced by the device’s label.

• For MSLINE, DCLINE, or BRANCH elements, the num1 num2 ckt section may be replaced by the

device’s label.

For the interface element type BRANCH num1 num2 ckt and DCLINE num1 num2 ckt, an optional

field can also be written specifying whether the flow should be measured at the far end. This field is

either YES or NO.

 122

Example:
<SUBDATA InterfaceElement

 "BRANCH 8 9 1" NO // monitor the flow from bus 8 to bus 9 on this branch

 "BRANCH 12 33 1" YES // monitor the flow from bus 12 to bus 33 on branch

 // measurefarend is set to true, therefore, we are

 // monitoring the MW flow that arrives at bus 33

 // the following demonstrates the format when bus names and

 // nominal voltages are used.

 "BRANCH 'Twelve_230' 'name33_230' 1" YES

 "AREA 2 1" // monitor tie line flow from area 2 to area 1

 "ZONE 66 53" // monitor tie lines flows from zone 66 to zone 53

 "BRANCHOPEN 5 6 1" // does monitoring after branch opens

 "BRANCHCLOSE 7 10 1" // does monitoring after branch closes

 "GENOPEN" 55 1" // does monitoring after generator opens

</SUBDATA>

Note: InterfaceElement object types can also be directly created inside their own DATA section as well.

One of the key fields of the InterfaceElement object is then the name of the interface to which the

interface element belongs.

KMLExportFormat

DataBlockDescription

This subdata section is used to describe the objects and fields that should be saved to a KML file. Same

format as for the AUXFileExportFormatData subdata section.

LimitSet

LimitCost

LimitCost records describe the piece-wise unenforceable constraint cost records for use by unenforceable

line/interface limits in the OPF or SCOPF. Each row contains two values

PercentLimit : Percent of the transmission line limit.

Cost : Cost used at this line loading percentage value.

Example:
<SUBDATA LimitCost>

 //Percent Cost [$/MWhr]

 100.00 50.00

 105.00 100.00

 110.00 500.00

</SUBDATA>

Load

BidCurve

BidCurve subdata is used to define a piece-wise linear benefit curve (or a bid curve). Each bid point

consists of two real numbers on a single line of text: a MW output and then the respective bid (or

marginal cost). These costs must be increasing for loads.

Example:
<SUBDATA BidCurve>

 // MW Price[$/MWhr]

 100.00 16.0

 200.00 15.7

 400.00 12.4

 500.00 10.6

</SUBDATA>

 123

LPVariable

LPVariableCostSegment

Stores the cost segments for the LP variables. Each line contains four values:

Cost (Up) : Cost associated with increasing the LP variable.

Minimum value : Minimum limit of the LP variable.

Maximum value : Maximum limit of the LP variable.

Artificial : Whether the cost segment is artificial or not.

Example:
<SUBDATA LPVariableCostSegment>

 //Cost(Up) Minimum Maximum Artificial

 -20000.0000 -10000000000.5801 -0.6000 YES

 16.2343 -0.6000 0.0000 NO

 16.5526 0.0000 0.6000 NO

 16.8708 0.6000 1.2000 NO

 17.1890 1.2000 1.8000 NO

 17.5073 1.8000 2.4000 NO

 20000.0000 2.4000 9999999999.4199 YES

</SUBDATA>

ModelCondition

Condition

ModelConditions are the combination of an object and a Filter. They are used to return when the

particular object meets the filter specified. As a result, the subdata section here mostly identical to the

Condition subdata section of a Filter. See the description there. There is one exception however with the

FieldOpt which has additional strings

(FieldOpt) : Optional string with following meanings:

ABS : strings are case sensitive, take ABS of field values (older files

may have had an integer 1 as well)

REF : Means that the variablename is evaluated in the contingency

reference state

ABSREF : means that both ABS and REF are being used

Nothing specified means that strings are case insensitive, use number

fields directly and values are evaluated as normal (older files may have

had an integer 0 as well)

ModelExpression

LookupTable

LookupTables are used inside Model Expressions sometimes. These lookup table represent either one or

two dimensional tables. If the first string in the SUBDATA section is "x1x2", this signals that it is a two

dimensional lookup table. From that point on it will read the first row as "x2" lookup points, and the first

column in the remainder of the rows as the x1 lookup values.

 124

Example:
MODELEXPRESSION (CustomExpression,ObjectType,CustomExpressionStyle,

CustomExpressionString,WhoAmI,VariableName,WhoAmI:1,VariableName:1)

{

// The following demonstrated a one dimensional lookup table

22.0000, "oneD", "Lookup", "", "Gen<KEY1>1</KEY1><KEY2>1</KEY2>",

"Gen<KEY1>1</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>", "", ""

 <SUBDATA LookupTable>

 // because it does not start with the string x1x2 this will

 // represent a one dimensional lookup table

 x1 value

 0.000000 1.000000

 11.000000 22.000000

 111.000000 222.000000

 </SUBDATA>

0.0000, "twod", "Lookup", "",

"Gen<KEY1>1</KEY1><KEY2>1</KEY2>",

"Gen<KEY1>1</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>",

"Gen<KEY1>6</KEY1><KEY2>1</KEY2>",

"Gen<KEY1>6</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>"

 <SUBDATA LookupTable>

 // because this starts with x1x2 this represent a two dimensional

 // lookup table. The first column represents lookup values for x1.

 // The first row represents lookup values for x2

 x1x2 0.100000 0.300000 // these are lookup heading for x2

 0.000000 1.000000 3.000000

 11.000000 22.000000 33.000000

 111.000000 222.000000 333.000000

 </SUBDATA>

}

ModelFilter

ModelCondition

A Model Filter’s subdata contains a list of each ModelCondition in the filter. Because a list of Model

Conditions is stored within Simulator, this subdata section only requires the name of each

ModelCondition on each line and whether or not the condition is using the NOT operator as part of the

Model Filter.

Example:
<SUBDATA ModelCondition>

// ModelConditionName NotCondition

 "Name of First Model Condition" "NO"

 "Name of Second Model Condition" "NO"

 "Name of Third Model Condition" "NO"

</SUBDATA>

 125

MTDCRecord

An example of the entire multi-terminal DC transmission line record is given at the end of this record description. Each of

the SUBDATA sections is discussed first.

MTDCBus

For this SUBDTA section, each DC Bus is described on a single line of text with exactly 8 fields specified.

DCBusNum : The number of the DC Bus. Note DC bus numbers are independent AC

bus numbers.

DCBusName : The name of the DC bus enclosed in quotes.

ACTerminalBus : The AC terminal to which this DC bus is connected (via a

MTDCConverter). If the DC bus is not connected to any AC buses, then

specify as zero. You may also specify this as a string enclosed in double

quotes with the bus name followed by an underscore character, following

by the nominal voltage of the bus.

DCResistanceToground

 : The resistance of the DC bus to ground. Not used by Simulator.

DCBusVoltage : The DC bus voltage in kV.

DCArea : The area that this DC bus belongs to.

DCZone : The zone that this DC bus belongs to.

DCOwner : The owner that this DC bus belongs to.

MTDCBus object types can also be directly created inside their own DATA section as well. One of the key

fields of the object is then the number of the MTDCRecord to which the MTDCBus belongs.

MTDCConverter

For this SUBDTA section, each AC/DC Converter is described by exactly 24 field which may be spread

across several lines of text. Simulator will keep reading lines of text until it finds 24 fields. All text to the

right of the 24th field (on the same line of text) will be ignored. The 24 fields are listed in the following

order:

BusNum : AC terminal bus number.

MTDCNBridges : Number of bridges for the converter.

MTDCConvEBas : Converter AC base voltage.

MTDCConvAngMxMn : Converter firing angle.

MTDCConvAngMxMn:1

 : Converter firing angle max.

MTDCConvAngMxMn:2

 : Converter firing angle min.

MTDCConvComm : Converter commutating resistance.

MTDCConvComm:1 : Converter commutating reactance.

MTDCConvXFRat : Converter transformer ratio.

MTDCFixedACTap : Fixed AC tap.

MTDCConvTapVals : Converter tap.

MTDCConvTapVals:1 : Converter tap max.

MTDCConvTapVals:2 : Converter tap min.

MTDCConvTapVals:3 : Converter tap step size.

MTDCConvSetVL : Converter setpoint value (current or power).

MTDCConvDCPF : Converter DC participation factor.

MTDCConvMarg : Converter margin (power or current).

MTDCConvType : Converter type.

MTDCMaxConvCurrent

 : Converter Current Rating.

MTDCConvStatus : Converter Status.

MTDCConvSchedVolt : Converter scheduled DC voltage.

 126

MTDCConvIDC : Converter DC current.

MTDCConvPQ : Converter real power.

MTDCConvPQ:1 : Converter reactive power.

MTDCConverter object types can also be directly created inside their own DATA section as well. One of

the key fields of the object is then the number of the MTDCRecord to which the MTDCConverter belongs.

MTDCTransmissionLine

For this SUBDATA section, each DC Transmission Line is described on a single line of text with exactly 5

fields specified:

DCFromBusNum : From DC Bus Number.

DCToBusNum : To DC Bus Number.

CKTID : The DC Circuit ID.

Resistance : Resistance of the DC Line in Ohms.

Inductance : Inductance of the DC Line in mHenries (Not used by Simulator).

Example:
MTDCRECORD (Num,Mode,ControlBus)

{

//--

// The first Multi-Terminal DC Transmission Line Record

//--

1 "Current" "SYLMAR3 (26098)"

 <SUBDATA Bus>

 //---

 // DC Bus data must appear on a single line of text

 // The data consists of exactly 8 values

 // DC Bus Num, DC Bus Name, AC Terminal Bus, DC Resistance to ground,

 // DC Bus Voltage, DC Bus Area, DC Bus Zone, DC Bus Owner

 3 "CELILO3P" 0 9999.00 497.92 40 404 1

 4 "SYLMAR3P" 0 9999.00 439.02 26 404 1

 7 "DC7" 41311 9999.00 497.93 40 404 1

 8 "DC8" 41313 9999.00 497.94 40 404 1

 9 "DC9" 26097 9999.00 439.01 26 404 1

 10 "DC10" 26098 9999.00 439.00 26 404 1

 </SUBDATA>

 <SUBDATA Converter>

 //---

 // convert subdata keeps reading lines of text until it has found

 // values specified for 24 fields. This can span any number of lines

 // any values to the right of the 24th field found will be ignored

 // The next converter will continue on the next line.

 //---

 41311 2 525.00 20.25 24.00 5.00 0.0000 16.3100

 0.391048 1.050000 1.000000 1.225000 0.950000 0.012500

 1100.0000 1650.0000 0.0000 "Rect" 1650.0000 "Closed"

 497.931 1100.0000 547.7241 295.3274

 41313 4 232.50 15.36 17.50 5.00 0.0000 7.5130

 0.457634 1.008700 1.030000 1.150000 0.990000 0.010000

 2000.0000 2160.0000 0.1550 "Rect" 2160.0000 "Closed"

 497.940 2000.0000 995.8800 561.8186

 26097 2 230.00 20.90 24.00 5.00 0.0000 16.3100

 0.892609 1.000000 1.100000 1.225000 0.950000 0.012500

 -1100.0000 1650.0000 "" "Inv" 1650.0000 "Closed"

 439.009 1100.0000 -482.9099 274.5227

 26098 4 232.00 17.51 20.00 5.00 0.0000 7.5130

 0.458621 1.008700 1.100000 1.120000 0.960000 0.010000

 439.0000 2160.0000 "" "Inv" 2160.0000 "Closed"

 439.000 1999.9999 -878.0000 544.2775

 </SUBDATA>

 <SUBDATA TransmissionLine>

 //---

 // DC Transmission Segment information appears on a single line of

 // text. It consists of exactly 5 value

 127

 // From DCBus, To DCBus, Circuit ID, Line Resistance, Line Inductance

 //---

 3 4 "1" 19.0000 1300.0000

 7 3 "1" 0.0100 0.0000

 8 3 "1" 0.0100 0.0000

 9 4 "1" 0.0100 0.0000

 10 4 "1" 0.0100 0.0000

 </SUBDATA>

//--

// A second Multi-Terminal DC Transmission Line Record

//--

2 "Current" "SYLMAR4 (26100)"

 <SUBDATA Bus>

 5 "CELILO4P" 0 9999.00 497.92 40 404 1

 6 "SYLMAR4P" 0 9999.00 439.02 26 404 1

 11 "DC11" 41312 9999.00 497.93 40 404 1

 12 "DC12" 41314 9999.00 497.94 40 404 1

 13 "DC13" 26099 9999.00 439.01 26 404 1

 14 "DC14" 26100 9999.00 439.00 26 404 1

 </SUBDATA>

 <SUBDATA Converter>

 41312 2 525.00 20.26 24.00 5.00 0.0000 16.3100

 0.391048 1.050000 1.000000 1.225000 0.950000 0.012500

 1100.0000 1650.0000 0.0000 "Rect" 1650.0000 "Closed"

 497.931 1100.0000 547.7241 295.3969

 41314 4 232.50 15.45 17.50 5.00 0.0000 7.5130

 0.457634 1.008700 1.030000 1.150000 0.990000 0.010000

 2000.0000 2160.0000 0.1550 "Rect" 2160.0000 "Closed"

 497.940 2000.0000 995.8800 562.9448

 26099 2 230.00 20.90 24.00 5.00 0.0000 16.3100

 0.892609 1.000000 1.100000 1.225000 0.950000 0.012500

 -1100.0000 1650.0000 "" "Inv" 1650.0000 "Closed"

 439.009 1100.0000 -482.9099 274.5227

 26100 4 232.00 17.51 20.00 5.00 0.0000 7.5130

 0.458621 1.008700 1.100000 1.120000 0.960000 0.010000

 439.0000 2160.0000 "" "Inv" 2160.0000 "Closed"

 439.000 1999.9999 -878.0000 544.2775

 </SUBDATA>

 <SUBDATA TransmissionLine>

 5 6 "1" 19.0000 1300.0000

 11 5 "1" 0.0100 0.0000

 12 5 "1" 0.0100 0.0000

 13 6 "1" 0.0100 0.0000

 14 6 "1" 0.0100 0.0000

 </SUBDATA>

}

MTDCTransmissionLine object types can also be directly created inside their own DATA section as well.

One of the key fields of the object is then the number of the MTDCRecord to which the

MTDCTransmissionLine belongs.

MultiSectionLine

Bus

A multi section line’s subdata contains a list of each dummy bus, starting with the one connected to the

From Bus of the MultiSectionLine and proceeding in order to the bus connected to the To Bus of the Line.

Note: bus# values may be replaced by a string enclosed in double quotes where the string is the name of

the bus followed by an underscore character and then the nominal voltage of the bus, or the string may

represent the label of the bus.

 128

Example:
//--

// The following describes a multi-section line that connnects bus

// 2 - 1 - 5 - 6 - 3

//--

MultiSectionLine (BusNum, BusName, BusNum:1, BusName:1,

 LineCircuit, MSLineNSections, MSLineStatus)

{

2 "Two" 3 "Three" "&1" 2 "Closed"

 <SUBDATA Bus>

 1

 5

 6

 </SUBDATA>

}

BusRenumber

This subdata section allows renumbering of the dummy buses. The entries in the subdata section must be

the new bus number that should be assigned to each dummy bus followed by the name of the new bus.

The entries can be either space or comma delimited. The bus number must be specified, but the name is

optional. If the name is not included and a new bus needs to be created, the name will be the same as

the number. If an incorrect number of dummy buses is entered for a multi-section line, none of the

dummy buses will be updated for that line. If a dummy bus number is specified that matches an existing

bus that is another dummy bus, the other dummy bus will be assigned to a new bus number and the

current dummy bus will be assigned to the number specified in the data.

Example:
MultiSectionLine (BusNum, BusNum:1, LineCircuit)

{

1 2 "1"

 <SUBDATA BusRenumber>

 3 "Bus 3"

 4 "Bus 4"

 5 "Bus 5"

 </SUBDATA>

22 33 "1"

 <SUBDATA BusRenumber>

 14 "Bus 14"

 15 "Bus 15"

 </SUBDATA>

}

Nomogram

InterfaceElementA

InterfaceElementB

InterfaceElementA values represent the interface elements for the first interface of the nomogram.

InterfaceElementB values represent the interface elements for the second interface of the nomogram. The

format of these SUBDATA sections is identical to the format of the InterfaceElement SUBDATA section of a

normal Interface.

 129

NomogramBreakPoint

This subdata section contains a list of the vertex points on the nomogram limit curve.

Example:
<SUBDATA NomogramBreakPoint>

 // LimA LimB

 -100 -20

 -100 100

 80 50

 60 -10

</SUBDATA>

NomogramInterface

InterfaceElement

This follows the same convention as the InterfaceElement SUBDATA section described with the Interface

objecttype.

Owner

Bus

This subdata section contains a list of the buses which are owned by this owner. Each line of text contains

the bus number. As an alternative to specifying the bus number, a string enclosed in double quotes may

be used where the string represents the name of the bus followed by an underscore character and then

the nominal voltage of the bus, or the string may represent the label of the bus.

Example:
<SUBDATA Bus>

 1

 35

 65

</SUBDATA>

Load

This subdata section contains a list of the loads which are owned by this owner. Each line of text contains

the bus number followed by the load id. As an alternative to specifying the bus number, a string enclosed

in double quotes may be used where the string represents the name of the bus followed by an

underscore character and then the nominal voltage of the bus, or the string may represent the label of the

bus. Also, instead of specifying the bus and load id, the label of the load enclosed in double quotes may

be used.

Example:
<SUBDATA Load>

 5 1 // shows ownership of the load at bus 5 with id of 1

 423 1

</SUBDATA>

Gen

This subdata section contains a list of the generators which are owned by this owner and the fraction of

ownership. Each line of text contains the bus number, followed by the gen id, followed by an integer

showing the fraction of ownership. As an alternative to specifying the bus number, a string enclosed in

double quotes may be used where the string represents the name of the bus followed by an underscore

character and then the nominal voltage of the bus, or the string may represent the label of the bus. Also,

instead of specifying the bus and generator id, the label of the generator enclosed in double quotes may

be used.

 130

Example:
<SUBDATA Gen>

 78 1 50 // shows 50% ownership of generator at bus 78 with id of 1

 23 3 70

</SUBDATA>

Branch

This subdata section contains a list of the branches which are owned by this owner and the fraction of

ownership. Each line of text contains the from bus number, followed by the to bus number, followed by

the circuit id, followed by an integer showing the fraction of ownership. As an alternative to specifying

the bus numbers, strings enclosed in double quotes may be used where the string represents the name of

the bus followed by an underscore character and then the nominal voltage of the bus, or the string may

represent the label of the bus. Also instead of specifying the two numbers and a circuit id, the label of the

branch enclosed in double quotes may be used.

Example:
<SUBDATA Branch>

 6 10 1 50 // shows 50% ownership of line from bus 6 to 10, circuit 1

</SUBDATA>

PostPowerFlowActions

CTGElementAppend

This format is the same as for the Contingency objecttype except that Abort, ContingencyBlock, and

SolvePowerFlow actions are not allowed.

CTGElement

This format is the same as for the Contingency objecttype except that Abort, ContingencyBlock, and

SolvePowerFlow actions are not allowed. PostPowerFlowActionsElement object types can also be directly

created inside their own DATA section as well.

PWCaseInformation

PWCaseHeader

This subdata section contains the Case Description in free-formatted text. Note: as it is read back into

Simulator all spaces from the start of each line are removed.

PWFormOptions

PieSizeColorOptions

There can actually be several PieSizeColorOptions subdata sections for each PWFormOptions object. The

first line of each subdata section, the first line of text consist of exactly four values

ObjectName : The objectname of the type of object these settings apply to. Will be

either be BRANCH or INTERFACE.

FieldName : The fieldname for the pie charts that these settings apply to.

UseDiscrete : Set to YES to use a discrete mapping of colors and size scalars instead of

interpolating for intermediate values.

UseOtherSettings : Set to YES to default these settings to the BRANCH MVA values for

BRANCH object. This allows you to apply the same settings to all pie

charts.

After this first line of text, if the UseOtherSettings Value is NO, then another line of text will contain

exactly three values:

ShowValue : This is the percentage at which the value should be drawn on the pie

chart.

 131

NormalSize : This is the scalar size multiplier which should be used for pie charts below

the lowest percentage specified in the lookup table.

NormalColor : This is the color which should be used for pie charts below the lowest

percentage specified in the lookup table.

Finally the remainder of the subdata section will contain a lookup table by percentage of scalar and color

values. This lookup table will consist of consecutive lines of text with exactly three values

Percentage : This is the percentage at which the follow scalar and color should be

applied.

Scalar : A scalar (multiplier) on the size of the pie charts.

Color : A color for the pie charts.

Example:
<SUBDATA PieSizeColorOptions>

 // ObjectName FieldName UseDiscrete UseOtherSettings

 Branch MVA YES NO

 // ShowValue NormalSize NormalColor

 80.0000 1.0000 16776960

 // Percentage Scalar Color

 80.0000 1.5000 33023

 100.0000 2.0000 255

</SUBDATA>

<SUBDATA PieSizeColorOptions>

 // ObjectName FieldName UseDiscrete UseOtherSettings

 Branch MW YES YES

</SUBDATA>

PWLPOPFCTGViol

OPFControlSense

OPFBusSenseP

OPFBusSenseQ

This stores the control sensitivities for each contingency violation during OPF/SCOPF analysis. Each line

contains one value:

Sensitivity : The value of the sensitivity with respect to each control in

OPFControlSense or with respect to each bus in OPFBusSenseP and

OPFBusSenseQ.

Example:
<SUBDATA OPFControlSense>

 // Value

 1.000441679

 2.447185E-7

 -1.1109307E-6

 1.6427327E-7

 0

</SUBDATA>

PWLPTabRow

LPBasisMatrix

This subdata section stores the basis matrix associated with the final LP OPF solution. Each line contains

two values:

Variable : The basic variable.

Value : The sensitivity of the constraint to the basic variable.

 132

Example:
<SUBDATA LPBasisMatrix>

 // Var Value

 1 1.00000

 2 1.00000

 5 1.00000

 6 1.00000

</SUBDATA>

PWPVResultListContainer

PWPVResultObject

This subdata section contains the results of a particular PV Curve scenario. The data consists of two

general sections: the first three rows of text contain the "independent axis" of the PV Curve. The first row

starts with the string INDNOM and is followed by a list of numbers representing the nominal shift, the

second row starts with INDEXP and is followed by the export shift, and the third row starts with INDIMP

and is followed by the import shift. Following after these rows is a list of all the tracked quantities. Each

tracked quantity row consists of three parts which are separated by the strings ?f= and &v= . The first

part of the string represents a description of the power system object being tracked, the second part

represents the field variable name being tracked, and the third contains a list of all the values at the

various shift levels.

Example:
<SUBDATA PWPVResultObject>

 INDNOM 0.00 500.00 1000.00 1500.00 1750.00 1875.00 1975.00

 INDEXP 0.00 500.00 1000.00 1500.00 1750.00 1875.00 1975.00

 INDIMP 0.00 -417.23 -701.58 -890.58 -952.60 -975.35 -990.43

 Bus '3'?f=BusPUVolt&v= 0.993 0.983 0.964 0.939 0.926 0.919 0.914

 Bus '5'?f=BusPUVolt&v= 1.007 1.000 0.982 0.956 0.940 0.932 0.926

 Gen '4' '1'?f=GenMVR&v= 19.99 245.27 523.62 831.13 986.84 1060.6 1118.7

 Gen '6' '1'?f=GenMVR&v= -6.59 -120.84 -131.37 -39.53 48.35 103.8 154.5

</SUBDATA>

LimitViol

This subdata section contains the limit violations of a particular PV Curve scenario. This subdata section

would only exist if using the option to monitor limit violations with the PV tool. Each row consists of an

identifier, either VLOW or VHIGH, to indicate the type of limit violation followed by the bus identifier

based on the key field identifier chosen. The bus can be identified by number, name and nominal kV

combination, or label. The bus identifier is followed by the limit in use to identify a voltage violation and

this is followed by the voltage at the bus.

Example:
<SUBDATA LimitViol>

 VLOW 3 1.00000 0.99017

 VLOW 5 1.00000 0.98245

</SUBDATA>

PVBusInadequateVoltages

This subdata section contains a list of buses that are considered to have inadequate voltages at each

transfer level for a particular PV Curve scenario. This subdata section would only exist if using the option

to store inadequate voltages. The data consists of two general sections: the first row starts with the string

INDNOM and is followed by a list of numbers representing the nominal shift. The second and subsequent

rows list the buses and inadequate voltages for any bus that has an inadequate voltage at any transfer

level. Each row starts with the bus identifier followed by the voltages at that bus at the corresponding

shift levels. If a voltage is not inadequate at a particular transfer level, a blank entry will appear instead of

a voltage value. The bus identifier is based on the key field identifier chosen and can be number, name

and nominal kV combination, or label.

 133

Example:
<SUBDATA PVBusInadequateVoltages>

 // INDNOM ShiftLevel1 ShiftLevel2 ...

 // BUS Voltage1 Voltage2 ...

 INDNOM 0.000 100.000 200.000 300.000 400.000 500.000

 "Bus '3'" 0.99269 0.99278 0.99282 0.99280 0.99273 0.99262

 "Bus '4'" "" 1.00000 "" "" ""

</SUBDATA>

PWQVResultListContainer

PWPVResultObject

This subdata section contains the results of a particular QV Curve scenario. These results will exist when

tracking quantities with the QV curve tool. The data consists of two general sections: the first three rows

of text contain the "independent axis" of the QV Curve. The first three rows start with the strings

INDNOM, INDEXP, and INDIMP and are followed by a list of numbers representing the setpoint voltage

representing the V of the QV curve. Following after these rows is a list of all the tracked quantities. Each

tracked quantity row consists of three parts which are separated by the strings ?f= and &v= . The first

part of the string represents a description of the power system object being tracked, the second part

represents the field variable name being tracked, and the third contains a list of all the values at the

various setpoint voltage levels.

Example:
<SUBDATA PWPVResultObject>

 INDNOM 1.100 1.093 1.083 1.073 1.063

 INDEXP 1.100 1.093 1.083 1.073 1.063

 INDIMP 1.100 1.093 1.083 1.073 1.063

 Bus '1'?f=BusPUVolt&v=1.05000 1.05000 1.05000 1.05000 1.05000

 Bus '1'?f=BusKVVolt&v=144.89999 144.89999 144.89999 144.89999 144.89999 </SUBDATA>

QVCurve

QVPoints

This subdata section contains a list of the QV Curve points calculated for the respect QVCurve. Each line

consists of exactly six values:

PerUnitVoltage : The per unit voltage of the bus for a QV point.

FictitiousMvar : The amount of Mvar injection from the fictitious generator at this QV

point.

ShuntDeviceMvar : The Mvar injection from any switched shunts at the bus.

TotalMvar : The total Mvar injection from switched shunts and the fictitious

generator.

ReservesMvar : Total amount of Mvar reserves available at the bus.

ReservesTotalMvar : Total Mvar injection from the switched shunts, fictitious generator, and

available reserves.

 134

Example:
QVCURVE (BusNum,CaseName,qv_VQ0,qv_Q0,qv_Vmax,qv_QVmax,qv_VQmin,qv_Qmin,

 qv_Vmin,qv_QVmin,Qinj_Vmax,Qinj_0,Qinj_min,Qinj_Vmin)

{

5 "BASECASE" 0.880 0.000 1.100 312.490 0.480 -221.072

 0.180 -86.334 191.490 -77.373 -244.075 -89.562

 <SUBDATA QVPoints>

 // NOTE: This bus has a constant impedance

 // switched shunt value of -100 Mvar at it.

 //V(PU), Q(MVR), Q_shunt(MVR), Q_tot(MVR), Q_res(MVR), Q_tot_res(MVR)

 1.1000, 312.4898, -121.0000, 191.4898, 0.0000, 191.4898

 0.9800, 124.6619, -95.9656, 28.6963, 0.0000, 28.6963

 0.7800, -96.6202, -60.7808, -157.4010, 0.0000, -157.4010

 0.5800, -206.9895, -33.5960, -240.5855, 0.0000, -240.5855

 0.3800, -207.4962, -14.4113, -221.9075, 0.0000, -221.9075

 </SUBDATA>

}

QVCurve_Options

Sim_Solution_Options

This subdata section contains solution options that will be used when running QV Curves. See

explanation under the CTG_Options object type for more information.

RemedialAction

CTGElementAppend

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not

allowed.

CTGElement

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not

allowed. RemedialActionElement object types can also be directly created inside their own DATA section

as well.

SelectByCriteriaSet

SelectByCriteriaSetType

This subdata section contains a list of the display object types which are chosen to be selected. Each line

of the section consists of the following:

DisplayObjectType : The object type of the display object.

(FilterName) : This field is optional, but must be given if either of the following fields is

given. See the Using Filters in Script Commands section for more

information on specifying the filtername.

(WhichFields) : For display objects that can reference different fields, this sets which of

those fields it should select (e.g. select only Bus Name Fields). The value

may be either ALL or SPECIFIED.

(ListOfFields) : If WhichFields is set to SPECIFIED, then a delimited list of fields follows.

 135

Example:
<SUBDATA SelectByCriteriaSetType>

 DisplayAreaField "" "ALL"

 DisplayBus ""

 DisplayBusField "Name of Bus Filter" "SPECIFIED" BusName BusPUVolt BusNum

 DisplayCircuitBreaker ""

 DisplaySubstation ""

 DisplaySubstationField "" "SPECIFIED" SubName SubNum BusNomVolt BGLoadMVR

 DisplayTransmissionLine ""

 DisplayTransmissionLineField "" "ALL"

</SUBDATA>

Area

This subdata section contains a list of areas which were chosen to be selected. Each line of the section

consists of either the number or the name. When generated automatically by PowerWorld we also

include the other identifier as a comment.

Example:
<SUBDATA Area>

 18 // NEVADA

 22 // SANDIEGO

 30 // PG AND E

 52 // AQUILA

</SUBDATA>

Zone

This subdata section contains a list of zones which were chosen to be selected. Each line of the section

consists of either the number or the name. When generated automatically by PowerWorld we also

include the other identifier as a comment.

Example:
<SUBDATA Zone>

 680 // ID SOLUT

 682 // WY NE IN

</SUBDATA>

ScreenLayer

This subdata section contains a list of screen layers which were chosen to be selected. Each line of the

section consists of either the name.

Example:
<SUBDATA ScreenLayer>

 "Border"

 "Transmission Line Objects"

</SUBDATA>

ShapefileExportDescription

This object uses the same subdata sections as SelectByCriteriaSet. The only distinction is that only buses and lines can

be exported.

StudyMWTransactions

ImportExportBidCurve

This subdata section contains the piecewise linear transactions cost curves for areas involved in a MW

transaction. Costs are only for areas that are not on OPF control. Curves must be monotonically

increasing. Each line corresponds to a point in the cost curve, and it has two values:

 136

MW : The MW value. Use negative values for imports (purchase) and positive

values for exports (sales)

Price : The price in $/MWh.

Two different cost curves can be entered for each transaction. One is for the cost curve relative to the

Export Area specified in the transaction, and the other is for the cost curve relative to the Import Area

specified in the transaction. The first curve that is listed in the SUBDATA section is the curve relative to

the Export Area. The curve relative to the Import Area is denoted by the keyword REVERSE. Either or both

of the curves can be blank.

Example:
<SUBDATA ImportExportBidCurve>

 //MW Price[$/MWh]

 -20.00 5.00

 -10.00 10.00

 0.00 15.00

 10.00 20.00

 20.00 45.00

 30.00 70.00

 REVERSE

 -25.00 7.00

 -15.00 12.00

 5.00 17.00

 15.00 22.00

 25.00 47.00

 35.00 72.00

</SUBDATA>

SuperArea

SuperAreaArea

This subdata section contains a list of areas within each super area. Each line of text contains two values,

the area number followed by a participation factor for the area that can be optionally used.

Example:
<SUBDATA SuperAreaArea>

 1 48.9

 5 34.2

 25 11.2

</SUBDATA>

TSSchedule

SchedPoint

This section stores the schedule time points used in Time Step Simulation. Each line contains seven

values:

Date : The date of the point.

Hour : The hour of the point.

Pointtype : An integer specifying the point type.

0 : Numeric

1 : Boolean (Yes/No, Closed/Open)

2 : Text

Numeric Value : The numeric value if point type is Numeric. Otherwise it is just zero.

Boolean Value : The boolean value if point type is Boolean. Otherwise it is just false.

Text value : The text value if point type is Text. Otherwise it is just an empty string.

Audiofilename : The audio filename associated to the point. If none, it is just an empty

string.

 137

Example:
<SUBDATA SchedPoint>

 //Date Hour PointType NValue BValue TValue AValue

 5/8/2006 0 1.00 NO

 5/8/2006 6:00:00 AM 0 1.10 NO

 5/8/2006 12:00:00 PM 0 1.25 NO

</SUBDATA>

UserDefinedDataGrid

ColumnInfo

This follows the same convention as the ColumnInfo SUBDATA section described with the DataGrid

objecttype.

 138

SCRIPT Section for Display Auxiliary File
The syntax for script commands in Display Auxiliary Files is the same as for Auxiliary Files. See the SCRIPT Section and its

sub-sections for details on the proper syntax. Any differences for display auxiliary files will be discussed below.

AXD Actions

The following script commands are available for AXD files
AutoInsertBorders;

AutoInsertBuses (LocationSource, MapProjection, AutoInsertBranches,

InsertIfNotAlreadyShown, "filename", InsertSelected);

AutoInsertLoads (MinkV, InsertTextFields, InsertEquivObjects);

AutoInsertGens (MinkV, InsertTextFields);

AutoInsertSwitchedShunts(MinkV, InsertTextFields);

AutoInsertLines (MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts,

InsertMSLines, SBRImpedance, NoStubsZBRs, SingleCBZRs);

AutoInsertLineFlowObjects(MinkV, InsertOnlyIfNotAlreadyShown, LineLocation, Size, FieldDigits,

FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits,

ShowComplex);

AutoInsertSubstations (LocationSource, MapProjection, AutoInsertBranches,

InsertIfNotAlreadyShown, "FileName", InsertSelected);

AutoInsertLineFlowPieCharts(MinkV, InsertOnlyIfNotAlreadyShown, InsertMSLines, Size);

AutoInsertInterfaces (InsertPieCharts, PieChartSize);

ResetStubLocations (ZBRImpedance,NoStubsZBRs);

FixFlowArrowLineEnds ("OnelineName", "LayerName");

PanAndZoomToObject ("ObjectID", "DisplayObjectType", "DoZoom");

AutoInsertBorders;

Use this action to automatically insert borders according to the settings in the AutoInsertBordersOptions

object

AutoInsertBuses(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown,

"filename", InsertSelected);

Use this action to automatically insert buses based on specified location data.

LocationSource : "Bus", "Substation" or "File"

MapProjection : "Simple Conic", "Mercator" or "xy"

AutoInsertBranches : YES to insert transmission lines when finished, NO not to

InsertOnlyIfNotAlreadyShown

 : YES if only buses that are not already shown should be inserted, NO to

insert all buses.

"filename" : (optional) path to location source file (if LocationSource is "File")

(Following added in the July 31, 2020 patch of Simulator 21)

InsertSelected : (optional) Default is NO. YES will only insert buses that are selected

through their Selected field (Selected = YES).

AutoInsertLoads(MinkV, InsertTextFields);

Use this action to automatically insert loads.

MinkV : Minimum kV level to insert (default=0)

InsertTextFields : (optional) insert text fields (default=YES)

AutoInsertSwitchedShunts(MinkV, InsertTextFields);

Use this action to automatically insert switched shunts.

MinkV : Minimum kV level to insert (default=0)

InsertTextFields : (optional) insert text fields (default=YES)

 139

AutoInsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines,

ZBRImpedance, NoStubsZBRs, SingleCBZRs);

Use this action to automatically insert lines.

MinkV : (optional) minimum kV level to insert (default=0)

InsertTextFields : (optional) insert text fields (default=YES)

InsertEquivObjects : (optional) insert Equivalenced Objects (default=YES)

InsertZBRPieCharts : (optional) insert pie charts for lines with no limit and bus ties

(default=NO)

InsertMSLines : (optional) insert MultiSecton Lines (default=YES)

ZBRImpedance : (optional) maximum PU impedance for bus ties (default =0.0001)

NoStubsZBRs : (optional) ignore stubs for bus ties (default=YES)

SingleCBZBRs : (optional) only insert a single circuit breaker (default=YES)

AutoInsertLineFlowObjects(MinkV, InsertOnlyIfNotAlreadyShown, LineLocation, Size, FieldDigits,

FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, ShowComplex);

Use this action to automatically insert line flow objects.

MinkV : Minimum kV level to insert (default=0)

InsertOnlyIfNotAlreadyShown: (optional) if existing line flow objects are ignored (default=YES)

LineLocation : (optional) where to insert flow objects (default=0)

0 : middle

1 : 10%/90%

2 : after stubs

Size : (optional) size (default=5.0)

FieldDigits : (optional) total digits in field (default=6)

FieldDecimals : (optional) digits to the right of the decimal (default=2)

TextPosition : (optional) position of fields relative to flow object (default=YES)

YES : above

NO : below

ShowMW : (optional) show MW field (default=YES)

ShowMvar : (optional) show Mvar field (default=YES)

ShowMVA : (optional) show MVA field (default=YES)

ShowSuffix : (optional) show field units (default=YES)

ShowComplex : (optional) show complex form (MW+jMvar) (default=NO)

AutoInsertSubStations(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown,

"filename", InsertSelected);

Use this action to automatically insert substations based on specified location data.

LocationSource : "Bus", "Substation" or "File"

MapProjection : "Simple Conic", "Mercator" or "x,y"

AutoInsertBranches : YES to insert transmission lines when finished, NO not to

InsertOnlyIfNotAlreadyShown

 : YES if only buses that are not already shown should be inserted, NO to

insert all buses.

"filename" : (optional) path to location source file (if LocationSource is "File")

(Following added in the July 31, 2020 patch of Simulator 21)

InsertSelected : (optional) Default is NO. YES will only insert substations that are selected

through their Selected field (Selected = YES).

 140

AutoInsertLineFlowPieCharts(MinkV, InsertOnlyIfNotAlreadyShown, InsertMSLines, Size);

Use this action to automatically insert line flow pie charts.

MinkV : Minimum kV level to insert (default=0)

InsertOnlyIfNotAlreadyShown

 : (optional) if existing line flow objects are ignored (default=YES)

InsertMSLines : (optional) insert pie charts for Multi-Section Lines (default=YES)

Size : (optional) size (default=5.0)

AutoInsertInterfaces(InsertPieCharts, PieChartSize);

Use this action to automatically insert line flow objects.

InsertPieCharts : (optional) Insert pie charts as well (default=YES)

PieChartSize : (optional) default size of interface pie charts (default=50.0)

ResetStubLocations(ZBRImpedance, NoStubsZBRs);

Use this action to reset stub locations.

ZBRImpedance : (optional) max P.U. impedance for bus ties (default=0.0001)

NoStubsZBRs : (optional) Ignore stubs for bus ties (default=YES)

FixFlowArrowLineEnds("OnelineName", "LayerName");

The unmoving line flow arrow indicators that can be displayed on lines may not always be setup correctly.

This script corrects the flow arrows so that they look at the end of the line to which they are the closest to

determine the direction of flow.

"OnelineName" : The name of the oneline to which this action should be applied. The

oneline must already be open.

"LayerName" : Name of the screen layer in which this action should be applied.

PanAndZoomToObject("ObjectID", "DisplayObjectType", "DoZoom");

Use this action to pan to and optionally zoom in on a display object. This action will find the first matching

display object linked to the model object identified by ObjectID or the exact display object identified by

ObjectID.

ObjectID : The object identifier that uniquely identifies the power system model

object or display object. For example, to identify bus 123354, the

ObjectID takes the form "BUS 123354".

DisplayObjectType : (optional) The display object type to find. When a power system model

object is passed in for ObjectID, this parameter helps this action narrow

down to what kind of display object to pan. For example, to find the first

bus display object, use "DISPLAYBUS". (default="")

DoZoom : (optional) Whether or not to zoom after panning. (default=YES)

 141

General Script Commands

The following script commands defined above in the general SCRIPT section are available for display

auxiliary files as well:

ExitProgram

LoadScript

LoadData

SelectAll

UnSelectAll

SetData

SaveData

SaveDataWithExtra

CreateData

DeleteFile

RenameFile

CopyFile

SetCurrentDirectory

SaveObjectFields

 142

DATA Section for Display Auxiliary File
The syntax for Display Auxiliary Files is the same as for Auxiliary Files. See the DATA Section and its sub-sections for

details on the proper syntax. Any differences for display auxiliary files will be discussed below.

Key Fields

See the Key Fields topic in the DATA Section for general details.

Display objects have an additional key field used for identification because multiple objects can be present on the same

one-line diagram that represent the same power system element. This extra key field is SOAuxiliaryID. This is a field

that is unique for each type of display object and other key field combination. If there are two display buses that

represent bus one in the power system, the SOAuxiliaryID field will be different for both. Simulator will automatically

create unique identifiers when these objects are created graphically. They can also be user specified but are forced to be

unique. This field does not need to be present when reading in a display auxiliary file, but if it is missing, Simulator

assumes that the ID is "1". This field is the only key field identifier for objects that do not link to power system elements

such as background lines and pictures, and therefore, should always be included when reading in these objects or the

expected results may not be achieved.

By going to the main menu and choosing Help, Export Display Object Fields you will obtain a list of fields available for

each display object type. In this output, the key fields will appear with asterisks *.

Special Data Sections

There are several object types that should be noted here because they can impact the reading of an entire display auxiliary

file, overall look of the resulting one-line diagram, or require special input to properly import/export the object.

GeographyDisplayOptions

Most objects supported in the display auxiliary file have coordinates that can be specified in the appropriate data sections.

What these coordinates specify can be controlled by the GEOGRAPHYDISPLAYOPTIONS object. This object has only two

fields available: MapProjection and ShowLonLat. There are three possible settings for MapProjection: "x,y", "Simple

Conic", and "Mercator". The choice of projection will determine how the x,y values for display objects are interpreted.

ShowLonLat can be either "YES" or "NO". If ShowLonLat is "YES", the setting specified for the MapProjection will be the

longitude,latitude projection used when reading/writing the object x,y values. If ShowLonLat is "NO", the x,y values will

always be interpreted as x,y regardless of the MapProjection setting. This object should be placed in the display auxiliary

file before any other objects containing coordinates are read. If this object is not included in the auxiliary file, the

coordinates will be interpreted based on the current settings of map projection and whether or not coordinates are

showing longitude,latitude.

Picture

PICTURE objects represent background images that cannot be stored in a text file format. To properly include a PICTURE

object in a display auxiliary file, the file containing the image must be saved and read along with the auxiliary file. The

FileName field indicates the name and location of the image file. If the image file cannot be found when reading in a

display auxiliary file and attempting to create a new object, no PICTURE object will be created. If attempting to update an

existing object and the image file cannot be found, the object will not be updated with a new image, but the FileName

field will be updated with the specified file name.

PWFormOptions

One-line display options that affect the current display settings can be changed by using the PWFORMOPTIONS object.

Usually, this object specifies named sets of options that can be selected and used to change the various one-line display

options through the GUI. By including a specially named object, the current options can be changed through a display

 143

auxiliary file. PWFORMOPTIONS are named using the OOName field. Setting this field to

"THESE_OPTIONS_ARE_APPLIED_TO_THE_CURRENT_DISPLAY" will apply the specified set of options to the current one-line

when the file is read. When saving the entire one-line to a display auxiliary file, a PWFORMOPTIONS object with this name

is added to the file by default.

View

Different views can be specified in the display auxiliary file using the VIEW object. Usually, this object is used to specify

named sets of options used to select and change the view through the GUI. By including a specially named object, the

current view can be changed through a display auxiliary file. VIEW objects are named using the ViewName field. Setting

this field to "THIS_VIEW_IS_APPLIED_TO_THE_CURRENT_DISPLAY" will apply the specified set of view options to the current

one-line when the file is read. When saving the entire one-line to a display auxiliary file, a VIEW object with this name is

added to the file by default.

SubData Sections

The format described thus far works well for most kinds of data in Simulator. It does not work as well however for data

that stores a list of objects. For example, a contingency stores some information about itself (such as its name), and then a

list of contingency elements, and possible a list of limit violations as well. For data such as this, Simulator allows

<SubData>, </SubData> tags that store lists of information about a particular object. This formatting looks like the

following

object_type (list_of_fields)

{

value_list_1

 <SUBDATA subobject_type1>

 precise format describing an object_type1

 precise format describing an object_type1

 .

 .

 .

 </SUBDATA>

 <SUBDATA subobject_type2>

 precise format describing an object_type2

 precise format describing an object_type2

 .

 .

 .

 </SUBDATA>

value_list_2

 .

 .

 .

value_list_n

}

Note that the information contained inside the <SubData>, </SubData> tags may not be flexibly defined. It must be

written in a precisely defined order that will be documented for each SubData type. The description of each of these

SubData formats follows.

ColorMap

Same format as in data auxiliary files.

CustomColors

Same format as in data auxiliary files.

 144

DisplayDCTramisssionLine

DisplayInterface

DisplayMultiSectionLine

DisplaySeriesCapacitor

DisplayTransformer

DisplayTransmissionLine

Line

Line

This is a list of points defining the graphical line used to represent the object. Each set of coordinates can

be enclosed in square brackets, [], or the brackets can be eliminated. The brackets will be included when

Simulator generates an auxiliary file. The individual coordinates are separated by the specified delimiter,

either a space or a comma, and if the brackets are included, the same delimiter should be used to

separate sets of coordinates. The list of points is in a somewhat free form and sets of coordinates can

span multiple lines. Each point should either be in x,y coordinates or longitude,latitude coordinates.

Which coordinates should be used depends on the current option settings for map projection and

whether or not coordinates should be shown in longitude,latitude. If the display auxiliary file is

automatically generated by Simulator, a comment will be included in the subdata section indicating the

coordinate system in use during file creation.

Example using brackets and a comma delimiter:
<SUBDATA Line>

//Coordinates are x,y

 [14.00000000, 63.00000000], [14.00000000, 60.00000000],

 [20.00000000, 45.00000000], [20.00000000, 42.00000000]

</SUBDATA>

Example with no brackets and a space delimiter:
<SUBDATA Line>

//Coordinates are x,y

 14.00000000 63.00000000 14.00000000 60.00000000

 20.00000000 45.00000000 20.00000000 42.00000000

</SUBDATA>

DynamicFormatting

Same format as in data auxiliary files.

Filter

Same format as in data auxiliary files.

GeoDataViewStyle

Same format as in data auxiliary files.

 145

PieChartGaugeStyle

ColorMap

This is a lookup table by percentage of scalar and color values. This lookup table will consist of

consecutive lines of text with exactly three values:

Percentage : This is the percentage at which the following scalar and color should be

applied.

Scalar : A scalar (multiplier) on the size of the pie chart/gauge.

Color : A color for the pie chart/gauge.

Example:
<SUBDATA ColorMap>

//Percentage Scalar Color

 85.0000 1.5000 33023

 100.0000 2.0000 255

</SUBDATA>

PWFormOptions

Same format as in data auxiliary files.

SelectByCriteriaSet

Same format as in data auxiliary files.

UserDefinedDataGrid

Same format as in data auxiliary files.

View

ScreenLayer

This is a list of screen layer names that are hidden in the current view. Each screen layer name is on a

separate line of text.

Example:
<SUBDATA ScreenLayer>

//These are hidden screen layers

 "pie layer"

</SUBDATA>

	Introduction
	SCRIPT Section
	Using Filters in Script Commands
	Specifying Special Keywords in Script Command Parameters
	Specifying File Names in Script Commands
	Specifying Field Variable Names in Script Commands
	Specifying Field Values in Script Commands
	General Actions
	Program Actions
	CopyFile("oldfilename", "newfilename");
	DeleteFile("filename");
	ExitProgram;
	LogAdd("text");
	LogAddDateTime("label", includedate, includetime, includemilliseconds);
	LogClear;
	LogSave("filename", AppendFile);
	LogShow(DoShow);
	RenameFile("oldfilename", "newfilename");
	SetCurrentDirectory("filedirectory", CreateIfNotFound);
	StopAuxFile;
	WriteTextToFile("filename", "text");

	Data Actions
	CreateData(objecttype, [fieldlist], [valuelist]);
	Delete(objecttype, filter);
	DeleteDevice([ObjectIDString]);
	DeleteIncludingContents(objecttype, filter);
	ExportAreaSupplyCurves("filename", "User Defined String", NumPoints);
	ImportData("filename", FileType, HeaderLine, CreateIfNotFound);
	LoadAux("filename", CreateIfNotFound);
	LoadAuxDirectory("filedirectory", "filterstring", CreateIfNotFound);
	LoadCSV("filename", CreateIfNotFound);
	LoadData("filename", DataName, CreateIfNotFound);
	LoadScript("filename", ScriptName, CreateIfNotFound);
	SaveData("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], Transpose, Append);
	SaveDataEPC("filename", objecttype, filter, GEFileType, SaveBuses, Append);
	SaveDataUsingExportFormat("filename", filetype, "FormatName", ModelToUse);
	SaveDataWithExtra("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], [Header_List], [Header_Value_List], Transpose, Append);
	SaveObjectFields("filename", objecttype, [fieldlist]);
	SelectAll(objecttype, filter);
	SendtoExcel(objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", "worksheetname", [SortFieldList], [Header_List], [Header_Value_List], ClearExisting, RowShift, ColShift);
	SetData(objecttype, [fieldlist], [valuelist], filter);
	UnSelectAll(objecttype, filter);

	Case Related Actions
	AutoInsertTieLineTransactions;
	CalculateRXBGFromLengthConfigCondType(filter);
	CaseDescriptionClear;
	CaseDescriptionSet("text", Append);
	ChangeSystemMVABase(NewBase);
	ClearSmallIslands;
	ConditionVoltagePockets(VoltageThreshold, AngleThreshold, filter);
	DetermineBranchesThatCreateIslands(Filter, StoreBuses, "filename", SetSelectedOnLines, FileType);
	DeterminePathDistance([start], BranchDistMeas, BranchFilter, BusField);
	DetermineShortestPath([start], [end], BranchDistanceMeasure, BranchFilter, Filename);
	DoFacilityAnalysis ("Filename");
	DirectionsAutoInsert(Source, Sink, DeleteExisting, UseAreaZoneFilters, Start, Increment);
	EnterMode(mode);
	EstimateVoltages(filter);
	GenForceLDC_RCC(filter);
	InitializeGenMvarLimits;
	InjectionGroupsAutoInsert;
	InjectionGroupCreate("Name", objecttype, InitialValue, filter, Append);
	InterfaceCreate("Name", DeleteExisting, ObjectType, Filter);
	LoadEMS("filename", filetype);
	NewCase;
	OpenCase("filename", OpenFileType,[LoadTransactions,StarBus,HowToKeepDuplicates]);
	OpenCase("filename", OpenFileType,[MSLine,VarLimDead,PostCTGAGC,MSLineDummyBus]);
	RenameInjectionGroup("OldName", "NewName");
	SaveCase("filename", SaveFileType, [PostCTGAGC, UseAreaZone]);
	SaveCase("filename", SaveFileType, [AddCommentForObjectLabels]);
	SaveGenLimitStatusAction("filename");
	SaveJacobian("JacFileName", "JIDFileName", FileType, JacForm);
	SaveYbusInMatlabFormat("filename", IncludeVoltages);
	Scale(scaletype, basedon, [parameters], scalemarker);
	SetGenPMaxFromReactiveCapabilityCurve(filter);
	SetParticipationFactors(Method, ConstantValue, Object);
	SetScheduledVoltageForABus([bus identifier], voltage);
	SetSelectedFromNetworkCut(SetHow, [BusOnCutSide], BranchFilter, InterfaceFilter, DCLineFilter, Energized, NumTiers, InitializeSelected, [ObjectsToSelect], UseAreaZone, UsekV, MinkV, MaxkV, LowerMinkV, LowerMaxkV);
	UpdateIslandsAndBusStatus;

	Distributed Computing Actions
	EnterDistMasterPassword(Password);
	VerifyDistributedComputersAvailable;

	Oneline Actions
	CloseOneline("OnelineName");
	EditMultipleOnelineAction("Path", LinkType, SaveFileType);
	ExportOneline("filename", "OnelineName", ImageType, "view", FullScreen, ShowFull, [ExportOptions]);
	ExportOnelineAsShapeFile("filename", "OnelineName", "ShapeFileExportDescriptionName", UseLonLat, PointLocation);
	ImportDDLAsTranslation("filename");
	LoadAXD("filename", "OnelineName", CreateIfNotFound)
	OpenOneline("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, Height);
	RelinkAllOpenOnelines;
	SaveOneline("filename", "OnelineName", SaveFileType);
	OpenBusView("Bus key", ForceNewWindow);
	OpenSubView("Substation key", ForceNewWindow);

	User Interface Actions
	MessageBox("text");
	ObjectFieldsInputDialog("ObjectIDString", [fieldlist], "DialogCaption", "DialogExplain", [LabelCaptions], [TabBreaks], [TabCaptions], [RowBreaks], [RowCaptions], [ColBreaks], [ColCaptions]);
	OpenDataView("ObjectIDString", "DataGridIDString");

	Customer-Specific Actions
	ISONEInterfaceLimitCalculation("filename", variablename);

	Edit Mode Actions
	Case Related Actions
	AppendCase("filename", OpenFileType, [StarBus, EstimateVoltages]);
	AppendCase("filename", OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]);
	Combine([elementA], [elementB]);
	DeleteExternalSystem;
	Equivalence;
	InterfacesAutoInsert(Type, DeleteExisting, UseFilters, "Prefix", Limits);
	MergeBuses([element], Filter);
	MergeLineTerminals(Filter);
	MergeMSLineSections(Filter);
	Move([elementA], [destination parameters], HowMuch);
	ReassignIDs(objecttype, field, filter, UseRight);
	Remove3WXformerContainer(filter);
	Renumber3WXFormerStarBuses("filename", Delimiter);
	RenumberAreas(NumCI);
	RenumberBuses(NumCI);
	RenumberMSLineDummyBuses("filename", Delimiter);
	RenumberSubs(NumCI);
	RenumberZones(NumCI);
	SaveExternalSystem("Filename", SaveFileType, WithTies);
	SplitBus([element], NewBusNumber, InsertBusTieLine, LineOpen, BranchDeviceType);
	TapTransmissionLine([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine);

	Run Mode Actions
	Animate(DoAnimate);
	CalculatePTDF([transactor seller], [transactor buyer], LinearMethod);
	CalculatePTDFMultipleDirections(StoreForBranches, StoreForInterfaces, LinearMethod);
	CalculateLODF([BRANCH nearbusnum farbusnum ckt], LinearMethod, PostClosureLCDF);
	CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod, filterMonitorInterface, PostClosureLCDF);
	CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines, UseLODFThreshold, LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile, FileLocation, CustomFieldHighLODF, CustomFieldHighLODFLine, Cust...
	CalculateLODFAdvanced(IncludePhaseShifters, FileType, MaxColumns, MinLODF, NumberFormat, DecimalPoints, OnlyIncludingLinesIncreasing, "FileName", IncludeIslandingCTG);
	CalculateTLR([flow element], direction, [transactor], LinearMethod, SetOutOfServiceBuses, filter, AbortOnError);
	CalculateTLRMultipleElement(TypeElement,WhichElement,direction,[transactor],LinearMethod);
	CalculateVoltSense([BUS num]);
	CalculateFlowSense([flow element], FlowType);
	CalculateLossSense(FunctionType);
	CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR);
	CalculateVoltSelfSense(filter);
	DeleteState(WhichState, StateName);
	RestoreState(WhichState, StateName);
	SetInterfaceLimitToMonitoredElementLimitSum(filter);
	SetSensitivitiesAtOutOfServiceToClosest(filter);
	StoreState(StateName);
	ZeroOutMismatches(ObjectType);
	Power Flow Related Actions
	ClearPowerFlowSolutionAidValues;
	DiffFlowClearBase;
	DiffFlowKeyType(KeyType);
	DiffFlowMode(diffmode);
	DiffFlowSetAsBase;
	DiffFlowShowPresentAndBase(How);
	DiffFlowRefresh;
	DiffFlowWriteCompleteModel ("filename", AppendFile, SaveAdded, SaveRemoved, SaveBoth, KeyFields, "ExportFormat", UseAreaZone, UseDataMaintainer, AssumeBaseMeet, IncludeClearPowerFlowSolutionAidValues);
	DiffFlowWriteBothEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);
	DiffFlowWriteNewEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);
	DiffFlowWriteRemovedEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);
	DoCTGAction([contingency action]);
	ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle);
	SolvePowerFlow (SolMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

	Contingency Related Actions
	CTGApply("ContingencyName");
	CTGAutoInsert;
	CTGCalculateOTDF([transactor seller], [transactor buyer], LinearMethod);
	CTGClearAllResults;
	CTGCompareTwoListsofContingencyResults (PRESENT or "ControllingFilename",PRESENT or "ComparisonFilename");
	CTGConvertAllToDeviceCTG(KeepOriginalIfEmpty);
	CTGCreateContingentInterfaces(filter, maxOption);
	CTGCreateExpandedBreakerCTGs;
	CTGCreateStuckBreakerCTGs(filter, AllowDuplicates, "PrefixName", IncludeCTGLabel, BranchFieldName, "SuffixName", "PrefixComment", BranchFieldComment, "SuffixComment");
	CTGJoinActiveCTGs(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename");
	CTGProcessRemedialActionsAndDependencies(DoDelete, filter);
	CTGProduceReport("filename");
	CTGReadFilePSLF("filename");
	CTGReadFilePTI("filename");
	CTGRelinkUnlinkedElements;
	CTGRestoreReference;
	CTGSaveViolationMatrices("filename", filetype, UsePercentage, [ObjectTypesToReport], SaveContingency, SaveObjects, FieldListObjectType, [FieldList], IncludeUnsolvableCTGs);
	CTGSetAsReference;
	CTGSolve("ContingencyName");
	CTGSolveAll(DoDistributed, ClearAllResults);
	CTGWriteAllOptions("filename", KeyField, UseSelectedDataMaintainer, SaveDependencies, UseAreaZoneFilters);
	CTGWriteFilePTI("filename", BusFormat, TruncateCTGLabels);
	CTGWriteResultsAndOptions("filename", [opt1, opt2, opt3, …, opt19], KeyField, UseDATASection, UseConcise, UseObjectIDs, UseSelectedDataMaintainers, SaveDependencies, UseAreaZoneFilters);

	Fault Related Actions
	Fault([Bus num], faulttype, R, X);
	Fault([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X);
	LoadPTISEQData("filename", version);

	ATC (Available Transfer Capability) Related Actions
	ATCCreateContingentInterfaces(filter);
	ATCDetermine([transactor seller], [transactor buyer], DoDistributed);
	ATCDetermineATCFor(RL, G, I, ApplyTransfer);
	ATCIncreaseTransferBy(amount);
	ATCRestoreInitialState;
	ATCTakeMeToScenario(RL, G, I);
	ATCWriteAllOptions("filename", AppendFile, KeyField);
	ATCWriteResultsAndOptions("filename", AppendFile);
	ATCWriteToExcel("worksheetname", [fieldlist]);
	ATCWriteToText("filename", filetype, [fieldlist]);
	ATCSetAsReference;

	GIC (Geomagnetically Induced Current) Related Actions
	GICCalculate(MaxField, Direction, SolvePF);
	GICClear;
	GICLoadAERData(CoarseFile, FineFilePoints, FineFileEast, FineFileNorth);
	GICTimeVaryingCalculate(TheTime,SolvePF);
	GICTimeVaryingAddTime(NewTime);
	GICTimeVaryingDeleteAllTimes;
	GICTimeVaryingEFieldCalculate(TheTime,SolvePF);
	GICWriteOptions(“FileName”, KeyField);

	ITP (Integrated Topology Processing) Related Actions
	CloseWithBreakers(objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects, [SwitchingDeviceTypes], CloseNormallyClosedDisconnects);
	ExpandAllBusTopology;
	ExpandBusTopology(BusIdentifier, TopologyType);
	OpenWithBreakers(objecttype, filter or [object identifier], [SwitchingDeviceTypes], OpenNormallyOpenDisconnects);
	SaveConsolidatedCase("filename", filetype, [BusFormat, TruncateCtgLabels, AddCommentsForObjectLabels]);

	OPF (Optimal Power Flow) and SCOPF Related Actions
	SolvePrimalLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	InitializeLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	SolveSinglePrimalLPOuterLoop("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	SolveFullSCOPF (BCMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	OPFWriteResultsAndOptions("filename");

	PV Related Actions
	PVClear;
	PVDestroy;
	PVQVTrackSingleBusPerSuperBus;
	PVRun([elementSource], [elementSink]);
	PVSetSourceAndSink([elementSource], [elementSink]);
	PVStartOver;
	PVWriteInadequateVoltages("filename", AppendFile, InadequateType);
	PVWriteResultsAndOptions("filename", AppendFile);
	RefineModel(objecttype, filter, Action, Tolerance);

	QV Related Actions
	QVRun("filename", InErrorMakeBaseSolvable);
	QVWriteResultsAndOptions("filename");
	QVSelectSingleBusPerSuperBus;

	TS (Transient Stability) Related Actions
	TSAutoCorrect;
	TSAutoInsertDistRelay(Reach, AddRelayAtFromBus, AddRelayAtToBus, DoTransferTrip, Shape, filter);
	TSAutoInsertZPOTT(Reach, filter,);
	TSCalculateCriticalClearTime([branch] or filter,);
	TSCalculateSMIBEigenValues;
	TSClearAllModels;
	TSGetVCurveData("FileName", filter);
	TSGetResults("FileName", SINGLE/SEPARATE/JSIS/INTEGRATED, [Contingencies], [Plots, ObjectFields], StartTime, EndTime]);
	TSLoadBPA("FileName");
	TSLoadGE("FileName", GENCCYN, EnableOutOfOrderModels);
	TSLoadPTI("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename", "BASEGENfilename", “MODREMOVEfilename);
	TSLoadRDB("filename", ModelType, filter);
	TSLoadRelayCSV("filename", ModelType, filter);
	TSResultStorageSetAll(objecttype, YES/NO);
	TSRunUntilSpecifiedTime("ContingencyName", [StopTime, StepSize, StepsInCycles, ResetStartTime, NumberOfTimeStepsToDo]);
	TSSaveBPA("FileName", DiffCaseModifiedOnly);
	TSSaveGE("FileName", DiffCaseModifiedOnly);
	TSSavePTI("FileName", DiffCaseModifiedOnly);
	TSSaveTwoBusEquivalent ("AuxFileName", [BUS]);
	TSSolve("ContingencyName", [StartTime, StopTime, StepSize, StepInCycles]);
	TSSolveAll(DoDistributed);
	TSWriteModels("FileName", DiffCaseModifiedOnly);
	TSWriteOptions("FileName",[SaveDynamicModel, SaveStabilityOptions, SaveStabilityEvents, SaveResultsEvents, SavePlotDefinitions], KeyField);
	TSSetSelectedForTransientReferences(SetWhat, SetHow, [ObjectType List],[ModelType List]);

	Scheduled Actions Related Actions
	IdentifyBreakersForScheduledActions(IdentifyFromNormalStatus);
	SetScheduleView(ViewTime, ApplyActions, UseNormalStatus, ApplyWindow);
	SetScheduleWindow(StartTime, EndTime, Resolution, ResolutionUnits);

	DATA Section
	Concise Auxiliary File Header
	Legacy Auxiliary File Header
	ObjectType
	File_Type_Specifier
	Required Fields and Create_if_not_found
	List_of_Fields
	Concise Field Variable Names
	Legacy Field Variable Naming
	Special Naming
	Key Fields
	Data List
	Special Data List Entries
	Special Identifiers for Model Fields in Data
	Using Labels for Identification
	Saving Auxiliary Files Using Labels
	Loading Auxiliary Files SUBDATA Sections Using Labels
	Special Use of Labels in SUBDATA
	ATC Scenarios
	ATC Extra Monitors
	Model Conditions
	Model Expressions
	Bus Load Throw Over Records
	Injection Group Participation Points

	SubData Sections
	ATC_Options
	RLScenarioName
	GScenarioName
	IScenarioName
	ATCMemo

	ATCExtraMonitor
	ATCFlowValue

	ATCScenario
	TransferLimiter
	ATCExtraMonitor

	AUXFileExportFormatData
	DataBlockDescription

	AUXFileExportFormatDisplay
	DataBlockDescription

	BGCalculatedField
	Condition

	Bus
	MWMarginalCostValues
	MvarMarginalCostValues
	LPOPFMarginalControls

	BusViewFormOptions
	BusViewBusField
	BusViewFarBusField
	BusViewGenField
	BusViewLineField
	BusViewLoadField
	BusViewShuntField

	ColorMap
	ColorPoint

	Contingency
	CTGElementAppend
	CTGElement
	Transmission Line or Transformer outage or insertion
	Generator, Load, or Switched Shunt outage or insertion
	Generator, Load or Switched Shunt movement to another bus
	Generator, Load or Switched Shunt set or change a specific value
	Bus outage causes all lines connected to the bus to be outage
	Interface outage or insertion
	Interface change specific value
	Line Shunt outage or insertion
	Injection Group outage or insertion
	Injection Group change specific value
	Series Capacitor Bypass or Inservice
	Series Capacitor set impedance
	DC Transmission or VSC DC Transmission Line outage
	DC Line set a specific value or insertion
	MTDC Converter outage
	MTDC Converter set a specific value or insertion
	Phase Shifter set a specific value
	3-Winding Transformer outage or insertion
	Area Control Type Change
	Substation outage
	Abort
	Execute a Power Flow Solution
	Calling of a name ContingencyBlock
	Make-Up Power Compensation

	LimitViol
	Sim_Solution_Options
	WhatOccurredDuringContingency
	ContingencyMonitoringException

	CTG_Options
	Sim_Solution_Options

	CTGElementBlock
	CTGElement
	CTGElementAppend

	CustomColors
	CustomColors

	CustomCaseInfo
	ColumnInfo

	DataGrid
	ColumnInfo

	DynamicFormatting
	DynamicFormattingContextObject
	LineThicknessLookupMap
	LineColorLookupMap
	FillColorLookupMap
	FontColorLookupMap
	FontSizeLookupMap
	BlinkColorLookupMap
	XoutColorLookupMap
	FlowColorLookupMap
	SecondaryFlowColorLookupMap

	Filter
	Condition

	Gen
	BidCurve
	ReactiveCapability

	GeoDataViewStyle
	TotalAreaValueMap
	RotationRateValueMap
	RotationAngleValueMap
	LineThicknessValueMap

	GlobalContingencyActions
	CTGElementAppend
	CTGElement

	HintDefValues
	HintObject

	InjectionGroup
	PartPoint

	Interface
	InterfaceElement

	KMLExportFormat
	DataBlockDescription

	LimitSet
	LimitCost

	Load
	BidCurve

	LPVariable
	LPVariableCostSegment

	ModelCondition
	Condition

	ModelExpression
	LookupTable

	ModelFilter
	ModelCondition

	MTDCRecord
	MTDCBus
	MTDCConverter
	MTDCTransmissionLine

	MultiSectionLine
	Bus
	BusRenumber

	Nomogram
	InterfaceElementA
	InterfaceElementB
	NomogramBreakPoint

	NomogramInterface
	InterfaceElement

	Owner
	Bus
	Load
	Gen
	Branch

	PostPowerFlowActions
	CTGElementAppend
	CTGElement

	PWCaseInformation
	PWCaseHeader

	PWFormOptions
	PieSizeColorOptions

	PWLPOPFCTGViol
	OPFControlSense
	OPFBusSenseP
	OPFBusSenseQ

	PWLPTabRow
	LPBasisMatrix

	PWPVResultListContainer
	PWPVResultObject
	LimitViol
	PVBusInadequateVoltages

	PWQVResultListContainer
	PWPVResultObject

	QVCurve
	QVPoints

	QVCurve_Options
	Sim_Solution_Options

	RemedialAction
	CTGElementAppend
	CTGElement

	SelectByCriteriaSet
	SelectByCriteriaSetType
	Area
	Zone
	ScreenLayer

	ShapefileExportDescription
	StudyMWTransactions
	ImportExportBidCurve

	SuperArea
	SuperAreaArea

	TSSchedule
	SchedPoint

	UserDefinedDataGrid
	ColumnInfo

	SCRIPT Section for Display Auxiliary File
	AXD Actions
	AutoInsertBorders;
	AutoInsertBuses(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, "filename", InsertSelected);
	AutoInsertLoads(MinkV, InsertTextFields);
	AutoInsertSwitchedShunts(MinkV, InsertTextFields);
	AutoInsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines, ZBRImpedance, NoStubsZBRs, SingleCBZRs);
	AutoInsertLineFlowObjects(MinkV, InsertOnlyIfNotAlreadyShown, LineLocation, Size, FieldDigits, FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, ShowComplex);
	AutoInsertSubStations(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, "filename", InsertSelected);
	AutoInsertLineFlowPieCharts(MinkV, InsertOnlyIfNotAlreadyShown, InsertMSLines, Size);
	AutoInsertInterfaces(InsertPieCharts, PieChartSize);
	ResetStubLocations(ZBRImpedance, NoStubsZBRs);
	FixFlowArrowLineEnds("OnelineName", "LayerName");
	PanAndZoomToObject("ObjectID", "DisplayObjectType", "DoZoom");
	General Script Commands

	DATA Section for Display Auxiliary File
	Key Fields
	Special Data Sections
	GeographyDisplayOptions
	Picture
	PWFormOptions
	View

	SubData Sections
	ColorMap
	CustomColors
	DisplayDCTramisssionLine
	DisplayInterface
	DisplayMultiSectionLine
	DisplaySeriesCapacitor
	DisplayTransformer
	DisplayTransmissionLine
	Line
	Line

	DynamicFormatting
	Filter
	GeoDataViewStyle
	PieChartGaugeStyle
	ColorMap

	PWFormOptions
	SelectByCriteriaSet
	UserDefinedDataGrid
	View
	ScreenLayer

