Auxiliary File Format for
Simulator 20

Last Updated: November 14, 2018

@ PowerWorld

Corporation

PowerWorld Corporation
2001 South First St
Champaign, IL 61820
(217) 384-6330
http://www.powerworld.com
info@powerworld.com

Table of Contents

Introduction

SCRIPT Section

Using Filters in Script Commands

Specifying Special Keywords in Script Command Parameters

Specifying File Names in Script Commands

Specifying Field Variable Names in Script Commands

Specifying Field Values in Script Commands

General Actions
GENEIIC DAt ACLIONS ...ttt sttt as st ss sttt st e sas s sasasaas
CopyFile("oldfilename”, "NEWFIIENAME™); ...ttt ss st sttt ettt
CreateData(objecttype, [fieldlist], [VAIUETIST]); ..ottt sssssssssssssssss st sss st sss s ss st st st sssnssens
Delete(0hJECttyPe, fIlLEI); ...ttt re et sseesese st ses s sssesens
DeleteDevice([ObjectIDString]);
DeleteFile("filename");
DeletelncludingContents(objecttype, filter);
EnterDistMasterPassword(Password);

A DA W W W N N N =

N

N

N

ExportAreaSupplyCurves(“filename”, "User Defined String"”, NUMPOINES);covcvuerrerreciecniecesneceriseesinsscsisecsssesssenesssenens 5
ImportData("filename", FileType, HeaderLine, CreatelfNOtFOUNG);co.corvvervverierieseriesseses ittt sssssesssenns 5
LoadAux("filename”, Creat@IfNOTFOUNG); ..ottt s st s s e ssss s s s ssssassasssassssaens 6
LoadAuxDirectory("filedirectory”, "filterstring"”, CreatelfNOtFOUNG); ..ot sesss st se s 6
LoadCSV("filename", Creat@IfNOTFOUNG); ...ttt ettt s st ssssss st seasbasss s sssssassaseassassssassassaseas 6
LoadData("filename", DataName, CreatelfNOTFOUNG); ...ttt 6
LoadScript(“filename", ScriptName, CreatelfNOtFOUNG);coovorivrivrriieniiesiiessiessie s sssssssss st ss st st sssnsssens 6
RenameFile("oldfilename”, "NEWTIENAIME"); ...ttt st a s ta s s st ss s e s ssassssaens 6
SaveData("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], Transpose); 7
SaveDataEPC("filename"”, objecttype, filter, GEFileType, SaveBuses, APPENG);cc.ovwwrrmcreceineerieersireesisecsisnecsssnesesenesess 8
SaveDataUsingExportFormat(“filename”, filetype, "FormatName", ModelTOUSE);.....ccocrrurerrrenrreneeeneeesneeesssessesessesssseesseeens 8
SaveDataWithExtra("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], [Header_List],
[Header_Value_LiSt], TraNSPOSE); .. comwreerreereeeeeeseseseesseessssessssssssssssssssssssssssssssssssesssssssssssssessssessssesssssssssessssessasessns 8
SaveObjectFields("filename", objecttype, [fIElAIISt]); ...ttt ss s ss sttt ssnssens 9
SElECtAII(ODJECILYPE, fIlEEI); ettt ebese st sseesens 9
SendtoExcel(objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", "worksheetname", [SortFieldList],
[Header_List], [Header_Value_List], ClearExisting, ROWShift, COISRIfL);oovvuerieeriirerirnriseeisesssesstesseessess e ssnsssssens 10
SetCurrentDirectory(“filedirectory”, CreateIfNOTFOUNG); ...ttt sttt ss s ssssessssss st sesssnees 11
SetData(objecttype, [fieldlist], [VAIUEIIST], fIIEEI); ..ottt st ss st sss s ssss s s st esstes 11
SEOPAUKXFIIE; ..ottt ss et eess e 11
UNSEIECTAII(ODECILYPE, FIILEI); vttt sttt sttt ss bbbt st eens 11
W T XTI T ORI (Il NAIME", "TEXE™); oottt ettt st st a st s s s s sas s s st s s s ssassassassssasssssssens 11
CaSE REIATEI ACHIONS ...ttt s st s sssasssssassssanaaes 12
AULOINSEITIELINETIANSACHIONS; ...e.oeveveevcect ettt et sas sttt ae s s s st sesaesassassassasssaens 12
CalculateRXBGFromLengthConfigCoNATYPE(fIILEI);vcccuecuerrieceieceieeiriseerieesisecsises s ssisssesesse st ssssesssesesesessesessessssnessssnecs 12
CaSEDESCIIPLIONCIEAN; ... eeeeceerieeeeie ettt st se sttt st s s st ss s be e sas s ses 13
CaseDesCriptiONSEL("EXL", APPENG); w.vurriceiieceiieeiieeriseesieesssessseesssessese sttt bbbttt bbbt ebesesereeses 13
ChangeSyStEMMVABASE(NEWBASE); ..ottt bbb s s s st 13
ConditionVoltagePockets(VoltageThreshold, ANgleThreshold, filter);. ... ssssssssssssssesseenns 13
DetermineBranchesThatCreatelslands(Filter, StoreBuses, "filename", SetSelectedOnlLines, FileType);.....couwmecrnneceens 13

DeterminePathDistance([start], BranchDistMeas, BranchFilter, BUSFI@I);........ccocoviiieimieeeeeeeeeeee e 14

DetermineShortestPath([start], [end], BranchDistanceMeasure, BranchFilter, FIlename); ..., 15
DOFaCilityANalYSis ("FIIENAME"); ...t ssiee s st sseseseseseseseses st esesesesesesesessessssesssens 15
DirectionsAutolnsert(Source, Sink, DeleteExisting, UseAreaZoneFilters, Start, INCrement);ccoovevnecennecernecernecernneceens 15
ENTEIMOAE(MOAE); ...ttt ettt s s anaes 15
EXIEPIOGIAIM; oo 15
GENFOICELD C _ RCC(FIEI); oottt s s ess s s s sssesesss s eassassssssans 15
[N AIIZEGENMUVAILIMUITS; .ot e e e eee e e e e eee e essaeses e sessessasessasesssmsesnssaens 16
INJECLIONGIrOUPSAULOINSEIT ..ottt st 16
InjectionGroupCreate("Name", objecttype, InitialValue, filter, APPEN); ...t ssssssssens 16
LOAdEMS (" fil@N@ME", fIlELYPE); . reerree ettt sttt sttt sttt nsss s 16
LOGAAA(X"} crverrvereerrieerieeeiesisse sttt 16
LogAddDateTime("label", includedate, includetime, includemilliSECONAS);crverreerreerereeeereee et seeseeesseeeseeens 17
LOGCIAI; ettt s sttt et ss sttt et een 17
LogSave("filename", APPENAFIIE); ... et esise st bbb bbbt ren 17
INEWECASE ...ttt ettt sttt st es st s st e s st asasssastss s e sessessasaesenen 17
OpenCase("filename", OpenFileType,[LoadTransactions,StarBUS]);c..ccoririnrinnisennessssisssisssssessssssssssssssssssssssssssssssssssssness 17
OpenCase("filename”, OpenFileType,[MSLine,VarLimDead,PostCTGAGC,MSLIneDUMMYBUS]);cvueveemecrmmecerecereneeceennee 17
RenamelnjectionGroup("OldNamME", "NEWNAMIE"); ... rrrrireieieesississses 18
SaveCase("filename", SaveFileType, [POStCTGAGC, USEAIEAZONE]); ... wwuwereemreenerseseseesssesssesssesssssssssssssssssssssssssssssesssssssnses 18
SaveCase("filename", SaveFileType, [AddCommentForObjectLabels]); ... sisssessssessssssssssssssssesseseess 18
SaAVEGEN LIMITSTAtUSACTION (M TIENMAIME™); oottt ettt s sttt s s sttt ss st asess st assassasssassassassasen 18
Savelacobian("JacFileName", "JIDFileName", FileType, JACFOIM); c..cccuececeieceineceieecriessiecsieesssnesssessesiseessssessssnesssenens 19
SaveYbusIinMatlabFormat("filename", INCIUAEVOITAGES);ovvrvrrinriiriinriiesiie s sssssss st sssssssssssssssssssssssssssssssnsss 19
Scale(scaletype, basedon, [parameters], SCAIEMAIKED); ... sssseessse s sses s ss st ssses s ssss s ssss st sessssnses 19
SetGenPMaxFromReactiveCapabilityCUIVE(fILEI); ...ttt st ss s ss s s st enstes 20
SetParticipationFactors(Method, ConstantValue, ODJECL); ...ttt ss s ssssassss st ssssssssseees 21
SetScheduledVoltageForABUS([DUS ideNTifier], VOITAGE); ..ot sssssssssssssssss st st ssssssssssssssssssssssssssssssnsss 21

SetSelectedFromNetworkCut(SetHow, [BusOnCutSide], BranchFilter, InterfaceFilter, DCLineFilter, Energized,
NumpTiers, InitializeSelected, [ObjectsToSelect], UseAreaZone, UsekV, MinkV, MaxkV, LowerMinkV, LowerMaxkV);..21

UpdatelslandSANABUSSTAUS;covueveeeeeiee ettt ssss s st 22
ONEIINEG ACLIONS ..ottt bbb bbbt 23
CloSEONEINE("ONEIINENGIME™) ...ttt ettt ettt sttt sttt st senas 23
EditMultipleOnelineAction("Path”, LINKTYPE, SAVEFIIETYPE); ...ccvurrrerriereiecrimecesinsesisessiseesisessisessssnesssessesesssesssessssnesessnesssens 23
ExportOneline(“filename", "OnelineName", ImageType, "view", FullScreen, ShowFull, [ExportOptions]);cc.cccoeveeee. 23
ExportOnelineAsShapeFile("filename", "OnelineName", "ShapeFileExportDescriptionName", UseLonLat,
POINTLOCATION); ettt ettt sttt s s st s ssassesaes 24
IMPOIrtDDLASTIANSIAtION("FIENAME"); c...ooerieereeriiie ettt ss sttt bbbt 24
LoadAXD("filename", "OnelineName", CreatelfNOTtFOUNG) ...t ssaneas 25
OpenOneline("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, Height); 25
REIINKAIIOPENONEINES; ...ttt bbb bbb 25
SaveOneline(*filename”, "OnelineNamME"”, SAVEFIETYPE); ... esssesssse s ssss st st s sssssssssssssssssssssssssssssseses 25
OpenBusView("Bus Key", FOrCENEWWINAOW); ..ottt sssns 26
OpenSubView("Substation key", FOrCENEWWINAOW);cocvuruericeieriieeeriecsiecsisessseesssinssssesssesisessssnesssenesesssssessssessssnessssnecs 26
USEI INTEITACE ACHIONS ..ottt ess ettt 27
MESSAGEBOX(MEEXE"); wevvereereeeireieietireicteiree ettt et 27
ObjectFieldsinputDialog("ObjectIDString", [fieldlist], "DialogCaption”, "DialogExplain®, [LabelCaptions], [TabBreaks],
[TabCaptions], [RowBreaks], [RowCaptions], [ColBreaks], [COICAPLIONS]);..oiururrrrrirreerereeissesseessesssesssssssessssssssssssssssssssssssnnes 27
OpenDataView("ObjectIDString", "DataGridIDSTING");coccceceeeceiecriecrmieesriseesieesimnesssenesssissssessesisnessssnesssenssesssssessssessssnessssnens 29
Edit Mode Actions 30
CaSE REIALEA ACLIONS ..ottt st sttt ss bbb ss st seess e 30
AppendCase(“filename", OpenFileType, [StarBus, EStiMateVoItages]); ..c...ccouwrnrrrnrirnrsinssiessisssisssssssssssssssssssssssssssssssssssnsss 30

AppendCase(“filename", OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]); 30
Combine([elementA], [elementB]);
DeleteExternalSystem;
EQUIVAIENCE .ottt sttt ettt
InterfacesAutolnsert(Type, DeleteExisting, UseFilters, "Prefix", Limits);
MergeBuses([element], Filter);
MergeLineTerminals(Filter);
MergeMSLineSections(Filter);
Move([elementA], [destination parameters], HowMuch);
ReassignIDs(objecttype, field, filter, UseRight);
Remove3WXformerContainer(filter); ... e saeees
Renumber3WXFormerStarBuses("filename", Delimiter);
RenumberAreas(NumcCl);
RenumberBuses(NumCl);
RenumberMSLineDummyBuses("filename", Delimiter);
RenumberSubs(Numcl);
RenumberZones(NumcCl);
SaveExternalSystem("Filename", SaveFileType, WithTies);
SplitBus([element], NewBusNumber, InsertBusTieLine, LineOpen, BranchDeviceType);

TapTransmissionLine([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine); 36
Run Mode Actions 37
ANTMATE(DOANIMALER); ...ttt sttt ssassssanaenas 37
CalculatePTDF([transactor seller], [transactor buyer], LIN@arMethod);. ..o iseeessesesssssssssssssnees 37
CalculatePTDFMultipleDirections(StoreForBranches, StoreForInterfaces, LinearMethod);.........ccoevervrerinnrennivnnrinnsinniinns 38
CalculateLODF([BRANCH nearbusnum farbusnum ckt], LinearMethod, PoOstCloSUreLCDF);........coviieeeeeeveeeeeeseeeennes 38
CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod,
filterMonitoriNterface, POSTCIOSUIELEDE); ...ttt s et as s s s s s s s sas s s st s ssssasssssassssassassssses 38

CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines, UseLODFThreshold,
LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile, FileLocation,
CustomFieldHighLODF, CustomFieldHighLODFLine, CustomFieldHighOverload, CustomFieldHighOverloadLine,

DOUSEBCTGNAME); ..ottt et st sssas st s s sasassssssasasasssssnsns 39
CalculateLODFAdvanced(IncludePhaseShifters, FileType, MaxColumns, MinLODF, NumberFormat, DecimalPoints,
OnlylIncludingLinesincreasing, "FileName", INcludelslandingCTG);co.covuirrrnrineienriinsinniensiensissssssssss s sssssssssssssssssssssnns 41
CalculateTLR([flow element], direction, [transactor], LinearMethod, SetOutOfServiceBuses, filter, AbortOnError),......41
CalculateTLRMultipleElement(TypeElement,WhichElement,direction,[transactor],LinearMethod); 42
CalculateVoltSENSE([BUS NUM); ..ottt ettt sttt sttt sttt sttt senas 43
CalculateFlowSense([flow eleMENT], FIOWTYPE); ... irerieneieeeesseeseesssessseeessessssesssssssssssessssesssssssssssssssssssssssessssessssssssssssssssssnsssnnes 43
CalculateLOSSSENSE(FUNCLIONTYPE); w.vverreerierierienriseeisssissesssssssessss s s sssesssesssesssesssssssessssssssssnssens 43
CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR); 43
CalCUIALEY OIS I SENSE(FIEEI); ..ottt ettt ss st sas s ssnans 44
RestoreState(WhiChSTate, STATENGAIME); ...ttt ettt e e e s s s s sanasassasassasaas 44
SetinterfaceLimitToMonitoredElementLimItSUMTIILEI); ... et sae st st snenes 45
SetSensitivitieSAtOULOTSEIVICETOCIOSEST(FITET); w.uuvueeeeeeeeeeee ettt ettt s st s st s sas s sssasnassasen 45
StOreStAtE(STAtENGAIME); ..ottt bbbt bbbt tnee 45
ZEIOOULIMISINALCNES; ...ttt ettt ss st 45
POWET FIOW REIATEA ACTIONS ...ttt s s s sneas 46
ClearPOWEIFIOWSOIULIONATAVAIUES; ... eee e eee e eee e e e eeseseee e ees e eeseeessaeees e es e ees s eessemsaeessaseseaseseasassaseseasesssnsen 46
DIffFIOWCIEAIBASE; ..ottt a s s sas s snsens 46
DIffFIOWKEY TYPE(KEYTYPE); w.cvvurvvumirremierrireerincesmmiessinsssiseesisessssnessssssssesssesssssssssessssnesssssesesessecsssessssnesess 46
DiffFIOWMOAE(AITFMOAE); ...ttt ettt ss sttt s ses st sas s s 46
DIffFIOWSEEASBASE; ... e e e ese e s e s s essseesasesssessseseseesssesaseasasesssesnseaes 46
DiffFIOWSNOWPTESENTANABASE(HOW); ...ttt ss st ss st ses s ass et ss st e tassas s asssesssssseassassassssasssssessasens 46

FAUIT REIGTEA ACTIONS.......eeeee ettt ssnasssnaes

DITFIOWRETIESI; .ottt e e s s s ees e s s s ese s esesasraens

DiffFlowWriteCompleteModel (“filename”, AppendFile, SaveAdded, SaveRemoved, SaveBoth, KeyFields,

"ExportFormat”, UseAreaZone, UseDataMaintainer, ASSUMeBaseMEEL);cccrrncenerineeenerieriserisecsiessesesseseesaenens
DiffFlowWriteRemovedEPC (“filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append); ...cooeveerrvennece
DOCTGACLION([CONTINGENCY ACLION); corverrierierrieerieesieesieeiseiseisesisse s s bbbttt nsene
ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesTOMIdAdIE);ccov.omveerrreermreneeenreenneesneiens

SolvePowerFlow (SolMethod, "filename1", "filename?2", CreatelfNotFound1, CreatelfNotFound?2);

CoNtiNGENCY REIATEA ACHIONSceeuriierciiieirieeeieceic e srise i ssee sttt ese s ssese

CTGAPPIY("CONLINGENCYNAME"); oot ssss bbb bbb st
CTGAULOINSEIT] ettt sttt ss st st ssss s sse st sss st s ssnes

CTGCalculateOTDF([transactor seller], [transactor buyer], LInearMethod); ... sssseessseessseeens

CT G EAIAIIRESUITS 5 ettt ettt ettt sttt ssassssansnas

CTGCompareTwolistsofContingencyResults (PRESENT or "ControllingFilename",PRESENT or
"COMPAMISONFIENAME"); c.ourierierierieeieeissise st bbbt

CTGConvertAllToDeviceCTG(KeepOriginalIFEMPLY); ...cvcccrerrecrieceineceieesiecsieesisecssiesesessesisssesssessssnesssenesesessessssessssnesssens
CTGCreateCoNtingENtINTEITACES(FITEI);. ...ttt ss sttt st ss bbbttt
CTGCreateEXPaNEABIEAKEITTGS;vueveerererereeeseeeseeesseiesisesssnsssssssssssssssssssssssssssssssssssses

CTGCreateStuckBreakerCTGs(filter, AllowDuplicates, "PrefixName", IncludeCTGLabel, BranchFieldName,

"SuffixName", "PrefixComment", BranchFieldComment, "SUffiXCOMMENT"); ... eeeeeeeseesessseeses
CTGJoinActiveCTGs(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename”);ccocmecinnecenneceoneccronnecnens

CTGProduCeREPOIT(fIIENAME™); ..ottt st sttt ss s ssss bbbt ssenns

CTGREAAFIEPSLF (" fIlENAME"); ..o oot ss s sns s st ssssenenns

CTGREAAFIEPTI(FIENAME™); .ottt et s s ss s e s ss s aseassasssssnans

CTGREIINKUNIINKEAEIEMENTS; ...ttt sttt
CTGRESTOIEREIEIINCE, ... e e e eeee e eeseseee e s sees e eeseseesesese s essaseseasessaensensesenenns

CTGSaveViolationMatrices("filename", filetype, UsePercentage, [ObjectTypesToReport], SaveContingency,

SaveObjects, FieldListObjectType, [FieldList], INCludeUNSoIVaDIECTGS);creereerrreeereieeeeeeeseseeeseeesssessse s sssesssssessssessesens

TGS EEASREIEIEINCE, ...ttt ss s s s sss s s eassassasssnens

CTGSOIVE("CONtINGENCYNGIME"); .oorreerreereeeeiereceeeteeseeessssessessssssssssssess st s st e sssssssssssssssssssss st ssssssesssessssessanes

CTGSolveAll(DoDistributed, ClEAIAIRESUILS); ...ttt sae st sasssssses s sssssssassssssssassassseen
CTGWriteAllOptions("filename", KeyField, UseSelectedDataMaintainer, SaveDependencies, UseAreaZoneFilters); ...
CTGWriteFilePTI("filename", BusFormat, Truncat@CTGLADEIS); ...

CTGWriteResultsAndOptions("filename", [opt1, opt2, opt3, ..., opt19], KeyField, UseDATASection, UseConcise,

UseObjectIDs, UseSelectedDataMaintainers, SaveDependencies, UseAreaZoneFilters);cooworenneeerneeerereereeeeneeenenens

Fault([Bus num, fAUItLYPE, R, X1); wvvvrrrrrrirriinniinneiessiessiessissssesssnssssssens

Fault([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X]);.coeverrerernreeneineenneereeseeesesessesesseeseeessseenees

ATC (Available Transfer Capability) Related Actions

ATCCreateContingeNntINTEITACES(FIILEI); ...ttt ettt bs s sttt et esss s
ATCDetermine([transactor seller], [transactor buyer], DODIStDULEA); . ..o sesssesssesssssssessssssssessssees
ATCDetermineATCFOr(RL, G, I, APPIYTIANSTEL); oottt st sssssss sttt ss s ssss s esssnes
ATCINCreaseTraNSTEIBY(AMOUNL); ...ttt sttt ss s bbbt seess s

ATCRESTONEINITIAISTALE, ...ttt

ATCTakeMeETOSCENATMO(RL, G, I); oottt assss s st s s sssssassasasssseas

ATCWriteResultsAndOptions("filename"”, APPENAFIIE); ...ttt ssssss st sttt st ssssnsssnns
ATCWIiteTOEXCEI("WOIKSNEETNAMIE"); ..ottt sttt ss s s s e sasssessassasssessassanssnen
ATCWIrIteTOTEXI(fIlENAME", FIELYPE); ..o ittt st sttt s st bs s sttt

AT C S OEASREIOINCE, .o s e s e ess e s eee s eee e s e meeeess e meeeeessasaesaenns
GIC (Geomagnetically Induced Current) Related Actions

GICCalculate(MaxField, DIir€@CHION, SOIVEPE); ... ettt sttt sttt sttt st sttt s st s s assseasessanes

GICCIRAN, e eee s e e s ee e ees e e eeeeeseeaeeesesesseessasessaenseneene

GICLoadAERData(CoarseFile, FineFilePoints, FineFileEast, FINEFIENOITN); ...
GICTimeVaryingCalculate(TheTIME,SOIVEPE); ...ttt sess sttt ettt

46

47
47
48
48
48
49
49
49
49
49

50
50
50
50

51
52
52
52
52
52
52

52
53
53
54
54
55

GICTIMEVaryiNgAAATIME(NEWTIME);ccuumreummcerereerrineerireesisecsisessssnesssssesssessessisssssssesssesesssssesesessesessesssssesssssesssesesessssessssesssssessssnessseneses 60

GICTIMEVAryiNgDEIETEAIITIMES; ...t 60
GICTimeVaryingEFieldCalculate(ThETIME, SOIVEPE); ... ettt ss sttt ss s ssss st st ss st snees 60
GICWIiteOptioNS(“"FIENGME”, KEYFIEIA); c..uureeuriererieereieeeee ettt st sssesssssssse s st ss st s st st ss s ssssssssssssssssssssesssnsssnnes 61
ITP (Integrated Topology Processing) RelAted ACLIONS ...t s s ssessne 62
CloseWithBreakers(objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects, [SwitchingDeviceTypes],
CloSeNOIMallYClOSEADISCONNECES); ... sessse bbb s bbb st s bbb bbbt ss st st nsens 62
EXPANAAIIBUSTOPROIOGY; -..covurreimmcrrineriineriireesiscsisnessinesesiseesisessssnsssassssessesssssssssessssnessssnesessssssssessssnesess 63
ExpandBusTopology(Busldentifier, TOPOIOGYTYPE);...coiiirrerieessisssisessens 63
OpenWithBreakers(objecttype, filter or [object identifier], [SwitchingDeviceTypes], OpenNormallyOpenDisconnects);
.. 63
SaveConsolidatedCase("filename", filetype, [BusFormat, TruncateCtglLabels, AddCommentsForObjectLabels]); 65
OPF (Optimal Power Flow) and SCOPF Relate@d ACHIONS ...ttt ssesssssssssssssesssssssssssssesssessssessssssssesssssssas 66
SolvePrimalLP("filename1", "filename2", CreatelfNotFound1, CreatelfNOtFOUN2); ..ot 66
InitializeLP("filename1", "filename2", CreatelfNotFound1, CreatelfNOtFOUN2); ... 66
SolveSinglePrimalLPOuterLoop(“filename1", "filename2", CreatelfNotFound1, CreatelfNotFound2);......c.ccoeverrvermrrenncee 66
SolveFullSCOPF (BCMethod, "filename1", "filename2", CreatelfNotFound1, CreatelfNotFound?); 67
OPFWriteReSUItSANAOPLIONS("FIENAME"); ..ottt ss s ss sttt st st ss bbb st nessnes 67
PV REIALEA ACLIONS ...ttt bbbt bbbttt bansens 68
PV CLEAI, e e se e e e e s se e se e sesasessseseseasaseasasesaseaes 68
PV D ESTIOY; ..ottt ettt e 68
PVQVTrackSiNGIEBUSPEISUPEIBUS;ceeieeiereeereie ittt sttt sttt sttt s st st ss st s s s s s e ss b s s s s bbb bsenen 68
PVRUN([elementSoUrce], [ElEMENTSINK]); ...ttt sae st sss st ess s sassasssessassassssssassassseeen 68
PVSetSourceAndSink([elementSource], [R1EMENTSINK]); ...ttt sttt 68
PV STAITOVET, ...ttt ettt sttt s s st est s e s s sassasassenessearas 68
PVWritelnadequateVoltages(“filename", AppendFile, INAdEQUALETYPE); ..cvvuerverrenrrenrieneisssisssissssssssssessssssssssssssssssssssssssssess 69
PVWriteResultsAndOptions(“filename”, APPENAFIIE);ccwcricrineeieeiineceieceiecesieessesssesissesisessssesssesesesesesesesssesssesssssesssons 69
RefineModel(objecttype, filter, ACtION, TOIEIANCE);. ..ottt st ss s ss bbbttt sssens 69
QV REIAEA ACHIONS ..ottt ettt 70
QVRuUn("filename"”, INErrOrMaKeBasS@SOIVADIE); ...ttt s s s sassassaes 70
QVWIiteReSUItSANAOPLIONS(MFIENAME"); ..ottt sttt ss s ss bbbttt bs b st s s 70
QVSElECESINGIEBUSPEISUDPEIBUS;ovvverceirceirceiireeiieeriseesisee it esises s sttt bbb bbbt ebeses b 70
TS (Transient Stability) REIATEA ACLIONS ...t s s st 71
TSAULOCOITECT, ettt ettt s ettt s s s st s st as e st s s s easessasaenenes 71
TSAUtOINSErtDIStREIAY(REACK, fIlLEI); w.oooieeieeecee ettt ettt et s bbbttt 71
TSAULOINSEITZPOTT(REACK, TIEEI,); oottt et s st ss s ss st s et assasss s s s st saseassassasassssassasens 71
TSCalculateCriticalClearTime([Dranch] OF filEEI,); ... ettt ass s s sassssnna 71
TSCalCUlateSMIBEIGENVAIUES; ...ttt ettt sttt ss st s ssss s ssse s sa s sssses 72
TSCURAIAIIMOTEIS; ettt ee s st e s es s ee s esesesaseeseensesnseenseaen 72
TS GtV CUINVEDAtA("FIIENGME", FIEEI); ettt ettt s sttt s st sassassssss st ssaseassassasssassassasens 72
TSGetResults("FileName", SINGLE/SEPARATE/JSIS, [Contingencies], [Plots, ObjectFields], StartTime, EndTime]);........ 72
TSLOAABPA("FIENGIME™); ..ottt sass s st sassssesenrans 72
TSLoadGE("FileName", GENCCYN, ENableOUtOfOIrd@IMOTEIS); ... eeeeeete e esse s sesees s ssssssess s e sassssssses 73
TSLoadPTI("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename", "BASEGENfilename");.....c.cccccoovvvverrrrnn.... 73
TSLoadRDB("filename", MOAEITYPE, IEEI); .. ettt st st st ssssssss st ss st bs s bsssss s bsnses 73
TSLoadRelayCSV("“filename”, MOAEITYPE, fILEI); ..ttt esssss sttt st et ss s s neen 73
TSResultStorageSetAll(0DJeCttyPe, YES/INO); ...ovcvuceucrimecerieeerieesiseesiseesisessssnesssenssssesssesisesssssessssnesssenesssesesessssesssssessssnessssnesssensseses 74
TSRunUntilSpecifiedTime("ContingencyName", [StopTime, StepSize, StepsinCycles, ResetStartTime,
NUMDEIrOTTIMESTEPSTODO]); vverreerrerneeseeesreessressessseesseesseessessssessssessssssssssssssssssssssessssessssssssssssssssssessssesssnesssnes 74
TSSaveBPA("FileName", DiffCaSEMOIfIEAONIY); ...t st ss st sssssssss s ssssss st st st sssnsssnsssnses 74
TSSaveGE("FileName", DIffCaSEMOIfI@AONIY); ... eessess s ss st ssss s esssss sttt ssss st s ss s sssessssnsssnses 74
TSSavePTI("FileName", DiffCaseMOdifI@UONIY); ...ttt sssssssssssssssss s ssssss st st st ssssssnsssnses 74
TSSaveTwoBusEquivalent — ("AUXFIIENGME", [BUS]); ... vrrreereeneeeeeeeeeeseeeseessessssssssesssssssssssssssssssssssssssssssssessssesssessssssssssssssssnses 75

Vi

TSSolve("ContingencyName", [StartTime, StopTime, StepSize]);

TSSolveAll(DoDistributed);
TSWriteModels("FileName", DiffCaseModifiedOnly);

TSWriteOptions(“FileName",[SaveDynamicModel, SaveStabilityOptions, SaveStabilityEvents, SaveResultsEvents,

SavePlotDefinitions], KeyField);
Scheduled Actions Related Actions

IdentifyBreakersForScheduledActions(ldentifyFromNormalStatus);
SetScheduleView(ViewTime, ApplyActions, UseNormalStatus, ApplyWindow);
SetScheduleWindow(StartTime, EndTime, Resolution, ResolutionUnits);

DATA Section

Concise Auxiliary File Header

ObjectType

File_Type_Specifier

Create_if not_found

List_of Fields

Field Variable Naming (Legacy)

Concise Field Variable Names

Special Naming

Key Fields

Data List

Special Data List Entries

Special Identifiers for Model Fields in Data

Using Labels for Identification

Saving Auxiliary Files Using Labels

Loading Auxiliary Files SUBDATA Sections Using Labels

Special Use of Labels in SUBDATA

SubData Sections

ATC_Options
RLScenarioName
GScenarioName
IScenarioName

ATCExtraMonitor
ATCFlowValue
ATCScenario
TransferLimiter
ATCExtraMonitor
AUXFileExportFormatData
DataBlockDescription
AUXFileExportFormatDisplay
DataBlockDescription
BGCalculatedField
Condition
Bus
MWMarginalCostValues
MvarMarginalCostValues

75
75

75
76
76
76
76

77
77
77
78
78
78
79
79
79
79
80
80
80

81
81
82
82

84
85
85
85
85
85
85
85
85
85
86
87
87
87
87
87
87
88
88
88

LPOPFMaArGiNalCONTIOLS.......cveuceemceimceiieerinesrieesesecsisesssanes s ssessessssessssesssssesssssesessssessssesssssessssnesees 88
BUSVIEWFOIMOPTIONS ...ttt sttt sttt st st ssss st ss st st sesssssssnssenes 88
BUSVIEWBUSFIEI ..ottt ss st ettt et 88
BUSVIEWFAIrBUSFIEIAottt sttt ss st 88
BUSVIEWGENFIEIA ...ttt 88
BUSVIEWLINEFIEIA ...ttt sttt sttt 88
BUSVIEWLOGAFIEI ..ottt ssssesss s es s siseces 88
BUSVIEWSNUNTFIEIA oottt sttt 88
COlOIMAP .ottt sttt st sttt st sttt ss st st enes 89
COIOTPOINT oottt ittt 89
CONEINGENCY oottt 89
CTGEIEMENTAPPENG ...ttt sttt sttt st st ssss st st ss st s st sess st st snssens 89
CTGEIEMENT ..ottt sttt 89
LIMIEVION ettt sttt 101
SIM_SOIULION_OPLIONS ..ottt sttt s sttt 102
WhatOcCUIrredDUINNGCONTINGENCY ...courrvumrrimceirerimrceieeeesiseesiseestseessesesssessssessse st ssssesssssesesesesestsesessssessssseseseseseseseessssesssssessssnesesenss 102
CoNtiNGENCYMONITONNGEXCEPLION. ...ttt sttt se sttt sttt st st st s s ss st ss s ss st st st st sesssnsees 102
CTG_OPLIONS ..ot sessesasse e s sasesssss st saseses 102
SIM_SOIULION_OPLIONS ..ottt sttt sttt sttt ss st sesssess st snsssnssnes 102
CTGEIEMENTBIOCK ... eeeerreerei ettt st ss st ss e ss s 103
CTGEIEMENT ..ottt e 103
CTGEIEMENTAPPENG ...ttt sttt sttt sttt sttt ss st sess st sesssnsssnssens 103
CUSTOMCOIOIS ..ottt ss s ss sttt st eeen 103
CUSTOMICOIONS ettt bt et 103
CUSTOMCASEINTO .ottt ss st s bbbttt 103
COIUMNINTO ottt ettt bbbt 103
DAtGIIT ...ttt sttt 103
COIUMNINTO ottt sttt 103
DYNAMICFOIMATEING ..voveeeerierieie ittt sttt sttt st et sttt sttt sss st st ssnns 104
DynamiCFOrmMattingCONTEXTODJECT ...t ssees s esesse st eseses s ettt ebesesebenses 104
LINETHICKNESSLOOKUPMAP ... iuuieeiinrierirsiieeiesissessesses st ssssssss s ssssssssssssssss st sssssssssssssssssssssssssssssssssssssnsssnssns 105
LINECOIOTLOOKUPIMAP wcouvivimmiceienicirineerineerisecsisncssesessisessisssestsnessssssesesssesssssssssessassesesesesesssssssssessssnens 105
FillCOIOrLOOKUPIMAP c...ooveeieeriiree ettt st ssss s ssss s s s ssssssnssnns 105
FONTCOIOILOOKUPMAP .covvirrcvimcrimceimnceiinesreeesieesisns s ssessssesssesissssssesssesesesesesesesesesesesssssssssnens 105
FONSIZELOOKUPIMA ...oovrvimncrieniceiiecrieceiecsisec s ssisessisssestsessssses s st ssesesesesesesessessssessssnecs 105
BlINKCOIOrLOOKUPMAP ...ttt sess s s s s s s ssss s ssss bbb sessnns 105
XOULCOIOTLOOKUPIMAPovevercvirrrinceineceiicsiinee s ssisssesises s s ssisssesisse s ssssesesesesesesesesessessssnessssnecs 105
FIOWCOIOILOOKUPMAP ..ottt sssssss s st 105
SeCONAArYFIOWCOIOTLOOKUPMAPuucviumicriericirineciinecrisecsisesssiseesiseesisetssssessssses s esise s sseses bt se st ebese s sssessssssssenseses 105
FIEEI oottt et 106
CONAITION ettt et st 106
GBN ettt bbb .. 107
BIACUNVE oottt bbbt 107
REACHIVECAPADIITY .cvovvveereieceiceiecrie ittt ere s sese s e s 107
GEODALAVIEWSTYIE ...ttt 108
TOtAIATEAVAIUBMAP ...ttt bttt 108
ROAtIONRALEVAIUEMAPoouveerceiceicicrie ittt sses st ssee st sseesens 108
ROtAtIONANGIEVAIUEMAP ...ttt ettt sttt ss s ss bbb 108
LINETHICKNESSVAIUEMAP ...courvimceiciieceiicerie st ssises s ssessesisse st ssesesssssesesesesesesssessssessssnsees 109
GloDalCONTINGENCYACHIONS. ...ttt ss bbb 109
CTGEIEMENTAPPENG...oveirrincrieciieceiieserieeesise st sises st ssesese sttt ssee s ssssesssens 109
CTGEIEMENT ..ottt ittt 109
HINEDEIVAIUES.......coe ettt ettt 109

HintObject

InjectionGroup
PartPoint

Interface

InterfaceElement

KMLExportFormat

DataBlockDescription

LimitSet

LimitCost

Load

BidCurve

LPVariable

LPVariableCostSegment
ModelCondition

Condition

ModelExpression

LookupTable

ModelFilter

ModelCondition

MTDCRecord
MTDCBus

MTDCConverter

MTDCTransmissionLine

MultiSectionLine

Bus

BusRenumber

Nomogram

InterfaceElementA

InterfaceElementB

NomogramBreakPoint

Nomograminterface

InterfaceElement

Owner

Bus

Load

Gen

Branch

PostPowerFlowActions

CTGElementAppend

CTGElement

PWCaselnformation

PWCaseHeader

PWFormOptions

PieSizeColorOptions
PWLPOPFCTGViol

OPFControlSense

OPFBusSenseP

OPFBusSenseQ

PWLPTabRow

LPBasisMatrix

PWPVResultListContainer

PWPVResultObject

LimitViol

109
110
110
111
111
112
112
112
112
112
112
113
113
113
113
114
114
114
114
115
115
115
116
117
117
118
118
118
118
118
118
118
119
119
119
119
119
120
120
120
120
120
120
120
121
121
121
121
121
121
122
122
122

PVBUSINGAEQUALEVOITAGES ..ottt s ssessesesse sttt sseses s e ssssssssnesssene 122

PWQVRESUITLISTCONTAINET c.ovvveriierircirciireiieciiseeiieeise it sises e ssssessss ettt sesecsssessenes 123
PWPVRESUITODJECE......cverrieceienceiieciiecriecsiec s ssiseesissee st ssssesesesssesess s ssesesesesesessssessssssssnecs 123
QVCUNVE .ottt s sttt 123
QVPOINES .ttt ees sttt bbb 123
QVCUINVE_OPLIONS ...coorieerrircrirceieeiseesisesassessasessse st ssasesnanes 124
SIM_SOIULION_OPTIONS «.coveeeeeeeietie ettt ettt st ss e ss st ssssssssss s ssssssse s s sasesns 124
REMEAIAIACTION ...ttt ss sttt 124
CTGEIEMENTAPPENG ...ttt ittt ss st st ss sttt ssssss s sssessse s s sasssns 124
CTGEIEMENT ..ottt 124
SEIECEBYCHITEIASELoovveeerceirericeiecsic e esee it sses s st et sbee sttt sssesens 124
Sl ECEBY CrtEIIASEITYPE ..ottt sttt ettt st sttt sttt sttt sssnssnes 124
ATttt et et 124
ZONC.c.ootereeeeieeiseise sttt sttt ettt ettt 125
SCIEENLAYET ...oueeeceeceeteieseee ettt ettt 125
ShapPefil@EXPOrtDESCIIPLION.....cvuerceeercrrirerrirecriseceieee s esie st eseses sttt ere e sssesesene 125
STUAYMWTIANSACLIONS ...ttt ettt ss s sss bbb s 125
IMPOMEXPOMBIACUIVE ...ttt sries st esese st ssee et sssesens 125
SUPEBIATA oottt et e e et b st 126
SUPEIATEAATEA ...t sese i sese st ettt 126
TSSCNEAUIE .ottt 126
SCREAPOINT .ottt sttt 126
USEIrDEfINEADAIAGIIMeoveeeeereee ettt st ss sttt sss s ss st sssssene 127
COIUMNINTO oottt ees sttt 127
SCRIPT Section for Display Auxiliary File 128
AXD Actions 129
AAUTOINSEITB OIS, e eee e eee e s e e s ese s s e ese s ees s ees e mesessssessesessasnesaenns 129
AutolnsertBuses(LocationSource, MapProjection, AutolnsertBranches, InsertlfNotAlreadyShown, "filename",
FIlERCOOIAINATES); ...ttt sttt s s seaas 129
AUtoINSErtLoads(MINKV, INSEITTEXIFIRIAS); ..ottt sttt a s tas s s st s s ssassassassasssssssnes 129
AutolnsertSwitchedShuntS(MiNKV, INSEITTEXEFIEIAS); ..ottt rees 129
AutolnsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines, ZBRImpedance,
NOStUDSZBRS, SINGIECBZRS); ...ouuvuuierreereieeeisiesiiseesssessnns 130
AutolnsertLineFlowObjects(MinkV, InsertOnlylfNotAlreadyShown, LineLocation, Size, FieldDigits, FieldDecimals,
TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, SNOWCOMPIEX);uevvererrererrimecrimecrimnecesinessinecsisecsssnecssensessens 130
AutolnsertSubStations(LocationSource, MapProjection, AutolnsertBranches, InsertlfNotAlreadyShown, "filename",
FIlE@COOIINATES); couveeeee ettt a s stas s s s e s esssassassasssaees 130
AutolnsertLineFlowPieCharts(MinkV, InsertOnlylfNotAlreadyShown, INSertMSLINES, SizZe);coovvcrrrvnrrrnrrrnrrensrinnseenrenn. 130
Autolnsertinterfaces(INSertPieCharts, PIECNAITSIZE); ...t ss s s s ssassassas s sssnes 131
ResetStubLocations(ZBRIMPedance, NOStUDSZBRS);cowiiierieeiesrieiessiesessnsses 131
FixFlowArrowLineEnds("OnelineName”, "LayErNAME"); ...t sessssssssss st sses 131
General SCHPt COMMANGSccuerreerieerieceiecsies s ese st ssses s ese sttt sbese s se s ssenec 131
DATA Section for Display Auxiliary File 132
Key Fields 132
Special Data Sections 132
GEOGraphyDiSPlaYOPLIONSccuurvercrimcrrereerireesieceiseeesies s s et ssesesese s stes it sbesesesesesesesse e ssssens 132
PICEUTE oottt 132
PWEFOIMOPLIONS ..ot sess sttt sess sttt st ssssss st st ssse st s s st sssssssssssssssesas 132
VIBW oottt sttt ss st s s s e st e st e sans s s saes s st e sanes 133
SubData Sections 134

ColorMap

CustomColors

DisplayDCTramisssionLine
Displaylnterface

DisplayMultiSectionLine

DisplaySeriesCapacitor

DisplayTransformer
DisplayTransmissionLine

Line

Line

DynamicFormatting

Filter

GeoDataViewStyle
PieChartGaugeStyle

ColorMap

PWFormOptions

SelectByCriteriaSet

UserDefinedDataGrid

View

ScreenLayer

Xi

134
134
134
134
134
134
134
134
135
135
135
135
135
135
135
136
136
136
136
136

Introduction

PowerWorld has incorporated the ability to import data to/from data sources other than power flow models into
PowerWorld Simulator. The text file interface for exchanging data, as well as for executing a batch script command, is
represented by the auxiliary files. The script language and auxiliary data formats are incorporated together. This format is
described in this document.

Script/Data files are called data auxiliary files in Simulator and typically have the file extension .AUX. These files mostly
contain information about power system elements and options for running the various tools within Simulator. They do
not contain any information about the individual display objects contained on a one-line diagram. There are separate files
called display auxiliary files that are available for importing display data to/from Simulator in a text format. These files are
distinguished from the data auxiliary files by using the extension .AXD. The format for these two types of files is similar,
but different object types are supported by each and require that the files be read separately.

Both file types will be generically referred to as auxiliary files. An auxiliary file may be comprised of one or more DATA or
SCRIPT sections. A DATA section provides specific data for a specific type of object. A SCRIPT section provides a list of
script actions for Simulator to perform. These sections have the following format:

SCRIPT ScriptNamel
{

script_statement_1;

script_statement_n;

}

DATA DataNamel(object_type, [list _of fields], file_type_specifier, create_if_not_found)

{
data_list_ 1

data list n

}

DATA DataName2(object type, [list of Ffields], file_type specifier, create_if not found)

{
data list 1

data_list n

}

SCRIPT ScriptName2
{

script_statement 1;

script_statement_n;

b

Note that the keywords SCRIPT or DATA must occur at the start of a text file line. Auxiliary files may contain more than
one DATA and/or SCRIPT section. These sections always begin with the keyword DATA or SCRIPT. DATA sections are
followed by an argument list enclosed in (). The actual data or script commands are then contained within curly braces {
}. Strings are enclosed in straight quotes — note that smart quotes will not work (this might be encountered when
copy/pasting script commands from another program). The Script commands available in Simulator 19 are described in
the next main section. The DATA sections are then described after this. There are separate sections for describing the
DATA sections for the data auxiliary files and the display auxiliary file.

SCRIPT Section

SCRIPT ScriptName
{

script_statement_1;

script_statement_n;

b

Scripts may optionally contain a ScriptName. This enables you to call a particular SCRIPT by using the LoadScript action
(see General Actions). After the optional name, the SCRIPT section begins with a left curly brace and ends with a right
curly brace. Inside of this, script statements can be given. In general, a script statement has the following format

| Keyword(argl, arg2, ...);

e Statement starts with a keyword.

e The keyword is followed by an argument list which is encompassed in parentheses ().
e The arguments are separated by commas.

e If asingle argument is a list of things, this list is encompassed by braces [].

e Statements end with a semicolon.

e Statements may take up several lines of the text file.

e You may put more than one statement on a single text line.

Those familiar with using Simulator will know that there is a RUN and EDIT mode in Simulator. Some features in Simulator
are only available in one mode or the other. This functionality will be preserved in the script language. In earlier versions
of the software, certain functionality was organized by the "submode" feature. While existing scripts designed to work
with submodes will still function as before, moving between submodes is no longer necessary.

Various script commands require that you be in RUN or EDIT mode. If a script requires this, then the script will
automatically change modes.

Using Filters in Script Commands

Many script commands allow the specification of a filtername. Only those objects meeting this filter will be selected for
the specified action. Unless otherwise specified, a blank filter will select all objects. This filtername can be the name of an
advanced filter. Advanced filters belonging to a different objecttype can also be used depending on the objectype in use.
For example, if filtering generator objects a bus filter can also be used. When using an advanced filter that belongs to a
different objecttype the format of the filter is "<Objecttype> filtername" instead of just specifying the filtername
itself.

The filtername can also be the name of a device filter. A device filter allows you to specify a particular object for filtering
instead of a class of object. For example, you might want to return all buses that belong to a particular substation. You
can specify the device filter for the particular substation and then apply this to the bus objects. The format of a device
filter is "<DEVICE> objecttype "keyl®" "key2" "key3"".

In addition to a filtername, special keywords can be used to indicate the type of filter desired. These include the following:
AREAZONE - Only objects that meet the area/zone/owner filters will be selected for the specified action.
SELECTED - Only objects whose Selected field is YES will be selected for the specified action.

Specifying Special Keywords in Script Command Parameters

The special keywords @DATETIME, @DATE, @TIME, @BUILDDATE, @VERSION, and @CASENAME are allowed to be used
as part of the input for script command parameters. Generally, these are allowed as part of the file name input in
commands that save or modify files, as well as, some other commands that take text as input. These special keywords will

be replaced with their actual values when the script command is processed. @DATETIME will replace the keyword with the
actual date and time in the format yyyymmdd_hhnnss-hhmm with the UTC offset included on the end of the time.

The special keyword @MODELFIELD can be used in combination with an object type and variable name so that any field of

any object can be included in the text. The syntax for inserting the value of a model field in the text is the following:
@MODELFIELD<objecttype "keyl® “key2® variablename:digits:rod>.

Specifying File Names in Script Commands

In place of the "filename" parameter in any script command, specially formatted text can be used to indicate that the user
should be prompted to choose the file. Depending on whether or not a file is being opened or saved, an Open or Save
dialog will be presented for the user to choose the file. This will not work when using the SimAuto Add-on. The special
syntax of the filename parameter is generally "<PROMPT 'Caption' 'FileTypes'>". The entire string must start with
<PROMPT and end with >. After the word PROMPT there may optionally be a space delimiter followed by a special
caption to be placed at the top of the file dialog that appears (this caption must be enclosed in single quotes). If the
special caption is omitted, either 'Save' or 'Open' is assumed. After the special caption there may optionally be a list of File
Types and extensions specified. This list must be enclosed in single quotes. The list itself is composed of a pipe-delimited
string (|) with the first string representing the first file type, the second string representing the first file extension, the third
string representing the second file type, the fourth string representing the second file extension and so on. If no File Types
are specified, 'All Files (*.*)|*.*' is assumed. An example string might be:

<PROMPT 'Choose an AUX file' 'Auxiliary Files (*.aux)|*.aux|All Files (*.*)|*.*'>

The special keywords described in the Specifying Special Keywords in Script Command Parameters section can also be
used as part of a filename.

Specifying Field Variable Names in Script Commands

See the Field Variable Naming topic in the DATA Section for general information about naming fields.

Within select script commands the keyword ALL can be used instead of using the location number of a field when
specifying variable names as part of a field list. This will return all fields with the same variable name. This is intended to
allow easier access to fields when the exact number of fields is not known, such as with multiple TLR (MultBusTLRSens:ALL)
or PTDF (LinePTDFMult:ALL) results. This can be used with SaveData, SaveDataWithExtra, SaveObjectFields, and
SendToExcel script actions.

Within select script commands the keyword ALL can be used instead of a list of fields. This will return all fields for a
particular objecttype. This can be used with SaveData, SaveDataWithExtra, SaveObjectFields, and SendToExcel script
actions.

Specifying Field Values in Script Commands

Several script commands require that a valuelist be specified to assign values to a corresponding fieldlist. Instead of
specifying the values explicitly, special formatting is available to assign values from other fields. See the Specifying
Special Data List Entries topic in the DATA Section for more information.

General Actions

Generic Data Actions

Available to you regardless of the mode

CopyFile ('oldfilename™, "newfilename'™);
CreateData (objecttype, [Fieldlist], [valuelist]);
Delete (objecttype, filter);

DeleteDevice ('ObjectIDString™);

DeleteFile (C'filename™);

DeletelncludingContents (objecttype, filter);
EnterDistMasterPassword (Password) ;
ExportAreaSupplyCurves ("filename', "User Defined String", NumPoints);

ImportData ('filename™, FileType, CreatelfNotFound);

LoadAux ("filename", CreatelfNotFound);

LoadAuxDirectory ("filedirectory', "filterstring”, CreatelfNotFound);

LoadCsV ("filename", CreatelfNotFound);

LoadData ('filename', DataName, CreatelfNotFound);

LoadScript ("filename", ScriptName, CreatelfNotFound);

RenameFile ('oldfilename™, "newfilename'™);

SaveData ("fFilename",Filetype,objecttype, [fieldlist], [subdatalist],filter,
[SortFieldList], Transpose);

SaveDataEPC ('filename™,objecttype, filter,GEFileType,SaveBuses,Append) ;

SaveDataUsingExportFormat(*"filename", filetype, 'FormatName' ,ModelToUse);

SaveDataWithExtra ("fFilename",Filetype,objecttype, [fieldlist], [subdatalist],filter,
[SortFieldList], [Header_List],[Header_Value_List], Transpose);

SaveObjectFields ("filename", objecttype, [fieldlist]);

SelectAll (objecttype, filter);

SendToExcel (objecttype, [Ffieldlist], filter, UseColumnHeaders, "workbookname",

"worksheetname™, [SortFieldList], [Header_List], [Header_Value_ List],
ClearExisting, ShiftRow, ShiftCol);

SetCurrentDirectory ("filedirectory", CreatelfNotFound);

SetData (objecttype, [Fieldlist], [valuelist], filter);
StopAuxFile;

UnSelectAll (objecttype, filter);

WriteTextToFile ("filename™, "text™);

CopyfFile("oldfilename", "newfilename");

Use this action to copy a file from within a script.

“oldfilename" . The present file name. See the Specifying File Names in Script
Commands section for special keywords that can be used when
specifying the file name.

"newfilename" : The new file name desired. See the Specifying File Names in Script
Commands section for special keywords that can be used when
specifying the file name.

CreateData(objecttype, [fieldlist], [valuelist]);
Use this action to create particular objects.

objecttype : The objecttype being created.

[fieldlist] . A list of fields to set with the object. The key fields and required fields
must be specified.

[valuelist] : A list of values corresponding to the respective fields.

Delete(objecttype, filter);

Use this delete objects of a particular type. A filter may optionally be specified to only delete objects that meet a
filter.
objecttype : The objecttype being selected.
filter : Optional parameter — default is to delete all objects of specified type
See Using Filters in Script Commands section for more information on
specifying the filter.

4

DeleteDevice([ObjectIDString]);

Use this action to delete a specific object.
[ObjectIDString] . The specific object to delete. The format is the object type followed by
the key fields used to identify the object. Examples: DeleteDevice([Bus
234891]), DeleteDevice([Branch 1239 1234 "AB"]), and
DeleteDevice([Interface "my interface name"]).

DeleteFile("filename");

Use this action to delete a file from within a script.
“filename" : The file name to delete. See the Specifying File Names in Script
Commands section for special keywords that can be used when
specifying the file name.

DeleteincludingContents(objecttype, filter);

Use this to delete objects of a particular type and other objects that these contain. Currently, only multi-section
lines (objecttype = MultiSectionLine) can be used with this command. The branches and dummy buses that
belong to multi-section lines will also be deleted along with the multi-section lines. A filter may optionally be
specified to only delete objects that meet a filter. The syntax is identical to the Delete(objecttype, filter); action
above.

EnterDistMasterPassword(Password);

Use this action to enter the master password used to unlock distributed machine login credentials.
Password : Password that must be specified to unlock the credentials.

ExportAreaSupplyCurves(“filename”, "User Defined String”, NumPoints);

Use this action to export Area Supply Curves to a CSV file. The output of the file will have 7 entries for each area
for Fixed Gen MW, Fixed Load MW, Fixed Shunt MW, Losses MW, Variable Min MW, Variable Max MW, Variable
Present MW, followed by a set of Bid MW/Price entries represents the supply curve for the variable MWs.
“filename.csv" The name of the CSV file to which results will be written.
“User Defined String” : This is an optional parameter for specifying a user defined string written
to each entry in the resulting CSV file. If this is omitted, blank will be
assumed.
NumPoints : This is an optional parameter and is related to converting a cubic cost
model into a piece-wise linear model. If this is omitted, 5 is the default.

ImportData("filename", FileType, HeaderLine, CreatelfNotFound);

Use this action to import data in various file formats that are not native to Simulator.
“filename" : Name of the file to import
FileType : Parameter that specifies the format of the data this is being read. Currently
supported are two methods of importing CROW files as created by the Equinox
Control Room Operations Window application. This is used with the Scheduled
Actions add-on tool.

csv . Uses CSV Import Settings as specified in the Scheduled
Actions dialog to read in a CROW CSV file.
CROW . Uses the hardcoded format Scheduled Actions was

originally programmed to import.

HeaderLine : Optional parameter to specify if the row of headers in the CSV file is on
the first line (1) or second line (2). If left blank (or any other value is
specified), it will use the setting last configured in the Scheduled Actions
dialog.

CreatelfNotFound : Optional parameter that is NO by default. Set this to YES to create
objects defined in the data if they do not already exist.

LoadAux("filename", CreatelfNotFound);

Use this action to load another aUX|I|ary file from within a script.
“filename" . The filename of the auxiliary file being loaded.
CreatelfNotFound : Set to YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections from filename. If this parameter
is not specified, NO is assumed.

LoadAuxDirectory("filedirectory”, "filterstring”, CreatelfNotFound);

Use this action to load multiple auxiliary files from a specified directory. The auxiliary files will be loaded in
alphabetical order by name.
"filedirectory" : The directory where the auxiliary files are located.
"filterstring" : Optional - if not specified then all files in the directory are loaded.
If specified, only files meeting this filter will be loaded. This filtering
supports normal Windows wildcard filtering.
CreatelfNotFound : Optional — default is NO
Set to YES or NO. YES means that objects that cannot be found will be
created while reading in DATA sections from the files.

LoadCSV("filename", CreatelfNotFound);

Use this action to load a CSV file that is formatted the same as the data sent to Excel in the Send All to Excel
option found within a case information display, or by choose Save As CSV.
“filename" : The filename of the CSV file being loaded.
CreatelfNotFound : Set to YES or NO. YES means that objects which cannot be found will be
created. If this parameter is not specified, NO is assumed.

LoadData("filename", DataName, CreatelfNotFound);

Use this action to load a named Script Section from another auxiliary file. This will open the auxiliary file denoted
by "filename", but will only execute the script section specified.

“filename" . The filename of the auxiliary file being loaded.
DataName . The specific ScriptName from the auxiliary file which should be loaded.
CreatelfNotFound : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in DATA sections from filename. If this parameter
is not specified, NO is assumed.

LoadScript(“filename”, ScriptName, CreatelfNotFound);

Use this action to load a named Script Section from another auxiliary file. This will open the auxiliary file denoted
by "filename", but will only execute the script section specified.

“filename" . The filename of the auxiliary file being loaded.
ScriptName . The specific ScriptName from the auxiliary file which should be loaded.
CreatelfNotFound : Set to YES or NO. YES means that objects which cannot be found will be

created while reading in SCRIPT sections from filename. If this parameter
is not specified, NO is assumed.

RenameFile("oldfilename", "newfilename");

Use this action to rename a file from within a script.

“oldfilename" : The present file name. See the Specifying File Names in Script
Commands section for special keywords that can be used when
specifying the file name.

"newfilename" : The new file name desired. See the Specifying File Names in Script
Commands section for special keywords that can be used when
specifying the file name.

SaveData("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], Transpose);

Use this action to save data in a custom defined format.

"filename"
filetype

objecttype
[fieldlist]

[subdatalist]
filter

[SortFieldList]

Transpose

. The file path and name to save.
. There are several options for the filetype

AUXCSV : save as a comma-delimited auxiliary data file.
AUX : save as a space-delimited auxiliary data file.
csv . save as a normal CSV file without the AUX file syntax.

The first few lines of the text file will represent the
object name and field variable names.
CSVColHeader : save as a normal CSV file without the AUX file syntax.
The first few lines of the text file will represent the
object name and field variable names.

: The type of object being saved.
: A list of fields that you want to save. For numeric fields, the number of

digits and the number of decimal places (digits to right of decimal) can
be specified by using the following format for the field,
variablenamelegacy: location:digits:rod or
concisename:digits:rod. See the Specifying Field Variable
Names in Script Commands topic for more information on specifying
this list.

: A list of the subdata objecttypes to save with each object record.
: Optional parameter — default is to save all objects of specified type

AREAZONE : Only objects that meet the area/zone/owner
filters will be saved

SELECTED : Only objects whose Selected field = YES will be
saved

“FilterName" : Only objects that meet the specified filter will be

checked. See Using Filters in Script Commands
section for more information on specifying the
filtername.

: Optional parameter — the default is to do no sorting

This allows the specification of a sort order in which the data will be
saved. The format is: [variablename1:+:0, variablename2:-:1] where
variablename : is the name of the field to sort by. There is no
limit to how many fields can be specified for sorting. For
fields that require a location other than zero,
variablename can be in the format fieldname:location.

+or- . for the second parameter indicates sort ascending for +
and sort descending for -. This parameter must be
specified.

Oor1 . for the third parameter 0 means case insensitive and do

not use absolute value, 1 mean case sensitive or use
absolute value. This parameter is optional.

: Optional parameter — default is NO

Set this to YES or NO. Set to YES to transpose the columns and rows of
the returned data. When transposed the values for the same field for all
selected objects will appear in the same row. Transposing the data is
only allowed for CSV filetypes and this option will default to NO for all
other filetypes.

SaveDataEPC("filename”, objecttype, filter, GEFileType, SaveBuses, Append);

Use this action to save data in the GE EPC format.

"filename" . The file path and name to save.
objecttype . The type of object being saved.
filter . Optional parameter — default is to save all objects of specified type

See Using Filters in Script Commands section for more information on
specifying the filter.

GEFileType : Optional parameter — default is to save with the latest version. Valid
options:
GE (latest version), GE14-GE21
SaveBuses : Optional parameter — default is NO

Set to YES or NO. Set to YES to save any buses associated with the
regulated bus of generators or switched shunts so that the scheduled
voltage can also be saved.

Append : Optional parameter — default is YES
Set to YES or NO. Set to YES to append data to an existing file. Set to
NO to overwrite an existing file.

SaveDataUsingExportFormat("filename”, filetype, “FormatName", ModelToUse);

Use this action to save data in a user-defined format that has previously been defined.

“filename” . The file to save the data to
filetype . There are several options for the filetype
AUXCSV : save as a comma-delimited auxiliary data file.
AUX . save as a space-delimited auxiliary data file.
Ccsv : save as a normal CSV file without the AUX file syntax.

The first few lines of the text file will represent the object
name and field variable names.

FormatName : The name of the Object Export Format Description to use.
ModelToUse : Optional parameter that indicates the model to use.
FULL . Full-topology model. This is the default if the

parameter is omitted.

CONSOLIDATED : Consolidated planning-type model. This option
will only work with the Topology Processing add-
on.

SaveDataWithExtra("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList],
[Header_List], [Header_Value_List], Transpose);

Use this action to save data in a custom defined format. User-specified fields and field values can also be specified
in the output. The syntax is identical to the SaveData command with the following exceptions:
Filetype : There are several options for the filetype
csv : save as a normal CSV file without the AUX file syntax.
The first few lines of the text file will represent the object
name and field variable names.

CSVNOHEADER: save as a normal CSV text file, without the AUX file
formatting. The object name and field variable names
are NOT included. This option is useful when
appending data of the same object type and field list
into a common file.

CSVCOLHEADER: save as a normal CSV without the AUX syntax and
with the first row showing column headers you
would see in a case information display

Data cannot be saved using AUX or AUXCSV filetypes with this

command.

[Header_List] : Optional parameter — default is that no extra headers are included
This allows the specification of user-defined fields that will appear in the
output. Headers should be specified as a list of comma delimited strings.
A string should be enclosed in double quotes if the string contains a
comma. Header strings cannot be blank.

[Header_Value_List] : Optional parameter — default is that all values are blank
Allows the specification of the values that should be assigned to the
user-defined fields specified by Header_List. If specified, there must be as
many values specified as there are headers. If not specified, all values are
blank. Each object will use the same specified value for the specified field.
To use different values for different objects and save these in the same
file, make use of the CSVNOHEADER file format and filtering. Special
keywords can be entered that will be replaced with their actual values.
These include @BUILDDATE, @DATETIME, @DATE, @TIME, @VERSION,
and @CASENAME.

For the Header_List and Header_Value_List, the input should be formatted in a manner to indicate

how it should be written to the CSV. Any strings enclosed in double quotes will be stripped of the

enclosers. Any strings containing double double quotes will have them replaced with single

double quotes.

SaveObjectFields("filename", objecttype, [fieldlist]);

Use this action to save a list of fields available for the specified objecttype to a CSV file. Format of the file is
variablename, field, col header, description.

“filename" : The file path and name to save.
objecttype : The type of object for which fields should be saved.
[fieldlist] : List of fields for which information will be saved. See the Specifying

Field Variable Names in Script Commands topic for more information
on specifying this list.
SelectAll(objecttype, filter);

Use this to set the selected property of objects of a particular type to true. A filter may optionally be specified to
only set this property for objects that meet a filter.

objecttype : The objecttype being selected.
filter : Optional parameter — default is to set all objects of specified type
AREAZONE : Only objects that meet the area/zone/owner
filters will be selected
FilterName" : Only objects that meet the specified filter will be

checked. See Using Filters in Script
Commands section for more information on
specifying the filtername.

SendtoExcel(objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", “worksheetname",
[SortFieldList], [Header_List], [Header_Value_List], ClearExisting, RowShift, ColShift);

Use this action to mimic the behavior of the Send to Excel option found within a case information display.

objecttype
[fieldlist]

filter

UseColumnHeaders

"workbookname"

"worksheetname"

[SortFieldList]

[Header_List]

[Header_Value_List]

: The type of object for which fields should be saved.
: List of fields for which information will be saved. See the Specifying

Field Variable Names in Script Commands topic for more information
on specifying this list.

: Optional parameter — default is to send all objects of specified type

See the Using Filters in Script Commands seUsing Filters in Script
Commandsction for more information on specifying the filter.

: Set to YES or NO. YES signifies that the first row shows the Column

Header, NO signifies that field variable names are used.

: Path and name of the workbook to save or modify. If no path is

specified, the workbook will be saved or opened from the current
directory. If the workbook already exists, it will be modified with a new
worksheet, or if the worksheet is specified and already exists, the
worksheet will be overwritten. If using Excel 2007 or later *.xIsm filetypes
can be specified.

: Optional parameter to specify the worksheet name to save. If blank, a

new worksheet will be created, if a value is specified it will overwrite the
data in any existing worksheet of that name.

: Optional parameter — the default is to do no sorting

This allows the specification of a sort order in which the data will be
saved. The format is: [variablename1:+:0, variablename2:-:1] where
variablename : is the name of the field to sort by. There is no
limit to how many fields can be specified for sorting. For
fields that require a location other than zero,
variablename can be in the format fieldname:location.

+or- . for the second parameter indicates sort ascending for +
and sort descending for -. This parameter must be
specified.

Oor1 : for the third parameter 0 means case insensitive and do

not use absolute value, 1 mean case sensitive or use
absolute value. This parameter is optional.

: Optional parameter — default is that no extra headers are included

This allows the specification of user-defined fields that will appear in the
output. Headers should be specified as a list of comma delimited strings.
A string should be enclosed in double quotes if the string contains a
comma. Header strings cannot be blank.

: Optional parameter — default is that all values are blank

Allows the specification of the values that should be assigned to the
user-defined fields specified by Header_List. If specified, there must be as
many values specified as there are headers. If not specified, all values are
blank. Each object will use the same specified value for the specified field.
Special keywords can be entered that will be replaced with their actual
values. These include @BUILDDATE, @DATETIME, @DATE, @TIME,
@VERSION, and @CASENAME.

(Following added in January 17, 2018 patch of Simulator 20)

ClearExisting

RowShift

: Optional parameter — default is YES. YES means to clear the existing

sheet

: Optional parameter — default is 0. Set to a positive integer to shift the

paste of data downwards from row 1. Negative values treated as 0.

10

ColShift : Optional parameter — default is 0. Set to a positive integer to shift the
paste of data to the right from column A. Negative values treated as 0.

SetCurrentDirectory(“filedirectory”, CreatelfNotFound);

Use this action to set the current work directory.
“filedirectory" . The path of the working directory. See the Specifying Special
Keywords in Script Command Parameters and Special Identifiers for
Model Fields section for information on special keywords that can be
used as part of the directory name.

CreatelfNotFound : Set to YES or NO. YES means that if the directory path cannot be
found,the directory will be created. If this parameter is not specified, NO
is assumed.

SetData(objecttype, [fieldlist], [valuelist], filter);

Use this action to set fields for particular objects. If a filter is specified, then it will set the respective fields for all
objects which meet this filter. Otherwise, if no filter is specified, then the keyfields must be included in the field
list so that the object can be found.

objecttype : The objecttype being set.
[fieldlist] . A list of fields that you want to save.
[valuelist] : Alist of values to set the respective fields to .
filter : Optional parameter — default is to set data for all objects of specified
type
ALL . Set data for all objects
AREAZONE : Only objects that meet the area/zone/owner
filters will be set
SELECTED : Only objects whose Selected field = YES will be
set
“FilterName" : Only objects that meet the specified filter will be

set. See Using Filters in Script Commands
section for more information on specifying the
filtername.

StopAuxFile;
Use this action to treat the remainder of the file after the command as a big comment. This includes any script
commands inside the present SCRIPT block, as well as all remaining SCRIPT or DATA blocks.
UnSelectAll(objecttype, filter);
Same as SelectAll, but this action sets the selectected properties to false.

WriteTextToFile("filename”, "text");

Use this action to write text to a file. If the specified file already exists, the text will be appended to the file.
Otherwise, it creates the file and writes the text to the file.
"filename" : The file path and name to save.
"text" : The text to be written to the file. Special keywords can be entered that
will be replaced with their actual values. These include @BUILDDATE,
@DATETIME, @DATE, @TIME, @VERSION, and @CASENAME.

11

Case Related Actions

Available to you regardless of the mode

AutolnsertTieLineTransactions;

CalculateRXBGFromLengthConfigCondType(filter);

CaseDescriptionClear;

CaseDescriptionSet ("text”, Append);

ChangeSystemMVABase (NewBase) ;

ConditionVoltagePockets (VoltageTreshold, AngleThreshold, filter);
DetermineBranchesThatCreatelslands(Filter, StoreBuses,'filename', SetSelectedOnLines, FileType);

DeterminePathDistance ([start], BranchDistMease, BranchFilter, BusField);
DetermineShortestPath ([start],[end], BranchDistMeas, BranchFilter, Filename);
DoFacilityAnalysis (C'filename™);

DirectionsAutolnsert (Source, Sink, DeleteExisting, UseDisplayFilters, Start, Increment);
EnterMode (mode) ;

ExitProgram;

GenForcelLDC_RCC (filter);

InitializeGenMvarLimits;
InjectionGroupsAutolnsert;

InjectionGroupCreate ("’'Name', objecttype, Initialvalue, Filter, Append);
LoadEMS ('filename™, filetype);

LogAdd ("text™);

LogAddDateTime ('label™, includedate, includetime, includemilliseconds);
LogClear;

LogSave ("filename", AppendFile);

NewCase;

OpenCase ("filename", openfiletype, [LoadTransactions, StarBus]);
RenamelnjectionGroup ('OldName™, **NewName');

SaveCase ("filename", savefiletype, [PostCTGAGC, UseAreaZone]);
SaveGenLimitStatusAction ('filename™);

SaveJacobian (""'JacFileName™, "JIDFileName", FileType, JacForm)
SaveYbuslInMatlabFormat ('filename™, IncludeVoltages);

Scale (scaletype, basedon, [parameters], ScaleMarker);

SetGenPMaxFromReactiveCapabilityCurve(filter);

SetParticipationFactors (Method, ConstantValue, Object);

SetScheduledVoltageForABus([bus identifier], voltage);

SetSelectedFromNetworkCut (SetHow, [BusOnCutSide],BranchFilter, InterfaceFilter,DCLineFilter,
Energized,NumTiers, InitializeSelected, [ObjectsToSelect],UseAreaZone,
UsekV,MinkV,MaxkV,LowerMinkV, LowerMaxkV) ;

UpdatelslandsAndBusStatus;

AutolnsertTielLineTransactions;

Use this action todelete all existing MW transactions and set the unspecified MW interchange for each area to
zero. It then automatically creates a MW transaction between each pair of connected areas with a MW transaction
exactly equal to the sum of the tie-line flows.

CalculateRXBGFromLengthConfigCondType(filter);

Use this action the go through branches in the power system and automatically recalculate the per unit R, X, G,
and B values using the TransLineCalc tool. The branches Conductor Type, Tower Configuration, and Line Length
will be passed to the TransLineCalc tool and new R, X, G and B values will be calculated. This is only available if you
have installed the TransLineCalc tool.

filter : This parameter is used to specify which branches are checked.
ALL : means all branches will be checked
SELECTED : means only branches whose Selected field = YES will
be checked
AREAZONE : means only branches that meet the area/zone/owner

filters will be checked

"FilterName" : means only branches that meet the specified filter will
be checked. See the Using Filters in Script
Commands section for more information on
specifying the filtername.

12

CaseDescriptionClear;
Use this action clear the case description of the presently open case.

CaseDescriptionSet("text”, Append);

Use this action to set or append text to the case description.
"text" . Specify the text to set/append to the case description.
Append : YES — will append the text specified to the existing case description. NO — will
replace the case description.

ChangeSystemMVABase(NewBase);

Use this action to change the system MVA base to the specified value and update all internal data structures to
store values on the new base.
NewBase : New power system base in MVA.

ConditionVoltagePockets(VoltageThreshold, AngleThreshold, filter);

The goal of this script command is to find pockets of buses that may have bad initial voltage estimates and to get
a better voltage estimate of these buses based on assuming that the voltages on buses outside these pockets are
good. It will identify pockets of buses bounded by branches that meet the condition that the absolute value of the
voltage difference across the branch is greater than VoltageThreshold or the absolute value of the angle
difference across the branch is greater than AngleThreshold and the branch meets the specified filter.
VoltageThreshold . Per-unit voltage difference (absolute value) that determines if a branch can be
considered when determining groups of radial buses.
AngleThreshold : Angle difference in degrees (absolute value) that determines if a branch can be
considered when determining groups of radial buses.
filter : This is an optional parameter that is used to specify which branches are checked.
If omitted all branches are considered.
ALL : All branches will be checked
SELECTED . Only branches whose Selected field = YES will be
checked
AREAZONE : Only branches that meet the area/zone/owner filters
will be checked
"FilterName" : Only branches that meet the specified filter will be
checked. See Using Filters in Script Commands
section for more information on specifying the
filtername.

DetermineBranchesThatCreatelslands(Filter, StoreBuses, “filename", SetSelectedOnLines, FileType);

Use this action to determine the branches whose outage results in island formation. Note that setting the
Selected field will overwrite the Selected fields.

Filter : This parameter is used to specify which branches are checked.
ALL : means all branches will be checked
SELECTED : means only branches whose Selected field = YES will
be checked
AREAZONE : means only branches that meet the area/zone/owner

filters will be checked

"FilterName" : means only branches that meet the specified filter will
be checked. See the Using Filters in Script
Commands section for more information on
specifying the filtername.

13

StoreBuses . YES to store the buses in the island to the output file
“filename" . file to which the results will be written. The format of the file is based on the
auxiliary file format. Each branch that was checked will be followed by the list of
buses that are islanded. The branch and bus information will be written in
appropriate auxiliary file DATA format. If this is left blank, SetSelectedOnLines
will be assumed to be YES.
SetSelectedOnLines : YES to set the SELECTED field to YES for branches that create islands
FileType : Optional parameter used to specify the format of the file. This is AUX by default.
AUX : The saved file is based on an auxiliary file data format.
Each branch that causes an island appears in the file in
the auxiliary file data format followed by a auxiliary file
bus data section containing all of the buses that are
islanded by the preceeding branch.
Ccsv : The saved file is a comma-delimited text file. Each
unique bus/branch pair appears on a single line. A
unique bus/branch pair is determined by a bus that is
islanded and a particular branch that causes it to be
islanded. A header appears in the file specifying the
fields used to identify the branch and bus in each
record.

DeterminePathDistance([start], BranchDistMeas, BranchFilter, BusField);

Use this action to calculate a distance measure at each bus in the entire model. The distance measure will
represent how far each bus is from the starting group specified. The distance measure can be related to
impedance, geographical distance, or simply the number of nodes.
[start] : The starting location. The starting location may be either an Area, Zone,
SuperArea, Substation, Injection Group, or Bus. Format of string is

[Area Num], [Area "Name"], or [Area "label"]

[Zone Num], [Zone "Name"], or [Zone "label"]

[SuperArea "Name"] or [SuperArea "label"]

[Substation Num] or [Substation "label"]

[InjectionGroup "Name"] or [InjectionGroup "label"]

BranchDistMeas . is either X, Z, Length, Nodes, or a field variable name for a branch.
X : means use the series reactance,
Z : means use sqrt(XA2 + R"2),
Length : means us the Length field, and
Nodes . means treat each branch as a length of one.
"Variablename" : Otherwise use any Branch object field variable name.
BranchFilter . is either All, Selected, Closed or the name of a branch Advanced Filter. This
parameter is used to specify which branch can be traversed at all.
All : means all branches can be traversed
Selected . means only branches whose Selected field = YES can
be traversed
Closed . means only branches that are CLOSED can be
traversed.

"FilterName" : See the Using Filters in Script Commands section for
more information on specifying the filtername.

BusField : is the variable name of a Bus field. This field is populated with the minimum
distance from the Start Place to that bus. All buses in the start group will have a
distance measure of zero. Buses which cannot be reached from the start group
will have a distance measure of -1.

14

DetermineShortestPath([start], [end], BranchDistanceMeasure, BranchFilter, Filename);

Use this action to calculate the shortest path between a starting group and an ending group. The results will be
written to a textfile specified by filename. In the text file, the first bus listed will be in the end grouping and the
last bus listed will be the start grouping. The result text file will have a line for each bus passed. Each line will
contain three entries delimited by a space: "Number DistanceMeasure Name".

[start] : same as the starting place for the DeterminePathDistance script command

[end] : same as the starting place for the DeterminePathDistance script command

BranchDistanceMeasure : same as for DeterminePathDistance script command

BranchFilter : same as for DeterminePathDistance script command

Filename . is a filename (may need to be enclosed in quotes) to which the results will be
written.

DoFacilityAnalysis ("Filename");

Do Facility Analysis (Minimum Cut) is used to determine the branches that would isolate the Facility from the

External region as specified in the Select Bus Dialog in the Simulator Tool dialog. It is assumed that the user will

set the options before using the script command. The script will be used to identify the minimum number of

branches that need to be opened or removed from the system in order to isolate the Facility (power system

device) from an External region.

“Filename" : The auxiliary file to which the results will be written. The results will show the

buses of the different paths in a data section consisting of the buses that form
the respective path. Also it will show the branches of the minimum cut.

DirectionsAutolnsert(Source, Sink, DeleteExisting, UseAreaZoneFilters, Start, Increment);

Use this action to auto-insert directions to the case

Source : AREA, ZONE, or INJECTION GROUP - specifies what to use as source
Sink : AREA, ZONE, INJECTION GROUP, or SLACK - specifies what to use as sink.
DeleteExisting . YES - to delete existing direction; NO to not do that.
UseAreaZoneFilters : YES - to filter Area/Zones by filter.
Start : The starting number for the new directions added.
Incremement : The increment for subsequent directions.
EnterMode(mode);

This action will change the mode in which Simulator is operating. This is especially necessary when creating new
case objects for which you are required to be in EDIT mode. Simulator will automatically change the mode to
RUN for script actions that require that mode.

Mode : The mode to enter, either RUN or EDIT.

ExitProgram;
Immediately exits the program with no prompts.

GenForceLDC_RCC(filter);

Use this action to force generators in the case onto line drop / reactive current compensation. The present
voltage at the point at which the generator is controlling based on the line drop/reactive current compensation
impedance is calculated, and the setpoint of the generator is set to this value. If the absolute value of the line
drop/reactive current compensation impedance is less than or equal to 2*10-6*MVA Base, the generator will
regulate its terminal bus and the setpoint voltage is set to the present value of the terminal bus voltage. For a
typical case with an MVA Base of 100 MVA, this value is 0.0002.
filter : Optional parameter — default is to set all generators
See the Using Filters in Script Commands section for more information
on specifying the filter.

15

InitializeGenMvarLimits;

Use this action to initialize all generators in the case so that they are appropriately marked as being at Mvar limits
or not. This could be useful if manually setting the Mvar output of generators or changing their limits.

InjectionGroupsAutolnsert;

Use this action to automatically insert injection groups according to the options specified in the
"IG_Autolnsert_Options" object. The settings available with this object represent what is seen on the Auto Insert
Injection Groups Dialog.

InjectionGroupCreate(“"Name", objecttype, InitialValue, filter, Append);

This action will create or modify an injection group with participation points of a single object type that meet a
filter. Repeated calls to this script command can be used to define an injection group with different object types.

"Name" : Name of the injection group to create or modify.

objecttype : Type of object to be included in the injection group. Valid options are
GEN, LOAD, SHUNT, or BUS.

InitialValue . Set this to a floating point value to indicate the value of the participation

factor to use with each point. Special keywords can also be used to
indicate dynamically determined values. (The participation point
AutoCalc field is set to YES). The following options are available:
Generators:
PRESENT, MAX GEN INC, MAX GEN DEC, and MAX GEN MW
Loads:
LOAD MW
Switched Shunts:
MAX SHUNT INC, MAX SHUNT DEC, and MAX SHUNT MVAR
All object types:
<FIELD>variablename can be used to reference a field associated
with the object in the participation point.
<EXPRESSION>modelexpressionname can be used to reference a
Model Expression.
filter . Specify a filter to select the objects to add to the injection group. See
the Using Filters in Script Commands section for more information on
specifying the filter.
Append : Optional parameter — default is YES.
Set to YES or NO. Set to YES to add new participation points based on
the current settings to an injection group that exists with the same Name.
Set to NO to delete all existing points before adding new points to an
injection group that already exists with the same Name.

LoadEMS(“filename"”, filetype);
Use this to open any EMS file. This can be a full case, a contingency file, or remedial action scheme file. Simulator
will determine the type of information being loaded and how to handle it based on the records in the file.
“filename" : Name of the file to open. See the Specifying File Names in Script
Commands section for special keywords that can be used when
specifying the file name.
filetype : Type of file to be loaded. Currently the only option is AREVAHDB.

LogAdd("text");

Use this action to add a personal message to the Messagelog.
"text" : The text that will appear as a message in the log.

16

LogAddDateTime("label", includedate, includetime, includemilliseconds);

Use this action to add the date and time to the message log

“label" : A string which will appear at the start of the line containing the date/time.
includedate . YES - Include the data or NO to not include.

includetime . YES - Include the time or NO to not include.

includemilliseconds : YES - Include the milliseconds or NO to not include.

LogClear;

Use this action to clear the Message Log.

LogSave(“filename", AppendFile);

This action saves the contents of the Message Log to "filename”.
"filename" : The file name to save the information to.
AppendFile : Set to YES or NO. YES means that the contents of the log will be appended to
"filename". NO means that "filename" will be overwritten.
NewCase;

This action clears out the existing case and open a new case from scratch.
OpenCase(“filename", OpenFileType,[LoadTransactions,StarBus]);

OpenCase(“filename", OpenFileType,[MSLine,VarLimDead,PostCTGAGC,MSLineDummyBus]);

This action will open a case stored in "filename" of the type OpenFileType. Different sets of optional parameters
apply for the PTl and GE file formats. The LoadTransactions and Star bus parameters are available for writing to
RAW files. MSLine, VarLimDead, and PostCTGAGC are for writing EPC files.

“filename" : The file to be opened.

OpenFileType : An optional parameter indicating the format of the file being opened. If
none is specified, PWB will be assumed. It may be one of the following
strings

PWB, PTI (latest version), PTI23-PTI33
GE (latest version), GE14-GE21, CF
AUX, UCTE, AREVAHDB
LoadTransactions : valid for PTI RAW format only
YES -- load transactions when opening case.
NO -- do not load transactions when opening case.
DEFAULT - follow default behavior.
StarBus : valid for PTI RAW format only
NEAR -- star buses are numbered starting after the near bus number
MAX -- star buses are numbered starting with the maximum bus number
VALUE -- star bus numbering will start at value
MSLine : valid for GE EPC format only
MAINTAIN — maintain multi-section lines
EQUIVALENCE - equivalence mult-section lines

VarLimDead : valid for GE EPC format only
Number -- set the GE var limit deadband
PostCTGACG : valid for GE EPC format only

set to YES to populate the generator field Post-CTG Prevent Response
based on the EPC file’s generator base load flag.

17

(Following added in May 29, 2018 patch of Simulator 20)

MSLineDummyBus : Optional parameter — default is specified with Simulator Options
valid for GE EPC format only
Specifies how the dummy bus numbers for multi-section lines are
determined.
FROM - starting at the from bus number
MAX — starting with the maximum bus number
Value or range — starting with the specified value or will be numbered
within the specified range. If an unused bus number within the specified
range cannot be found, the numbering will start at the highest number
specified in the range.

RenamelnjectionGroup("OldName”, "NewName");

This action will change the name of an existing injection group.
"OldName" : Name of the existing injection group.
"NewName" : New name of the existing injection group.

SaveCase("filename"”, SaveFileType, [PostCTGAGC, UseAreaZone]);
SaveCase("filename", SaveFileType, [AddCommentForObjectLabels]);

This action will save the case to "filename" in the format SaveFileType.

"filename" : The file name in which to save the information.

SaveFileType : An optional parameter saying the format of the file to be saved. If none
is specified, then PWB will be assumed. It may be one of the following
strings
PWB (latest version), PWB5-PWB20
PTI23-PTI33

GE14-GE21, CF
AUX, AUXSECOND, AUXLABEL, AUXNETWORK, UCTE

PostCTGAGC : An optional parameter, only valid for GE EPC format. If the Governor
Response Limits field for a generator is set to Down Only or Fixed, the
base load flag will be written as 1 or 2, respectively, and this option is
ignored. This option is only used when a generator’'s Governor Response
Limits field is set to Normal. If this option is set to YES and not ignored,
the base load flag in the EPC file is based on the Post-Contingency
Prevent AGC Response setting. If preventing post-contingency AGC, the
base load flag is set to 2. If not preventing post-contingency AGC, the
base load flag is set to 0.

UseAreaZone . An optional parameter, only valid for GE EPC format. YES limits the
entries in the EPC file based on the area/zone/owner filter (NO by
default)

AddCommentsForObjectLabels : An optional parameter, only valid for PTI RAW format. Default
is NO. YES adds object labels to the end of data records when saving a
RAW file.

SaveGenLimitStatusAction(“filename");

Use this action to save Mvar information about generators in a text file. The information saved includes the
generator bus number, generator ID, Mvar, Max Mvar, Min Mvar, AVRable flag (user specified), and internal
AVRable flag (set by Simulator). This information is useful for debugging.

“filename" : Name of the text file in which to save the generator information.

18

SaveJacobian("JacFileName", "JIDFileName", FileType, JacForm);
Use this action to save the Jacobian Matrix to a text file or a file formatted for use with Matlab

"JacFileName" : File in which to save the Jacobian.
"JIDFileName" . File to save a description of what each row and column of the Jacobian
represents.
FileType : M- Matlab form
TXT — Text file
EXPM - Save Jacobian in Exponential form (ex. 1.2E-2) in Matlab form
JacForm : R—AC Jacobian in Rectangular coordinates

P — AC Jacobian in Polar coordinates
DC - B’ matrix of DC power flow

SaveYbusIinMatlabFormat(“filename", IncludeVoltages);

Use this action to save the YBus to a file formatted for use with Matlab
“filename" : File in which to save the YBus.
IncludeVoltages : YES — Includes the per unit bus voltages in the file; NO does not include.

Scale(scaletype, basedon, [parameters], scalemarker);

Use this action to scale the load and generation in the system. This script command should be used in
conjunction with the SCALE_OPTIONS object that specifies additional options necessary for the scaling that are
not set through the script command.

scaletype : The objecttype begin scaled. Must be either LOAD, GEN,
INJECTIONGROUP, or BUSSHUNT.
basedon : MW — parameters are given in MW, MVAR units.
FACTOR - parameters a factor to multiple the present values by.
[parameters] : These parameters have different meanings depending on ScaleType.

LOAD : [MW, MVAR] or [MW]. If you want to scale load
using constant power factor, then do not
specifying a MVAR value.
GEN : [MW]
INJECTIONGROUP : [MW, MVAR] or [MW] . If you want to scale load
using constant power factor, then do not
specifying a MVAR value.
BUSSHUNT : [GMW, BCAPMVAR, BREAMVAR]. The first
values scales G shunt values, the second value
scales positive (capacitive) B shunt values, and
the third value scales negative (reactive) B shunt
values
The Scale script command also allows using the [parameters] input to specify the
new value or scale factor through a field with the object type to scale. To use this
option, the [parameters] input should contain field variable names instead of
numeric values. When using a field rather than value, the scaling will be done by
individual object rather than the aggregation of all objects selected for scaling.
scalemarker : This value specifies whether to look at an element’s bus, area or zone to
determine whether it should be scaled.
BUS : Means that elements will be scaled according to
the Scale property of the element’s terminal bus.
AREA : Means that elements will be scaled according to
the Scale property of the element’s Area. Note
that it is possible for the area of a load,
generator, or switched shunt to be different than
the terminal bus's area.

19

ZONE : Means that elements will be scaled according to
the Scale property of the element’'s Zone. Note
that it is possible for the zone of a load,
generator, or switched shunt to be different than
the terminal bus’s zone.

OWNER : Means that elements will be scaled according to
the Scale property of the element’'s Owner. Note
that it is possible for the Owner of a load,
generator, or switched shunt to be different than
the terminal bus’'s Owner.

Examples: Two different wasy to scale three areas to a particular load value

Script

{

SetData(Area, [Scale], [''NO"], All); // Sets the scale field of all areas to NO
SetData(Area, [Number, Scale], [111, "YES']); // For area, set Scale=YES

Scale(LOAD, MW, [1111.1],AREA); // Do the scaling for particular area

SetData(Area, [Number, Scale], [111, "NO"]); // reset Scale back to NO
SetData(Area, [Number, Scale], [333, "YES'"]); // For area, set Scale=YES
Scale(LOAD, MW, [3333.3],AREA); // Do the scaling for particular area
SetData(Area, [Number, Scale], [333, "NO"]); // reset Scale back to NO
SetData(Area, [Number, Scale], [444, "YES']); // For area, set Scale=YES

Scale(LOAD, MW, [4444.4],AREA); // Do the scaling for particular area
SetData(Area, [Number, Scale], [444, "NO"]); // reset Scale back to NO

}

Script

{

SetData(Area, [Scale], [''NO"], All);

SetData(Area, [Number, Scale, CustomFloat:5], [111, "YES", 1111.1]);
SetData(Area, [Number, Scale, CustomFloat:5], [333, "YES", 3333.3]);
SetData(Area, [Number, Scale, CustomFloat:5], [444, '"YES", 4444.4]);
Scale(LOAD,MW, ["*CustomFloat:5"],AREA);

}

SetGenPMaxFromReactiveCapabilityCurve(filter);

Use this action to change the Maximum MW output of generators which use a capability curve, equal to the
second-to-last MW point in the capability curve if the last Max Mvar point on the capability curve is smaller than
0.001 Mvar. If the present MW output is higher than this new Max MW value, then Max MW is set to the present
MW output..
filter . optional parameter which is either Selected, Closed or the name of a branch
Advanced Filter. This parameter is used to specify which generators are
processed. If blank, all generators are processed.

Selected : means only generators whose Selected field = YES can
be processed
AREAZONE : means process those generators that meet the

area/zone/owner filters.
"FilterName" : See the Using Filters in Script Commands section for
more information on specifying the filtername.

20

SetParticipationFactors(Method, ConstantValue, Object);

Use this action to modify the generator participation factors in the case

Method

ConstantValue

Object

: The formula used to calculate the participation factors for each generator. It may

be one of the following strings:

MAXMWRAT - base factors on the maximum MW ratings.
RESERVE - base factors on the (Max MW rating — Present MW).
CONSTANT - set factors to a constant value.

: The value used if CONSTANT method is specified. If CONSTANT method is not

specified, enter O (zero).

: Specify which generators to set the participation factor for.

[Area Num], [Area "name"], [Area "label"]
[Zone Num], [Zone "name"], [Zone "label"]
SYSTEM

AREAZONE or DISPLAYFILTERS

SetScheduledVoltageForABus([bus identifier], voltage);

Use this action to set the stored scheduled voltage, vsched, for a bus according to how this is defined in the EPC
format. This value is not used by Simulator but is stored for purposes of writing out to an EPC file. The setpoint
voltages for generators and switched shunts regulating the specified bus are also set to the new voltage. The
regulation range for switched shunts is modified for the new setpoint voltage according to how this is defined in
the EPC format: vband = (VHigh-VLow)/2 with newVHigh = voltage+vband and new VLow = voltage-vband.

[bus identifier]
voltage

. specifies bus
: the new voltage

SetSelectedFromNetworkCut(SetHow, [BusOnCutSide], BranchFilter, InterfaceFilter, DCLineFilter,
Energized, NumTiers, InitializeSelected, [ObjectsToSelect], UseAreaZone, UsekV, MinkV, MaxkV,

LowerMinkV, LowerMaxkV);

Use this action to set the Selected field of specified object types if they are on the specified side of a network cut
created by specified branches, interfaces, and/or dc lines.

SetHow

[BusOnCutSide]

. Set to YES or NO. This is the value to which the Selected field will be set if an

object is within the network cut.

. Specify the bus that is on the desired side of the network cut. Objects that are on

the same side as this bus will have their Selected field set.

At least one of the foIIowmg filters MUST not be blank:

BranchFilter

InterfaceFilter

DCLineFilter

Energized
NumTiers
InitializeSelected

[ObjectsToSelect]

. Specify a filter to select the branches that define the network cut. See the Using

Filters in Script Commands section for more information on specifying the filter.
A blank filter means that no branches are selected.

. Specify a filter to select the interfaces that define the network cut. See the Using

Filters in Script Commands section for more information on specifying the filter.
A blank filter means that no interfaces are selected.

. Specify a filter to select the dc lines that define the network cut. See the Using

Filters in Script Commands section for more information on specifying the filter.
A blank filter means that no dc lines are selected.

: Set to YES or NO. Set to YES to only include energized branches in the network

cut.

: Set to YES or NO. Set to YES to only include energized branches in the network

cut.

: Set to YES or NO. Set to YES to set the Selected field for all objects to the

opposite of the value specified in the SetHow parameter.

: Comma separated list of object types enclosed in square brackets. These objects

will have their Selected fields set if they are within the network cut. Valid options
are: BRANCH, BUS, DCTRANSMISSIONLINE, GEN, LOAD, and SHUNT.

21

UseAreaZone

UsekV

MinkV

MaxkV

LowerMinkV

LowerMaxkV

UpdatelslandsAndBusStatus;

: Optional parameter — default is NO.

Set to YES or NO. Set to YES to only set the Selected field for objects that are
within the network cut that meet the area/zone/owner filter.

: Optional parameter — default is NO.

Set to YES or NO. Set to YES to only set the Selected field for objects that are
within the network cut and within the nominal kV range specified.

: Optional parameter — default is 0.

An object's nominal kV must be greater than or equal to this value to have its
Selected field set if it is also in the network cut. Branches can have different
nominal voltages at each terminal; the largest nominal voltage must be greater
than or equal to this value.

: Optional parameter — default is 9999.

An object’s nominal kV must be less than or equal to this value to have its
Selected field set if it is also in the network cut. Branches can have different
nominal voltages at each terminal; the largest nominal voltage must be less than
or equal to this value.

: Optional parameter — default is 0.

This value is only used with branches. Branches can have different nominal
voltages at each terminal; the smallest nominal voltage must be greater than or
equal to this value.

: Optional parameter — default is 9999.

This value is only used with branches. Branches can have different nominal
voltages at each terminal; the smallest nominal voltage must be less than or
equal to this value.

Changes to branch and generator status impact islands and whether or not buses are connected. Islands and bus
status are always updated at the beginning of a power flow solution if necessary, but this script command makes
it convenient to update this information without requiring a power flow solution.

22

Oneline Actions

Available to you regardless of the mode

CloseOneline ("'OnelineName™);

EditMultipleOnelineAction ('Path', LinkType, SaveFileType);

ExportOneline ('filename'™, "OnelineName', ImageType, ‘view", FullScreen, ShowFull,
[ExportOptions]);

ExportOnelineAsShapeFile
(*filename™, "OnelineName', *shapefileExportDescriptionName',UseLonLat, PointLocation);
ImportDDLAsTranslation ('filename™);

LoadAXD ('filename'™, "OnelineName™"™, CreatelfNotFound);
OpenOneline ('filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width,
Height);

RelinkAll0penOnelines;
SaveOneline (C'filename'™, "OnelineName™, SaveFileType);

CloseOneline("OnelineName");

Use this action to close an open oneline diagram without saving it. If the name is omitted, the last focused
oneline diagram will be closed.
" OnelineName" : The name of the oneline diagram to close.

EditMultipleOnelineAction("Path"”, LinkType, SaveFileType);

Use this action to convert all files with a PWD extension in a specified directory to a new format. The files will be
saved with the same name but with an extension appropriate for the SaveFileType.

"Path" . Specify a valid path where the files are located.

LinkType . Specify the key field identifier to use for linking objects in the oneline
diagrams to a power flow case. Options are NUMBER, NAMENOMKY,
and LABEL.

SaveFileType : Specify the new format for the oneline diagrams. Valid options are: PWB,

PWB5-PWB20, and AUX.

ExportOneline(“filename", "OnelineName", ImageType, "view", FullScreen, ShowFull, [ExportOptions]);

Use this action to export an |mage of the open oneline diagram to a file containing the specified image type.
"filename" : Name of the file in which the exported image will be saved.
"OnelineName" : The name of the oneline diagram to export. The oneline diagram must be
open. Use the OpenOneline script command if necessary to open the
appropriate oneline.

ImageType : The type of image to save. Valid options are: BMP, GIF, JPG, EMF, WMF.

"view" : Optional parameter. The view name that should be opened. Pass an
empty string to denote no specific view.

FullScreen : Optional parameter with default of NO. Set to YES or NO. YES means

that the oneline diagram will be open in full screen mode. If this
parameter is not specified, then NO is assumed.

ShowFull : Optional parameter with default of NO. Set to YES to open the oneline
and apply the Show Full option. Set to NO to open the oneline and leave
the oneline as is.

23

[ExportOptions] . Optional parameter

This is a comma separated list of options based on the ImageType that is

being exported.

When exporting an image of type JPG, the following options can be

specified:
ImageQuality : Quality of the image specified from 1 to 100 with
100 being the highest quality image. The larger the image quality
the larger the resulting file will be. Default is 80.
ResolutionScalar : The resolution can be changed from the default
resolution by adjusting by this scalar. To increase the resolution set
the scalar to something greater than 1. Increasing the resolution will
also increase the file size. Default is 1.

When exporting an image of type GIF, the following options can be

specified:
NumFrames : GIF images can be animated by introducing
multiple frames. This value specifies the number of frames. Default
is 1.
FrameDelay : Number of seconds to wait between frames.
Default is 0.1.

ResolutionScalar : The resolution can be changed from the default
resolution by adjusting by this scalar. To increase the resolution set
the scalar to something greater than 1. Increasing the resolution will
also increase the file size. Default is 1.

ExportOnelineAsShapeFile("filename”, "OnelineName", "ShapeFileExportDescriptionName", UseLonLat,
PointLocation);

Use this action to save an open oneline diagram to a shapefile.

"“filename" : The file name of the shapefile to save.

"OnelineName" : The name of the oneline diagram to save to a shapefile. The oneline
diagram must be open. Use the OpenOneline script command if
necessary to open the appropriate oneline.

"ShapeFileExportDescriptionName" : Name of the ShapeFile Export Description to use when
saving the shapefile.

UselLonLat : Set to YES or NO. YES means that the coordinates of objects on the
oneline diagram will be saved using longitude,latitude. This will only be
true if a valid map projection is in use with the oneline diagram.
Otherwise, the coordinates will be saved in x,y. If this parameter is set to
NO, the coordinates will be saved in x,y. If this parameter is not specified,
YES is assumed.

PointLocation : Determines where points are specified — object centers, or the upper left
corner. Specify “center” to define points as the shape centers, or “ul” to
define them as the upper left corner of the shapes. If not specified, upper
left is assumed.

ImportDDLAsTranslation("filename");

This loads an ESET DDL and converts some definitions into translations within Simulator. This currently only works
for keyset definitions that set links to open onelines.
"filename" : The name of file to load.

24

LoadAXD("filename", "OnelineName", CreatelfNotFound)

Use this action to apply a dlsplay auxiliary file to an open oneline diagram.

“filename" . The file name of the display auxiliary file to load.

"OnelineName" : The name of the oneline diagram to which to apply the display auxiliary
file. If the oneline is not already open, the OpenOneline script command
can be used to open the appropriate oneline. If the specified oneline is
not open, a new one will be created with the given name.

CreatelfNotFound : Set to YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections from filename. If this parameter
is not specified, NO is assumed.

OpenOneline(“filename”, "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, Height);

Use this action to open a oneline diagram. When using SimAuto, this action cannot be used to actually view a
oneline. This script can be used in SimAuto to associate onelines with a PWB file. Any oneline that is opened
using the script command and while the case is saved will opened in the GUI once the case is reopened.
“filename” . The file name of the oneline diagram to open. Wildcards as allowed
when opening a DDL file type. This is useful for loading DDL files via
browsing patch searches.

"view" : The view name that should be opened. Pass an empty string to denote
no specific view.

FullScreen : Set to YES or NO. YES means that the oneline diagram will be open in
full screen mode. If this parameter is not specified, then NO is assumed.

ShowkFull : Optional parameter. Set to YES to open the oneline and apply the Show

Full option. Set to NO to open the oneline and leave the oneline as is.
Default is NO if not specified.

LinkMethod : Optional Parameter that controls oneline linking. LABELS, NAMENOMKY,
and NUMBER will link using the respective key fields.
Left : Optional with default of 0. Value between 0 and 100 that indicates the

location of the left edge of the oneline as a percentage of the
Simulator/Retriever window width.

Top : Optional with default of 0. Value between 0 and 100 that indicates the
top edge of the oneline as a percentage of the Simulator/Retriever
window height.

Width : Optional with default of 0. Value between 0 and 100 that indicates the
width of the oneline as a percentage of the Simulator/Retriever window
width.

Height : Optional with default of 0. Value between 0 and 100 that indicates the
height of the oneline as a percentage of the Simulator/Retriever window
height.

RelinkAllOpenOnelines;

Making modifications to the power flow case could cause objects on a oneline from becoming unlinked.
This action will attempt to relink all objects on all open onelines.

SaveOneline("filename"”, "OnelineName”, SaveFileType);

Use this action to save an open oneline diagram to file

"filename" : The path and file name of the file to save. If a full path is not specified,
then the file is saved to the current directory.

"OnelineName" : Name of the open oneline to save.

SaveFileType : Type of file to save. Valid options are AXD, PWB, and PWB5-PWB20. If

omitted, PWB, which is the most recent version, will be assumed. Note
the use of "PWB" instead of "PWD" is not a typo. The version of the PWD
file corresponding to the PWB version will be used.

25

OpenBusView("Bus key", ForceNewWindow);

Opens the Bus View to a partlcular bus specified in the first parameter.
"Bus key" . The specific bus. The format is the object type followed by the key fields
ForceNewWindow : Optional with default of NO. Set to YES to force a new bus view to be
opened regardless. If NO, then if a bus view is already open the
command will update that bus view instead of opening a new one.

OpenSubView("Substation key", ForceNewWindow);

Opens the Substation View to a particular substation specified in the first parameter.

"Substation key" . The specific substation. The format is the object type followed by the key
fields
ForceNewWindow : Optional with default of NO. Set to YES to force a new substation view to

be opened regardless. If NO, then if a substation view is already open the
command will update that substation view instead of opening a new one.

26

User Interface Actions

Available regardless of the mode

MessageBox ("text™);
ObjectFieldsInputDialog (""ObjectIDString', [fieldlist]);
OpenDataView ("'ObjectIDString", "DataGridIDString™);

MessageBox("text");

Use this action to open a dialog box that will display the entered text. This script command will fail if using the
SimAuto add-on.
"text" . Text that will appear in the dialog box.

ObjectFieldsinputDialog("ObjectIDString", [fieldlist], "DialogCaption”, "DialogExplain”,
[LabelCaptions], [TabBreaks], [TabCaptions], [RowBreaks], [RowCaptions], [ColBreaks], [ColCaptions]);

Use this action to open a dialog box displaying the list of specified fields for the specified object. This will allow
the fields to be modified in the same manner as they can through case information displays. This script command
will fail if using the SimAuto add-on.
"ObjectIDString" . The specific object for which to display fields. The format is the object
type followed by the key fields used to identify the object. Examples:
"Bus 234891", "Gen 16445 'A™, "Branch 1239 1234 'AB™.

[fieldlist] : A list of fields to to display for the specified object.

"DialogCaption” : Optional with default of blank. This is the caption that will appear on the
dialog.

"DialogExplain” : Optional with default of blank. This is an explanation that will appear in a
text at the top of the dialog underneath the caption.

[LabelCaptions] : Optional with default of []. Inside brackets, you may enter a comma-

delimited list of captions that will appear with the respective fields. The
captions must be enclosed in double quotes if there are any commas in
the string. If now label captions are specified, then the concise variable
names will be used to indicate what each field is

[TabBreaks] : Optional with default of []. Inside brackets, you may enter a comma-
delimited list of integers that indicate that a tab break occurs before the
field at the particular index. The fields are indexed starting at zero. The
dialog that appears will be created with the first “tab” representing a
panel at the TOP of the dialog. This top panel will be made a fixed
height so that all rows of fields can be seen. Any subsequent tabs will be
placed inside a Tabbed control. The tabbed control will take up the
remainder of the size of the dialog.

[TabCaptions] : Optional with default of []. Inside brackets, you may enter a comma-
delimited list of captions that will appear with the respective tab break.
Each tab break will represent a TAB on the tabbed control. These will be
the captions. If nothing is specified, the captions will simply numbered.

[RowBreaks] : Optional with default of []. Inside brackets, you may enter a comma-
delimited list of integers that indicate that a row break occurs before the
field at the particular index. The fields are indexed starting at zero. Each
tab of the dialog will be drawn with controls optionally grouped into
rows and then these rows optionally grouped into columns. A particular
“cell” of this table can then have multiple fields inside it.

[RowCaptions] : Optional with default of []. Inside brackets, you may enter a comma-
delimited list of captions that will appear with the respective group box
that starts with the field at this index. The group box will contain all

27

fields up until the next Column or Row break. Blank captions are also
allowed, in which case a group box is not drawn.

[ColBreaks] : Optional with default of []. Inside brackets, you may enter a comma-
delimited list of integers that indicate that a column break occurs before
the field at the particular index. The fields are indexed starting at zero.
Each tab of the dialog will be drawn with controls optionally grouped
into rows and then these rows optionally grouped into columns. A
particular “cell” of this table can then have multiple fields inside it.

[ColCaptions] : Optional with default of []. Inside brackets, you may enter a comma-
delimited list of captions that will appear with the respective group box
that starts with the field at this index. The group box will contain all
fields up until the next Column or Row break. Blank captions are also
allowed, in which case a group box is not drawn.

The following image depicts what the resulting dialog would show for the following script command. Note the
field list is abbreviated but for this example there are 21 fields listed in the same manner as other script
commands.

ObjectFieldslInputDialog("Branch 5 6 1", [FieldO, .. Field20],
"Add Caption Here"™, "Explain Stuff Here™, [].
[4, 12], [My Cap,Another],
[5,11,12,17,19], [EDFG,"Test,Cap", " Heref",ABCD,""],
[8,14,15,18,18], [HIJK,,LMNO, ,XYZ]

):
Add Caption Here |_|D| X
A few things of note Explain Stuff Here
in this example. LabelCaptiond | FieldD |
LabelCaptionl | Field1 | Initial is results in
Column caption that tthe t
. P . LabelCaption2 | Field2 | pane stine top
goes with Index 14 is
blank so no group LabelCaption3 | Field3 |
box is drawn. MyCap | Another
: ™
. . LabelCaptiond F|e|d4
Column index 18 is EDFG — HIK — Additional tabs are
listed twice in the LabelCaptions [Fields] LabelCaption3 m inside tabbed control.
ColBreaks which LabelCaptions | Fields | Labelcaptions [Fieldg | Captions are strings in
. [TabCaptions]
results in the empty Labelcaption7 [Field7 | || Labelcaptionlo [Fieldlo |
column between Field Fest Cap
LabelCaptionll F|e|d11
17 and 18. . _
. _Close
RowBreak index 12 [close]
would seem to be
unnecessary but MyCap | Another
i ~Heref FLIMNOQ ———————————————
provide the Here LabeiCaptions
. LabelCaptionl2 Field 12 ;
mechanism to add taneicapnents
the caption "Heref” LepelCaptionts Field 13 LebelCaption 16 Fizld 15
-ABCD XYz
vtor | g
LabelCaption1s
LabelCaption20

28

OpenDataView("ObjectIDString", "DataGridIDString");

Use this action to open the Data View Dialog to a particular object using a particular set of customized string grid
options. The string grid options determine the fields to show as well as whether to have any Tab, Row or Column
breaks on the dialog in the same manner as is done for the ObjectFieldsinputDialog() script command.
"ObjectIDString" . The specific object for which to display fields. The format is the object
type followed by the key fields used to identify the object. Examples:
"Bus 234891", "Gen 16445 'A™, "Branch 1239 1234 'AB".
"DataGridIDString" : Optional. If not specified dialog will open with the first customized grid.
This is a reference to either a DataGrid or a UserDefinedDataGrid object.
DataGrid objects store the customizations used on various case
information displays in PowerWorld Simulator. A part of the
customization for a DataGrid includes information about the Data View
Layout (allows tab, row, and column breakers along with captions for
tabs and group boxes). The format for this string is object type string
DataGrid or UserDefinedDataGrid the key fields for that object (only a
name for the DataGrid, and name followed by object type for
UserDefinedDataGrid). Examples:
"DataGrid '‘BranchRun"
"DataGrid 'BranchEdit"
"UserDefinedDataGrid 'My named grid' Bus”
Note: you may also simply enter a string showing the name of either the
DataGrid or UserDefinedDataGrid. If you do this, then Simulator will first
look for a DataGrid with that name. If a DataGrid is not found, then we
will look for a UserDefinedDataGrid that matches the name specified and
assumes the object type matches what is specified for the
ObjectIDSTring.

29

Edit Mode Actions

Case Related Actions

The following script commands are available during Edit mode

AppendCase (*'filename™, OpenFileType, [StarBus, EstimateVoltages]);:

AppendCase ("'filename', OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]);
Combine ([elementA], [elementB]);

DeleteExternalSystem;

Equivalence;

InterfacesAutolnsert (Type, DeleteExisting, UseFilters, Prefix, Limits);
MergeBuses([element], Filter);

MergeLineTerminals (Filter);

MergeMSLineSections (Filter);

Move ([elementA], [destination parameter], HowMuch);

ReassignlDs(objecttype, Ffield, Filter, UseRight);

Remove3WXformerContainer(filter);

Renumber3wWXFormerStarBuses(*"filename™, Delimiter);

RenumberAreas(NumCl) ;

RenumberBuses(NumCl);

RenumberMSLineDummyBuses(*'filename', Delimiter);

RenumberSubs(NumCl) ;

RenumberZones(NumCl) ;

SaveExternalSystem ('filename', Savefiletype, withties);

SplitBus ([element], NewBusNumber, InsertBusTieLine, LineOpen, BranchDeviceType);
TapTransmissionLine ([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine);

AppendCase(“filename", OpenFileType, [StarBus, EstimateVoltages]);

AppendCase(“filename”, OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]);

Use this action to append a case to the currently open case. The optional parameters depend on the type of file
being appended.

"Filename" : File name of the case to be appended

OpenFileType : PWB — case file is a PowerWorld Binary file
GE - case file is a GE .epc file. GExx where xx is the appropriate EPC file
version number can also be used.
PTI — case file is a PTl .raw file. PTlxx where xx is the appropriate RAW
file version number can also be used.
CF — case file is an IEEE common data format file

StarBus : Optional parameter — default is NEAR
Only used for PTI RAW format, with the following options:
NEAR - star buses are numbered starting after the near bus number
MAX — star buses are numbered starting after the maximum bus number
Value — star bus numbering will start at specified value

MSLine : Optional parameter — default is MAINTAIN
Only used for the GE EPC format, with the following options:
MAINTAIN — maintain multisection lines
EQUIVALENCE - equivalence multisection lines

VarLimDead : Optional parameter — default is 2.0
Only used for the GE EPC format
NUMBER - set the GE var limit deadband to this value

PostCTGACG : Optional parameter — default is NO
Only used for the GE EPC format. Set to YES to populate the generator
field Post-CTG Prevent Response based on the EPC file’s generator base
load flag.

30

EstimateVoltages : Optional parameter — default is YES
Used with either GE EPC or PTI RAW format with the following options:
YES — voltages and angles are estimated for new buses that are created
when appending data to a case. Angle smoothing is done across new
lines that are created when appending data to a case. These operations
might be necessary if appending data that contains voltages that are not
consistent to the case into which it is being appended or contains no
voltages at all. This is the default.
NO - no voltage and angle estimates are done and no angle smoothing
is done. This might be necessary when appending large sections of a
case, i.e. such as a new island, or providing voltages that are already
good estimates in the appended data.

Combine([elementA], [elementB]);

NOTE: THIS ACTION IS ONLY AVAILABLE FOR GENERATORS
Use this action to combine two generators, two loads, or two transmission line. Note that elementA and elementB
must be of the same object type. You cannot combine a BRANCH and a LOAD.

[elementA] : The object that should be moved. See the format for [elementA] in the
Move script command for information on the formatting of this string.

[elementB] : The object that element A should be combined with. Same format as for
elementA.

DeleteExternalSystem;

This action will delete part of the power system. It will delete those buses whose property Equiv must is set true.

Equivalence;

This action will equivalence a power system. All options regarding equivalencing are handled by the
Equiv_Options objecttype. Use the SetData action, or a DATA section to set these options prior to using the
Equivalence() action. Also, remember that the property Equiv must be set true for each bus that you want to
equivalence.

InterfacesAutolnsert(Type, DeleteExisting, UseFilters, "Prefix”, Limits);
Use this action to auto-insert interfaces

Type : AREA - insert area-to-area tieline interfaces.
ZONE — insert zone-to-zone tieline interfaces.
DeleteExsiting . YES — to delete existing interfaces; NO — to leave existing interfaces alone.
UseFilters . YES —to user Area/Zone Filters; NO — to insert for entire case.
"Prefix" . Enter a string which will be a prefix on the interface names.
Limits : ZEROS - to make all limits zero.

AUTO - limits will be set to the sum of the branch limits.
[lima, limb, limc, limd, ...] — Enter 8 limits enclosed in brackets, separated by
commas. This will set the limits as specified.

31

MergeBuses([element], Filter);
Use this action to merge buses

Element : The bus object that will be created when the buses meeting the Filter are
merged.
Filter : Optional parameter — default is to merge all buses into a single bus
AREAZONE : Only buses that meet the area/zone/owner
filters will be merged
SELECTED : Only buses whose Selected field = YES will be
merged
"FilterName" : Only buses that meet the specified filter will be

merged. See Using Filters in Script Commands
section for more information on specifying the
filtername.

MergeLineTerminals(Filter);

Use this action to merge line terminals. This action can be used to remove a line by merging the terminal buses of
that line into a single bus. The only parameter of the script command is a filter parameter, which must be
populated with either the name of an advanced filter (with the name in quotation marks) or the text SELECTED
(with no quotation marks). If an advanced filter is given, then Simulator will find all branches that meet the
advanced filter definition and will individually merge the line terminals of each line one at a time.
Filter : Any multi-section lines meeting this filter will be merged.
“filtername" — See the Using Filters in Script Commands section for
more information on specifying the filtername.
SELECTED - select objects that have the selected property set to true

MergeMSLineSections(Filter);

Use this action to eliminate multi-section line records. If possible, the individual sections will be merged into a
single line record between the from and to bus and the multi-section line record will be removed. If a multi-
section line contains series capacitors or transformers, the multi-section line record will be retained.
Filter : Any multi-section lines meeting this filter will be merged.
“filtername” — See the Using Filters in Script Commands section for
more information on specifying the filtername.
SELECTED - select objects that have the selected property set to true

Move([elementA], [destination parameters], HowMuch);

Use this action to move a generator, load, transmission line, or switched shunt.
[elementA] : The object that should be moved. Must be one of the following formats:

[GEN busnum id], [GEN "name_nomkv" id],
[GEN "label"]
[LOAD busnum id] , [LOAD "name_nomkv" id],
[LOAD "label"],
[BRANCH busnum1 busnum? ckt],
[BRANCH "name_kv1" "name_kv2" ckt],
[BRANCH "label"]
[SHUNT busnum id], [SHUNT "name_nomkv" id],
[SHUNT "label"],
[MULTISECTIONLINE busnum1 busnum?2 ckt],
[MULTISECTIONLINE "name_kv1" "name_kv2" ckt],
[MULTISECTIONLINE "label"],
[BWXFORMER busnum1 busnum?2 busnum3 ckt],
[BWXFORMER "name_kv1" "name_kv2" "name_kv3" ckt]
[BWXFORMER "label"]

32

[destination parameters]: These parameters have different meanings depending on object
type of the element. Must use bus numbers here:

GEN . [busnum id]
LOAD . [busnum id]
BRANCH : [busnum1 busnum?2 ckt]
SHUNT . [busnum id]

MULTISECTIONLINE : [busnum1 busnum?2 ckt]
3WXFORMER : [busnum1 busnum2 busnum3 ckt]
HowMuch : The amount of the element to move. A value of 100 indicates that 100%
should be moved. This parameter is only valid for generators and loads.
It is ignored for lines and switched shunts.

ReassigniDs(objecttype, field, filter, UseRight);
Use this action to set the IDs of specified objects to the first two characters of a specified field.

objecttype : The type of object for which to assign IDs. BRANCH, GEN, LOAD, and
SHUNT are allowed.
field : The field that contains the IDs that will be assigned. Only the first two

characters of the field will be assigned. Field is specified in format
variablenamelegacy: location or concisename

Filter : (optional) Any objects meeting this filter will have their IDs reassigned.
Blank is the default value:
Blank : means all objects will be modified
ALL : means all objects will be modified
SELECTED : means only branches whose Selected field = YES will
be modified
AREAZONE : means only branches that meet the area/zone/owner

filters will be modified
"FilterName" : means only objects that meet the specified filter will be
modified. See the Using Filters in Script Commands
section for more information on specifying the
filtername.
UseRight : Optional parameter — default is NO
Set to YES or NO. If set to YES, the last two characters of the specified
field will be assigned.

Remove3WXformerContainer(filter);

Use this action to delete the three-winding transformers matching the specified filter while leaving the internal
two-winding transformers intact.

Filter : (optional) Any three-winding transformers meeting this filter will be
deleted. Default is blank:
Blank : means all three-winding transformers will be deleted
ALL : means all three-winding transformers will be deleted
SELECTED : means only three-winding transformers whose
Selected field = YES will be deleted
AREAZONE : means only three-winding transformers that meet the

area/zone/owner filters will be deleted

"FilterName" : means only three-winding transformers that meet the
specified filter will be deleted. See the Using Filters in
Script Commands section for more information on
specifying the filtername.

33

Renumber3WXFormerStarBuses("filename", Delimiter);

Use this action to renumber star buses based on user-specified values.
“filename" : The name of the file containing the renumbering
Delimiter . Optional parameter — default is BOTH
Set to COMMA, SPACE, or BOTH to indicate the delimiter to use
to separate data in the file.

The file may be comma or space delimited. The contents of the file should be formatted using the format below.

Primary bus, secondary bus, tertiary bus, circuit, new starbus number, nuew starbus name
or

pribusname_nomkV, secbusname_nomkV, terbusname_nomkV, circuit ID, newstarbusnum, newstarbusname

Either the bus number or the name_nominalkV identifier may be used to identify the buses. Each bus may be
identified using either method even for the same transformer. Lines starting with two slashses (//) will
be ignored. The next two lines are sample file contents using different methods to identify buses.

11037, 11038, 11199, 1", 11202, "Ki star™
"WESTWING_500.00"" "WESTWNGW_230.00" "WESTWG 4_34.50" "'2'" 99823 'Kl STAR 3"

RenumberAreas(NumcCl);

Renumber Areas using the new number for the Area located in the Custom Integer field of the area.
NumcCl : Custom Integer field containing the new numbers.

RenumberBuses(NumCl);

Renumber Buses using the new number for the bus located in the Custom Integer field of the bus.
NumCl : Custom Integer field containing the new numbers.

RenumberMSLineDummyBuses(“filename", Delimiter);

Use this action to renumber dummy buses or a multisection line based on user-specified values.
“filename” : The name of the file containing the renumbering
Delimiter . Optional parameter — default is BOTH
Set to COMMA, SPACE, or BOTH to indicate the delimiter to use
to separate data in the file.

The file may be comma or space delimited. Buses may be identified using bus numbers or using the
BusName_NominalkV combination. The file format is below:

from bus, to bus, circuit //identifiy multi-section line

dummybusnumberi, dummybusnamel

dummybusnumber2,dummybusname2

where the dummy bus numbers and names give the numbers and names that will be assigned for the dummy
buses of a multi-section line. An example of the file contents is below:

40039 , 40141, 1 // ALFALFA 230 N BONNVL 230 #1
49997, "ALFN B11"
40062 , 40699, 2 // ASHE R1 500 MARION 500 #2

49990, ASHMAR21
49989, ASHMAR22
49988, ASHMAR23

RenumberSubs(NumcCl);
Renumber Substations using the new number for the substation located in the Custom Integer field of the
substation.
NumCl : Custom Integer field containing the new numbers.

34

RenumberZones(NumcCl);
Renumber Zones using the new number for the Zone located in the Custom Integer field of the zone.
NumcCl : Custom Integer field containing the new numbers.
SaveExternalSystem("Filename"”, SaveFileType, WithTies);

This action will save part of the power system to a "filename". It will save only those buses whose property Equiv
must is set true.

filename . The file name to save the information to.

SaveFileType : An optional parameter saying the format of the file to be saved. If none
is specified, then PWB will be assumed. May be one of the following
strings
PWB, PWB5-PWB20
PTI23-PTI33
GE14-GE21, CF, AUX

WithTies : An optional parameter. The user must specify the file type explicitly in

order to use the WithTies parameter. Allows saving a transmission line
that ties a bus marked with Equiv as false and one marked true. This
must be a string which starts with the letter Y, otherwise NO will be
assumed.

SplitBus([element], NewBusNumber, InsertBusTieLine, LineOpen, BranchDeviceType);

Use this action to split buses
Element : Enter the description of which bus to split by enclosing in brackets the
word bus and an identifier. The format looks as follows:
[BUS num]
[BUS "name_nomkv"]
[BUS "buslabel"]
NewBusNumber . This is the number of the new bus to create
InsertBusTieLine : Optional parameter — default is YES
Set to YES or NO. YES will insert a low impedance tie line between the
buses; NO will not.
LineOpen : Optional parameter — default is NO
Set to YES or NO. YES set the status of the inserted bus tie to OPEN. NO
will set the status of the inserted bus tie to CLOSED.
BranchDeviceType : Optional parameter — default is "Breaker"
Specify the Branch Device Type of the branch inserted for the bus tie.
Options are: "Line", "Transformer”, "Breaker", "Disconnect"”, "ZBR", "Fuse",
“Load Break Disconnect”, and "Ground Disconnect".

35

TapTransmissionLine([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine);

Use this action to tap a transmission line by adding in a new bus and splitting the line in two.

Element

PosAlongLine
NewBusNumber
ShuntModel

TreatAsMSLine

: A description of the branch being tapped. The first bus listed will be

treated as the nearbus that is used as the reference for the PosAlongLine.
If the branch is identified by label, the from bus will be used as the
reference for the PosAlongLine.
Enclose description in brackets:

[BRANCH busnum1 busnum?2 ckt]

[BRANCH "name_kv1" "name_kv2" ckt]

[BRANCH "buslabel1" "buslabel2" ckt]

[BRANCH "label"]

: The percent distance along the branch at which the line will be tapped.
: The number of the new bus created at the tap point.
: Optional parameter — default is CAPACITANCE

How should the shunt charging capacitance values be handled for the
split lines.

LINESHUNTS - Line shunts will be created (keeps exact power flow
model).

CAPACITANCE - Convert shunt values capacitance in the Pl model.

: Optional parameter — default is NO

Set to YES or NO. If set to YES, the two newly created lines will be made
part of a mulit-section line.

36

Run Mode Actions

The following script commands are available during Run Mode.

Animate (DoAnimate);

CalculatePTDF ([transactor seller], [transactor buyer], LinearMethod);
CalculatePTDFMultipleDirections (StoreValuesForBranches,StoreValuesForinterfaces,LinearMethod);
CalculatelLODF ([BRANCH nearbusnum farbusnum ckt], LinearMethod, PostClosurelLCDF);

CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod,
filterMonitorinterface, PostClosurelLCDF);

CalculatelLODFScreening(FfilterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines,
UseLODFThreshold, LODFThreshold, UseOverloadThreshold, OverloadLow,
OverloadHigh, DoSaveFile, FileLocation, CustomFieldHighLODF,
CustomFieldHighLODFLine, CustomFieldHighOverload,
CustomFieldHighOverloadLine);

CalculateLODFAdvanced(IncludePhaseShifters, FileType, MaxColumns, MinLODF, NumberFormat,

DecimalPoints, OnlylncludingLineslncreasing, "FileName",
IncludelslandingCTG);
CalculateTLR ([flowelement], direction, [transactor], LinearMethod, SetOutOfServiceBuses,
filter, AbortOnError);

CalculateTLRMultipleElement (TypeElement, WhichElement, direction, [transactor],LinearMethod);

CalculateVoltSense ([BUS num]);

CalculateFlowSense ([flowelement], FlowType);

CalculatelLossSense (FunctionType);

CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR);

CalculateVoltSelfSense (filter);

RestoreState(WhichState, StateName);

SetinterfaceLimitToMonitoredElementLimitSum(Filter);

SetSensitivitiesAtOutOfServiceToClosest(filter);

StoreState(StateName);

ZeroOutMismatches;

Animate(DoAnimate);

Use this action to animate all the open oneline diagrams.
DoAnimate : Set to YES or NO. YES means to start the animation of the open oneline
diagrams, while NO means that the animation will be paused.

CalculatePTDF([transactor seller], [transactor buyer], LinearMethod);

Use this action to calculate the PTDF values between a seller and a buyer. You may optionally specify the linear
calculation method. Note that the buyer and seller must not be same thing. If no Linear Method is specified,
Lossless DC will be used.
[transactor seller] . The seller (or source) of power. There are six possible settings:

[AREA num], [AREA "name"], [AREA "label"]

[ZONE num], [ZONE "name"], [ZONE "label"]

[SUPERAREA "name"], [SUPERAREA "label"]

[INJECTIONGROUP "name"], [INJECTIONGROUP “label"]

[BUS num], [BUS "name_nomkv"], [BUS "label"]

[SLACK]
[transactor buyer] : The buyer (or sink) of power. There are six possible settings which are
the same as for the seller.
LinearMethod : The linear method to be used for the PTDF calculation. The options are:

AC - for calculation including losses
DC - for lossless DC
DCPS - for lossless DC that takes into account phase shifter operation

37

CalculatePTDFMultipleDirections(StoreForBranches, StoreForinterfaces, LinearMethod);

Use this action to calculate the PTDF values between all the directions specified in the case. You may optionally
specify the linear calculation method. If no Linear Method is specified, Lossless DC will be used.

StoreForBranches
StoreForInterfaces
LinearMethod

. Specify YES to store the values calculated for each branch.
. Specify YES to store the values calculated for each interface.
. the linear method to be used for the PTDF calculation. The options are:

AC - for calculation including losses.
DC — for lossless DC.
DCPS - for lossless DC that takes into account phase shifter operation.

CalculateLODF([BRANCH nearbusnum farbusnum ckt], LinearMethod, PostClosureLCDF);

Use this action to calculate the Line Outage Distribution Factors (or the Line Closure Distribution Factors) for a
particular branch. If the branch is presently closed, then the LODF values will be calculated, otherwise the LCDF
values will be calculated. You may optionally specify the linear calculation method as well. If no Linear Method is
specified, Lossless DC will be used.

[BRANCH nearbusnum farbusnum ckt]: the branch whose status is being changed. Can also use

LinearMethod

PostClosureLCDF

strings

[BRANCH "nearbusname_kv" "farbusname_kv" ckt]
[BRANCH "nearbuslabel" "farbuslabel" ckt]
[BRANCH "label"]

: The linear method to be used for the LODF calculation. The options are:

DC - for lossless DC.
DCPS - for lossless DC that takes into account phase shifter operation.
Note: AC is NOT an option for the LODF calculation.

: Optional parameter — default is YES

Set to YES to calculate any line closure sensitivies relative to post-closure
flow on the line being closed. This is known as the LCDF value.

Set to NO to calculate any line closure sensitivities based on calculating
the flow on the line being closed from pre-closure voltages and angles.
This is known at the MLCDF value.

CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod,
filterMonitoriInterface, PostClosureLCDF);

Use this action to calculate the Line Outage Distribution Factors (or the Line Closure Distribution Factors) for a
particular branch. If the branch is presently closed, then the LODF values will be calculated, otherwise the LCDF
values will be calculated. You may optionally specify the linear calculation method as well. If no Linear Method is
specified, Lossless DC will be used.

WhichOnes

filterProcess

. Specify the type of sensitivities to be calculated.

OUTAGES - Outage sensitivities will be calculated for those branches
meeting the filterProcess.

CLOSURES - Closure sensitivities will be calculated for those branches
meeting the filterProcess.

. Specify a filter for the branches for which the outages or closures will be

implemented.

ALL — All AC transmission lines.

SELECTED - Only those branches whose Selected field is YES.
AREAZONE - Only those branches meeting the area/zone filter.
“filtername" — See the Using Filters in Script Commands section for
more information on specifying the filtername.

38

filterMonitor . Specify a filter for the branches for which the impact of the outages or
closures will be determined.
ALL — All AC transmission lines.
SELECTED — Only those branches whose Selected field is YES.
AREAZONE - Only those branches meeting the area/zone filter.
“filtername"” — See the Using Filters in Script Commands section for
more information on specifying the filtername.
SAME — Same as set of branches to process as specified by filterProcess.

MonitorOnlyClosed : Set to YES to monitor only those branches that are closed. Set to NO to
monitor branches regardless of their status.
LinearMethod : Optional parameter — default is DC

The linear method to be used for the LODF calculation.
DC - for lossless DC.
DCPS - for lossless DC that takes into account phase shifter operation.
Note: AC is NOT an option for the LODF calculation.
filterMonitorinterface : Optional parameter — default is to not monitor interfaces
Specify a filter for the interfaces for which the impact of the outages or
closures will be determined. Using this option will add the individual
lines in the interface to the list of lines to monitor.
ALL — All interfaces.
SELECTED - Only those interfaces whose Selected field is YES.
AREAZONE - Only those interfaces meeting the area/zone filter.
"filtername" — See the Using Filters in Script Commands section for
more information on specifying the filtername.
PostClosureLCDF : Optional parameter — default is YES
Set to YES to calculate any line closure sensitivies relative to post-closure
flow on the line being closed. This is known as the LCDF value.
Set to NO to calculate any line closure sensitivities based on calculating
the flow on the line being closed from pre-closure voltages and angles.
This is known at the MLCDF value.

CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines,
UseLODFThreshold, LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile,
FileLocation, CustomFieldHighLODF, CustomFieldHighLODFLine, CustomFieldHighOverload,
CustomFieldHighOverloadLine, DoUseCTGName);

Use this action to do the LODF Screening calculation. This calculation uses LODF/LCDF factors to determine how
significant a branch open/close action will be on monitored lines. The significance of the action can be
determined by LODF/LCDF magnitude or line loading on monitored lines. Significant single contingency actions
can then be combined to form pairs of contingency actions that will be used to create new contingencies that can
be saved to an auxiliary file.

filterProcess . Specify a filter for the branches for which the outage or closure impact
will be determined.
ALL : All AC transmission lines.
AREAZONE : Only those branches meeting the area/zone filter.
CTG : Only those branches included in any currently

defined contingency.
LIMITMONITOR : Only those branches meeting the Limit Monitoring

Settings.
SELECTED : Only those branches whose Selected field is YES.
“filtername” : See the Using Filters in Script Commands section

for more information on specifying the filtername.

39

filterMonitor

IncludePhaseShifters

IncludeOpenLines
UseLODFThreshold
LODFThreshold
UseOverloadThreshold
OverloadLow
OverloadHigh

DoSaveFile

FileLocation

CustomFieldHighLODF

. Specify a filter for the branches on which the impact of the outages or

closures will be determined.

ALL : All AC transmission lines.

AREAZONE : Only those branches meeting the area/zone filter.

LIMITMONITOR : Only those branches meeting the Limit Monitoring
Settings.

SAME : Same as branches to process specified by
filterProcess.

SELECTED : Only those branches whose Selected field is YES.

"“filtername" . See the Using Filters in Script Commands section

for more information on specifying the filtername.

: Set to YES to calculate the LODF/LCDF values assuming that phase

shifters are allowed to operate and will see no impact due to an outage
or closure. Set to NO to not enforce the flow on phase shifters.

: Set to NO to monitor only those branches that are closed. Set to YES to

monitor branches regardless of their status.

: Set to YES to screen outages/closures by LODF/LCDF magnitude. Set to

NO to not screen by LODF/LCDF magnitudes.

: Threshold above which LODF/LCDF magnitudes are considered

significant.
Set to YES to screen outages/closures by monitored branch
loading. Set to NO to not screen by branch loading.

: Threshold above which a monitored branch loading is considered

significant. This value should be entered as a percent.

: Threshold below which a monitored branch loading is considered

significant. This value should be entered as a percent.

: Set to YES to save an aukxiliary file of new contingencies created by

joining pairs of significant single outage/closure actions. Set to NO to
not save the file.

. Specify a directory path where the auxiliary file containing new

contingencies will be saved. The filename will be determined by
Simulator.

: Optional parameter that is 0 by default. Integer indicating which
Custom Floating Point field for a processed branch will store the
highest magnitude LODF/LCDF determined for any monitored
branch.

CustomFieldHighLODFLine : Optional parameter that is 0 by default. Integer indicating which

Custom String field for a processed branch will store the
identifier for the monitored branch that has the highest
magnitude LODF/LCDF.

CustomFieldHighOverload : Optional parameter that is 0 by default. Integer indicating which

Custom Floating Point field for a processed branch will store the
highest overload determined for any monitored branch.

CustomFieldHighOverloadLine : Optional parameter that is 0 by default. Integer

indicating which Custom String field for a processed branch will
store the identifier for the monitored branch that has the highest
overload.

40

DoUseCTGName : Optional parameter — default is NO
Set to YES to use the available active contingency names
available in the CTG Tool. If a contingency in the CTG Tool has
the same branch as the only contingency element it will use the
contingency name in the tool to create the new CTG Label for
the new contingency combination of branches. Set to NO to only
use the branch info to create the new CTG Label for the
combination of branches.

CalculateLODFAdvanced(IncludePhaseShifters, FileType, MaxColumns, MinLODF, NumberFormat,
DecimalPoints, OnlyIncludingLinesincreasing, “FileName”, IncludelslandingCTG);

Use this action to to mimic what is done on the Advanced LODF Calculation dialog in the GUI.
IncludePhaseShifters : Set to YES to calculate the LODF/LCDF values assuming that phase
shifters are allowed to operate and will see no impact due to an outage
or closure. Set to NO to not enforce the flow on phase shifters.
FileType : Either PROMOD or MATRIX. For PROMOD, save only “Monitored Branch,
Contingency” pairs for PROMOD; and for MATRIX save Matrix as comma-
delimited text file.

MaxColumns : Maximum number of columns per text file.

MinLODF : Only Save pairs with an LODF whose absolute value is greater than this
minimum.

NumberFormat : LODF Number format, either, EXPONENTIAL or DECIMAL

DecimalPoints : Fixed Decimals Points.

OnlylIncludingLinesincreasing: Only include monitored branches whose MW flow increases.

"FileName" : The name of the text file to write.

(Following added in April 27, 2018 patch of Simulator 20)

IncludelslandingCTG : Optional parameter — default is YES
LODF values cannot be calculated for contingencies that will cause a new
island to be created. When including these contingencies in the results,
the LODF will be reported as a very large number to indicate that these
values were not actually calculated. Set to NO to completely omit these
contingencies from the results.

CalculateTLR([flow element], direction, [transactor], LinearMethod, SetOutOfServiceBuses, filter,
AbortOnError);

Use this action to calculate the TLR values a particular flow element (transmission line or interface). You also
specify one end of the potential transfer direction. You may optionally specify the linear calculation method. If no
Linear Method is specified, Lossless DC will be used.
[flow element] . This is the flow element we are interested in. Choices are:
[INTERFACE "name"]
[INTERFACE "label"]
[BRANCH nearbusnum farbusnum ckt]
[BRANCH "nearbusname_kv" "farbusname_kv" ckt]
[BRANCH "nearbuslabel" "farbuslabel" cki]
[BRANCH "label"]
direction . The type of the transactor. Either BUYER or SELLER.
[transactor] : The transactor of power. There are six possible settings:
AREA num], [AREA "name"], [AREA "label"]
[ZONE num], [ZONE "name"], [ZONE "label"]
[SUPERAREA "name"], [SUPERAREA "label"]
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]
[BUS num], [BUS "name_nomkv"], [BUS "label"]
[SLACK]

41

LinearMethod : Optional parameter — default is DC
The linear method to be used for the calculation. The options are:
AC - for calculation including losses
DC - for lossless DC
DCPS - for lossless DC that takes into account phase shifter operation
SetOutOfServiceBuses : Optional parameter — default is NO
Set to YES or NO. If YES then set the sensitivities for out-of-service
buses equal to the sensitivity to the value at the closest in-service bus.
The "distance" to the in-service buses will be measured by the number
of nodes. If an out-of-service bus is equally close to a set of buses,
then the average of that set of buses will be used.
filter : Optional parameter — default is to include all buses
The filter that will determine the buses for which sensitivities will be set
when SetOutOfServiceBuses = YES. In addition to meeting the filter, only
out-of-service buses will be included.

blank . All buses
AREAZONE : Only those buses meeting the area/zone filter
SELECTED : Only those buses whose Selected field is YES
“filtername" . See the Using Filters in Script Commands section
for more information on specifying the filtername.
AbortOnError : Optional parameter — default is YES

Set to YES or NO. If YES, the script command will fail and the auxiliary file
containing the script command will terminate without processing the
remainder of the file. If NO, an error message is printed to the message
log but the command is not treated as failing and the remainder of the
auxiliar file containing the command will be processed.

CalculateTLRMultipleElement(TypeElement,WhichElement,direction,[transactor],LinearMethod);

Use this action to calculate the TLR values a multiple elements similar to as is done on the TLR multiple elements
dialog. You also specify one end of the potential transfer direction. You may optionally specify the linear
calculation method. If no Linear Method is specified, Lossless DC will be used.
TypeElement . May be either INTERFACE, BRANCH, or BOTH
WhichElement : There are three choices which represent which elements of the
TypeElement specified will have TLR calculations performed.
SELECTED : Only branches or interfaces with their Selected
Field = YES will be used.
OVERLOAD : Only branches that are presently overloaded using
their normal ratings will be used
CTGOVERLOAD : You must have first run the contingency analysis. A
branch or interface is included in the calculation if
it has been overloaded during at least one
contingency.
Direction : the type of the transactor. Either BUYER or SELLER.
[transactor buyer] . the transactor of power. There are six possible settings.
[AREA num], [AREA "name"], [AREA "label"]
[ZONE num], [ZONE "name"], [ZONE "label"]
[SUPERAREA "name"], [SUPERAREA "label"]
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]
[BUS num], [BUS "name_nomkv"], [BUS "label"]
[SLACK]

42

LinearMethod: The linear method to be used for the calculation. The options are:
AC: for calculation including losses.
DC: for lossless DC.
DCPS: for lossless DC that takes into account phase shifter operation.

CalculateVoltSense([BUS num]);

This calculates the sensitivity of a particular buses voltage to real and reactive power injections at all buses in the
system. (Note: this assumes that the power is injected at a given bus and taken out at the slack bus).
[BUS num] . the bus to calculate sensitivities for.

CalculateFlowSense([flow element], FlowType);

This calculates the sensitivity of the MW, MVAR, or MVA flow of a line or interface to an real and reactive power
injections at all buses in the system. (Note: this assumes that the power is injected at a given bus and taken out at
the slack bus).
[flow element] . This is the flow element we are interested in. Choices are:
[INTERFACE "name"]
[INTERFACE "label"]
[BRANCH busnum1bus num?2 ckt]
[BRANCH "name_kv1" "name_kv2" ckt]
[BRANCH "buslabel1" "buslabel2" ckt]
[BRANCH "label"]
FlowType : The type of flow to calculate this for. Either MW, MVAR, or MVA.

CalculateLossSense(FunctionType);

This calculates the loss sensitivity at each bus for an injection of power at the bus. The parameter FunctionType
determines which losses are referenced.
FunctionType : This is the losses for which sensitivities are calculated.
NONE : all loss sensitivities will be set to zero
ISLAND : all loss sensitivities are referenced to the total loss in the
island
AREA : For each bus it calculates how the losses in the bus’ area
will change (Note: this means that sensitivities at buses
in two different areas cannot be directly compared
because they are referenced to different losses)

AREASA :same as Each Area, but if a Super Area exists it will use
this instead (Note: this means that sensitivities at buses
in two different areas cannot be directly compared
because they are referenced to different losses)

SELECTED : Calculates how the losses in the areas selected on the
Loss Sensitivity Form will change

CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR);

This calculates the sensitivity of bus voltage to a real or reactive power transfer between a seller and a buyer. The
sensitivity is calculated for all buses in the system.
[transactor seller] : This is the seller (or source) of power. There are six possible settings:
[AREA num], [AREA "name"], [AREA "label"]
[ZONE num], [ZONE "name"], [ZONE "label"]
[SUPERAREA "name"], [SUPERAREA "label"]
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]
[BUS num], [BUS "name_nomkv"], [BUS "label"]
[SLACK]
[transactor buyer] : This is the buyer (or sink) of power. There are six possible settings, which
are the same as for the seller.

43

TransferType : The type of power transfer. The options are:
P : real power transfer
Q : reactive power transfer
PQ : both real and reactive power transfer. (Note: Real and reactive
power transfers are calculated independently, but both are
calculated.)
TurnOffAVR : Set to YES or NO. Set to YES to turn off AVR control for generators
participating in the transfer. Set to NO to leave the AVR control
unchanged for generators participating in the transfer.

CalculateVoltSelfSense(filter);

This calculates the sensitivity of a particular bus’ voltage to real and reactive power injections at the same bus.
(Note: This assumes that the power is injected at a given bus and taken out at the slack bus.)

filter : Optional parameter — default is to calculate sensitivities for all buses in
the system
AREAZONE . Only buses that meet the area/zone/owner
filters will be included
SELECTED : Only buses whose Selected field = YES will be
included
"FilterName" : Only buses that meet the specified filter will be

included. See Using Filters in Script Commands
section for more information on specifying the
filtername.

RestoreState(WhichState, StateName);

Apply this script command to restore a specified system state that is currently in memory. This script command
will fail if the specified state has not been set. The following options are available for specifying which system
state to restore:

WhichState : Optional parameter — default is USER. This determines which state to restore.
USER : Restore the user set system state that is set with
the StoreState script command.
BEFOREFAILED . Before the power flow is solved, either through

the GUI or the SolvePowerFlow script command, a
system state will be stored in the event that the
power flow solution fails. This pre-solution state
is restored with this option. If the power flow is
successful in solving at any time after this pre-
solution state is stored, this pre-solution state is
removed and cannot be restored.

LASTSUCCESSFUL : If the power flow solution is successful when
solving the power flow either through the GUI or
the SolvePowerFlow script command, a system
state will be stored with this successful solution.
This post-solution state is restored with this

option.
(Following added in May 29, 2018 patch of Simulator 20)
StateName : Optional parameter — default is blank

This option is only used when WhichState = USER. This specifies a named
system state that was stored using the StoreState script command. If no name is
specified, the unnamed system state stored using StoreState will be restored.

44

SetInterfaceLimitToMonitoredElementLimitSum(filter);

This sets the limits of the interface to the sum of the limits of all branches within the interface. This only includes
branches that are monitored and excludes any contingency branches. All limits A through H will be set.

Filter . This parameter is used to specify which interfaces have their limits set.
ALL : all interfaces will be set
SELECTED : only interfaces whose Selected field = YES will be set
AREAZONE : only interfaces that meet the area/zone/owner filters
will be set

"FilterName" : only interfaces that meet the specified filter will be set.
See the Using Filters in Script Commands section for
more information on specifying the filtername.

SetSensitivitiesAtOutOfServiceToClosest(filter);

This will take the P Sensitivity and Q Sensitivity values calculated using the CalculateTLR, CalculateFlowSense, or
CalculateVoltSense actions and then populate the respective values at out-of-service buses so that they are equal
to the value at the closest in service bus. The “distance" to the in-service buses will be measured by the number
of nodes. If an out-of-service bus is equally close to a set of buses, then the average of that set of buses will be
used.
filter Optional parameter — default is to include all buses
The filter that will determine the buses for which sensitivities will be set. In
addition to meeting the filter, only out-of-service buses will be included.

Blank : All buses

AREAZONE : Only those buses meeting the area/zone filter
SELECTED : Only those buses whose Selected field is YES
“filtername" : See the Using Filters in Script Commands section for

more information on specifying the filtername.
StoreState(StateName);

Apply this script command to store the current system state to memory. Use the RestoreState script command to
restore the state. Starting with the May 29, 2018 patch of Simulator 20, multiple states can be stored by
providing a unique name.

StateName : Optional parameter

Multiple states can be stored by providing a unique name for each state. If
StateName is not specified, an unnamed state is stored.

ZeroOutMismatches;

With this script command, the bus shunts are changed at each bus that has a mismatch greater than the MVA
convergence tolerance so that the mismatch at that bus is forced to zero.

45

Power Flow Related Actions

ClearPowerFlowSolutionAidValues;

DiffFlowClearBase;

DiffFlowKeyType (KeyType);

DiffFlowMode (diffmode);

DiffFlowSetAsBase;

DiffFlowShowPresentAsBase(How) ;

DiffFlowRefresh;

DiffFlowWriteCompleteModel (""filename’™, AppendFile, SaveAdded, SaveRemoved, SaveBoth, KeyFields,
"ExportFormat', UseAreaZone, UseDataMaintainer, AssumeBaseMeet);

DiffFlowWriteRemovedEPC (""filename’™, GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);

DoCTGAction ([contingency action]);
ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle);
SolvePowerFlow (SolMethod, "filenamel™, "filename2", CreatelfNotFoundl, CreatelfNotFound2);

ClearPowerFlowSolutionAidValues;

PowerWorld Simulator maintains several internal flags that keep track of which branches are closed or opened, as
well as information to help estimate the generation change needed in a system after making changes to load or
generation. PowerWorld uses this to help with various pre-processing steps in the power flow solution. This
information is related to angle smoothing and generator MW estimation features of the power flow solution.
Typically, this information is a great aid in getting successful power flow solutions, however in some circumstances
you may be using an AUX file to edit information you know is good and would not want PowerWorld to modify
the initial bus voltage and angle nor the generator MW outputs before a solution is attempted. To clear all this
internally stored information so that PowerWorld does not do any of this, call the
ClearPowerFlowSolutionAidValues script command.

DiffFlowClearBase;
Call this action to clear the base case for the difference flows abilities of Simulator.

DiffFlowKeyType(KeyType);
Use this action to change the key type that should be used when comparing fields when using the difference flows
abilities of Simulator.
KeyType . String that starts with ‘P’ changes key field type to PRIMARY.
String that starts with 'S’ changes key field type to SECONDARY.
String that starts with ‘L' changes key field type to LABEL.

DiffFlowMode(diffmode);

Call this action to change the mode for the difference flows abilities of Simulator.
diffmode : String that starts with ‘P’ changes it to PRESENT.
String that starts with ‘B’ changes it to BASE.
String that starts with ‘D’ changes it to DIFFERENCE.
String that starts with ‘C’' changes it to CHANGE.

DiffFlowSetAsBase;
Call this action to set the present case as the base case for the difference flows abilities of Simulator.

DiffFlowShowPresentAndBase(How);

Command added in the June 27, 2018 patch of Simulator 20
Call this action with the parameter of either YES or NO to toggle the difference flows options “Show Present|Base
in Difference and Change Mode".

DiffFlowRefresh;

Call this action to refresh the linking between the base case and the present case. This should be used before
saving data that identifies objects as being added or removed, especially if any topological differences have been
made that affect the comparison.

46

DiffFlowWriteCompleteModel ("filename”, AppendFile, SaveAdded, SaveRemoved, SaveBoth,
KeyFields, "ExportFormat”, UseAreaZone, UseDataMaintainer, AssumeBaseMeet);

Added in the June 1, 2018 patch of Simulator 20

Use this action to create an auxiliary file that contains information about objects that have been added or
removed when comparing the present case to the base case when using the difference case comparison. Fields
that have changed for objects that exist in both the present and base case can also be written to this auxiliary file.
This auxiliary file can then be used to modify cases with these same changes.

“filename" : Name of the auxiliary file to create.

AppendFile : Set to YES or NO. YES means to append the saved information to
“filename”. NO means that "filename" will be overwritten.

SaveAdded : Set to YES or NO. YES means to save the added objects to the file. NO
means to exclude the added objects.

SaveRemoved : Set to YES or NO. YES means to save the removed objects to the file.
NO means to exclude the removed objects.

SaveBoth : Set to YES or NO. YES means to save the changed fields for the objects

that exist in both the present and base case. NO means to exclude
objects that occure in both cases.

KeyFields : Optional parameter — default is Primary
Set to Primary or Secondary to specify the key field identifiers to use for
objects in the resulting file.

"ExportFormat" : Optional parameter — default is blank
This is the name of the Auxiliary File Export Format Description to use for
defining the object types and fields that should be included in the
auxiliary file.

UseAreaZone : Optional parameter — default is NO
Set to YES or NO. YES means to use the Area/Zone/Owner filter for
including objects in the file. NO means to ignore this filter.

UseDataMaintainer : Optional parameter — default is NO
Set to YES or NO. YES means to use the Data Maintainer filter for
including objects in the file. NO means to ignore the Data Maintainer
filter.

AssumeBaseMeet : Optional parameter — default is YES
Set to YES or NO. YES means that areas/zones/owners and data
maintainers that are in the base case and not in the present case meet
the Area/Zone/Owner and Data Maintainer filters.

DiffFlowWriteRemovedEPC (“filename”, GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);
Call this action to save any removed elements determined using the difference flows functionality in the GE EPC

format.
"filename" : The path and name of the file to save.
GEFileType : Optional parameter — default is to save with the latest version. Valid
options:
GE (latest version), GE14-GE21
UseAreaZone : Optional parameter — default is NO.

Set to YES or NO. YES means to save only those objects that meet the
Area/Zone/Owner filter.
BaseAreaZoneMeetFilter : Optional parameter — default is NO.
Set to YES or NO. YES means that areas or zones that are not in the
difference flows base case will be treated as meeting the Area/Zone
filter if that is used.
Append : Optional parameter — default is YES.
Set to YES or NO. YES means to append data to an existing file. NO
means to overwrite an existing file.

47

DoCTGAction([contingency action]);

Call this action to use the formats seen in the CTGElement subdata record for Contingency Data. Note that all
actions are supported, except COMPENSATION sections are not allowed.

ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle);

Use this action to initialize the Power Flow Solution to a "flat start." The parameters are all optional and specify a
conditional response depending on whether the solution is successfully found. If parameters are not passed then
default values will be used.
FlatVoltagesAngles : Setto YES or NO. YES means setting all the voltage magnitudes and
generator setpoint voltages to 1.0 per unit and all the voltage angles to
zero. Default Value = YES.

ShuntsToMax : Set to YES or NO. YES means to increase Switched Shunts Mvar half way
to maximum. Default Value = NO.
LTCsToMiddle : Set to YES or NO. YES means setting the LTC Transformer Taps to middle

of range. Default Value = NO.
PSAnglesToMiddle : Setto YES or NO. YES means setting Phase Shifter angles to middle of
range. Default Value = NO.

SolvePowerFlow (SolMethod, “filename1”, "“filename2”, CreatelfNotFound1, CreatelfNotFound?2);

Call this action to perform a single power flow solution. The parameters are all optional and specify a conditional
response depending on whether the solution is successfully found. If parameters are not passed then default
values will be used.

SolMethod . The solution method to be used for the Power Flow calculation. The
options are:

RECTNEWT : for Rectangular Newton-Raphson.
POLARNEWTON : for Polar Newton-Raphson.
GAUSSSEIDEL : for Gauss-Seidel.
FASTDEC : for Fast Decoupled.
ROBUST : for attempting the robust solution process
DC : for DC power flow calculation
Default = RECTNEWT.

“filename1" : The filename of the auxiliary file to be loaded if there is a successful
solution. You may also specify STOP, which means that all AUX file
execution should stop under the condition. Default = "".

"“filename2" : The filename of the auxiliary file to be loaded if there is a NOT successful
solution. You may also specify STOP, which means that all AUX file
execution should stop under the condition. Default = "".

CreatelfNotFound1 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename1. Default = NO.

CreatelfNotFound2 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename2. Default = NO.

48

Contingency Related Actions

CTGApply
CTGAutolnsert;
CTGCalculateOTDF
CTGClearAllResults;

("'ContingencyName™);

([transactor seller], [transactor buyer], LinearMethod);

CTGCompareTwoListsofContingencyResults (PRESENT or *ControllingFilename',PRESENT or

CTGConvertAllToDeviceCTG

""ComparisonFilename™);
(KeepOriginal I TEmpty);

CTGCreateContingentinterfaces(filter);

CTGCreateExpandedBreakerCTGs;

CTGCreateStuckBreakerCTGs

CTGJoinActiveCTGs
CTGProduceReport

CTGReadFi lePSLF
CTGReadFilePTI

CTGRel inkUnlinkedElements;
CTGRestoreReference;
CTGSaveViolationMatrices

CTGSetAsReference;
CTGSolve
CTGSolveAll
CTGWriteAllOptions

CTGWriteFilePTI
CTGWriteResultsAndOptions

(filter, AllowDuplicates, "PrefixName", IncludeCTGLabel,
BranchFieldName, "'SuffixName', "PrefixComment",
BranchFieldComment, "SuffixComment'™);

(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "Ffilename™);

("filename™);

(C'filename™);

("filename™);

('filename™, filetype, UsePercentage, [ObjectTypesToReport],
SaveContingency, SaveObjects, FieldListObjectType, [FieldList]);

("'ContingencyName™);

(DoDistributed, ClearAllResults);

("filename", KeyField, UseSelectedDataMaintainers,
SaveDependencies);

('filename', BusFormat, TruncateCTGLabels);

("filename", [optl.optl9], KeyField, UseDATASection, UseConcise,

UseObjectlIDs, UseSelectedDataMaintainers, SaveDependencies);

CTGApply("ContingencyName");

Call this action to apply the actions in a contingency without solving the power flow.

"ContingencyName"

CTGAutolnsert;

This is the name of the contingency to apply.

This action will auto insert contingencies for you case. Prior to calling this action, all options for this action must
be specified in the Ctg_Autolnsert_Options object using the SetData script command or DATA sections.

CTGCalculateOTDF([transactor seller], [transactor buyer], LinearMethod);

This action first performs the same action as done by the CalculatePTDF([transactor seller], [transactor buyer],
LinearMethod) call. It then goes through all the violations found by the contingency analysis tool and determines
the OTDF values for the various contingency/violation pairs.

CTGClearAllResults;

This action will delete all contingency violations and any contingency comparison results.

49

CTGCompareTwolistsofContingencyResults (PRESENT or “ControllingFilename”,PRESENT or
"ComparisonFilename");

This command compares two different contingency result lists. The first parameter is to set the Controlling List.
The second parameter is to set the Comparison List.

PRESENT or "ControllingFilename": PRESENT wil set the present contingency analysis results as the
Controlling List. If the results are in a file then you can set the path to the list as
the "ControlingFilename”. See the Specifying File Names in Script Commands
section for special keywords that can be used when specifying the file name.

PRESENT or "ComparisonFilename": PRESENT wil set the present contingency analysis results as the
Comeparison List. If the results are in a file then you can set the path to the list as
the “ComparisonFilename”. See the Specifying File Names in Script
Commands section for special keywords that can be used when specifying the
file name.

The file types allowed are: Simulator Contingency File (*.aux), Simulator (Ver 5,6,7) Contingency Files

(*.ctg), PTI Contingency Files (*.con), PTI Load Throw Over Files (*.thr;*.dat), and GE Contingency Files

(*.otg).

CTGConvertAllToDeviceCTG(KeepOriginalfEmpty);

This command is intended for use with full topology models, where breakers and disconnects are defined in
addition to generators, loads, transmission lines, and so on. This function would have no affect on a traditional
planning model representation, which has no breakers or disconnects explicitly defined.

The purpose of the function is to allow the user to take a contingency set that is defined with outages of breakers
and disconnects in a full topology model and convert them to outages of the traditional planning model
elements, such as generators, loads, transmission lines, etc. This would be used in conjunction with the ability to
save a full topology model as a consolidated model. A consolidated model reduces the full model down to a
traditional planning model by examining the breaker and disconnect statuses, and reducing the system down by
consolidating breakers and disconnects that are in service. The resulting model is a smaller model with the
traditional planning elements represented, but breakers and disconnects have been removed and nodes
aggregated into bus representations. This function will also take the breaker and disconnect statuses and convert
contingencies defined with the breakers and disconnects and convert them into contingencies of the planning
model devices affected by opening the original breakers and disconnects. Thus you could create a contingency set
that is defined for the consolidated model, and can be run on the consolidated model with the same results as if
the original contingency set is run on the full topology model.

The parameter KeepOriginallfEmpty is a YES or NO option to retain or not the original contingency definitions for
any contingencies that do not end up isolating any devices. This is an optional parameter that is NO by default if
it is not specified.

Note that the contingency set generated depends on the statuses of the breakers and disconnects, and that the
contingencies created will be different for different statuses of breakers and disconnects in the full topology
model.

CTGCreateContingentinterfaces(filter);

This command creates an interface based on contingency violations. The contingency elements are included as
contingent elements in the new interface, and the violated element is included as a monitored element.
filter : This is the name of an Advanced Filter. Only violation objects of type ViolationCTG that
meet the named filter will be used to create new interfaces.

CTGCreateExpandedBreakerCTGs;

This will convert any “Open with Breakers” or “Close with Breakers” contingency actions into OPEN or CLOSE
actions on explicit breakers. This will permanently modify the contingency definitions.

50

CTGCreateStuckBreakerCTGs(filter, AllowDuplicates, "PrefixName", IncludeCTGLabel,
BranchFieldName, "SuffixName", "PrefixComment", BranchFieldComment, "SuffixComment");

This command creates new contingencies from contingencies that have explicit breaker outages defined. New
contingencies will be created by treating each breaker as stuck in turn. The new contingencies will be comprised
of all existing elements, minus the stuck breaker outage, plus open actions for breakers that are identified to
isolate the stuck breakers. Only branches with Branch Device Type of Breaker will be considered in determining
the stuck breakers.
All of the following parameters are optional. If not specified, the defaults will be used.
filter : Only contingencies that meet the specified filter will be set. See the
Using Filters in Script Commands section for more information on
specifying the filtername. Default is to process all contingencies.
AllowDuplicates : Set to YES or NO. YES means that contingencies with the same actions as
existing or newly created contingencies will be allowed. Default is NO.

"PrefixName", IncludeCTGLabel, BranchFieldName, and "SuffixName" are used to name the new contingencies in
the format: PrefixName_Contingency Label BranchFieldName_SuffixName.

“PrefixName" . string that is used as the prefix of the new contingency name. Default is
blank.

IncludeCTGLabel : Set to YES or NO. YES means that the name of the existing contingency
will be used as part of the new contingency. Default is YES.

BranchFieldName : variablename of the Branch field whose value will be used in the naming

of the new contingency in the format
variablenamelegacy: location:digits:rod or
concisename:digits:rod. The Branch used to evaluate the
variablename is the stuck breaker. Default is blank.

“SuffixName" : string that is used as the suffix of the new contingency name. Default is
"STK".

"PrefixComment", BranchFieldComment, and "SuffixComment" are used to create a comment for new contingency
actions in the format: PrefixComment_BranchFieldComment_SuffixComment.

"PrefixComment" . string that is used as the prefix of the new contingency action comment.
Default is blank.

BranchFieldComment : variablename of the Branch field whose value will be used in the naming
of the new contingency action comment in the format
variablenamelegacy:location:digits:rod or
concisename:digits:rod. The Branch used to evaluate the
variablename is the breaker in the new contingency action. Default is
blank.

“SuffixComment" : string that is used as the suffix of the new contingency action comment.
Default is blank.

51

CTGJoinActiveCTGs(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, “filename");

This command creates new contingencies that are a join of the current contingency list and a list read in from an
auxiliary file or the current list itself. Contingencies with their Skip field set to YES will not be included in the join.
InsertSolvePowerFlow : Set to YES or NO. YES means to insert the solve power flow solution
action between the joined contingency actions.

DeleteExisting . Set to YES or NO. YES means to delete the existing contingencies and
only keep the joined contingencies.
JoinWithSelf : Set to YES or NO. YES means that the current contingency list will be

joined with itself instead of contingencies specified in a file. If set to YES,
the "filename" parameter does not have to be specified.
“filename" : Name of auxiliary file containing contingencies to join with the current
contingency list. This does not have to be specified if JoinWithSelf = YES.
CTGProduceReport(“filename");
Produces a text-based contingency analysis report using the settings defined in CTG_Options.

CTGReadFilePSLF("filename");
Use this action to load a file in the PSLF OTG format and create contingencies.

“filename” : Name of the file to read. See the Specifying File Names in Script
Commands section for special keywords that can be used when specifying the
file name.

CTGReadFilePTI("filename");
Use this action to load a file in the PTI CON format and create contingencies.

“filename” : Name of the file to read. See the Specifying File Names in Script
Commands section for special keywords that can be used when specifying the
file name.

CTGRelinkUnlinkedElements;

This will attempt to relink unlinked elements in the contingency records.

CTGRestoreReference;
Call this action to reset the system state to the reference state for contingency analysis.

CTGSaveViolationMatrices(“filename", filetype, UsePercentage, [ObjectTypesToReport],
SaveContingency, SaveObjects, FieldListObjectType, [FieldList], IncludeUnsolvableCTGs);

This command will save contingency violations in a matrix format. Multiple files can be created for each type of
violation as well as a file showing all contingencies that have violations and the objects that are violations under
each contingency.
"filename" : Base name of the files to save. It is possible to save multiple files. This
file name will be appended with an underscore and name of the object
type that is being saved in the file.
filetype . There following options are available:
CSVNOHEADER: save as a normal CSV text file, without the AUX file
formatting. The object name and field variable names
are NOT included.
CSVCOLHEADER: save as a normal CSV without the AUX syntax and
with the first row showing column headers you would
see in a case information display
UsePercentage : Set to YES or NO. Set to YES the values will be reported as a percentage
loading. If NO, the actual values will be reported.

52

[ObjectTypesToReport] : Comma delimited list of object types to include in the results. Options
are BRANCH, BUS, INTERFACE, and CUSTOMMONITOR. [f saving results
by contingency (rows show contingencies that contain violations), the
columns will only contain objects of these specified types. If saving
results by object (row show objects that are violated under any
contingency), files will only be created for these specified types.

SaveContingency : Set to YES or NO. Set to YES to save a file containing all contingencies
that have at least one violation. The results will be reported as
contingencies in rows and the violated elements in columns. Only
violations of the specified [ObjectTypesToReport] will be included.
Contingencies that have no violations because they failed to solve can be
included by setting the IncludeUnsolvableCTGs to YES.

SaveObjects : Set to YES or NO. Set to YES to save a file for each of the object types
specified in [ObjectTypesToReport]. The objects will be in rows and the
columns will be the contingencies under which the objects are violated.

FieldListObjectType : Optional parameter — default is blank.

Additional fields can be included depending on the object type that is
being saved in the rows of each file. This parameter specifies the object
type associated with the FieldList. Valid options are BRANCH, BUS,
INTERFACE, CUSTOMMONITOR, or CONTINGENCY.

As an example, suppose that this parameter is set to BRANCH and a
FieldList is specified. If SaveObjects is also YES, a file will be saved
showing branch violations in each row of the file. In addition to columns
showing contingencies and the violation value of the branch, columns
will be added showing the value of the branch in the present system
state for each of the fields in the FieldList.

FieldList . Optional parameter — default is blank.

Additional fields can be included depending on the object type that is
being saved in the rows of each file. This parameter specifies the
additional fields to save. See the FieldListObjectType parameter for an
explanation of how these extra fields are saved to file.

IncludeUnsolvableCTGs : Optional parameter — default is NO.

Set to YES or NO. Set to YES to include contingencies that have been
processed but did not solve either because the power flow failed or an
abort action took place. The Solved field will be automatically added to
the file that lists results by contingency. Set to NO to only include
contingencies that solved. This option is only relevant if the
SaveContingency option is set to YES.

CTGSetAsReference;
Call this action to set the present system state as the reference for contingency analysis.

CTGSolve("ContingencyName");

Call this action solve a particular contingency. The contingency is denoted by the "Contingency Name" parameter.
The system state remains in the post-contingency state following the application of this command.

53

CTGSolveAll(DoDistributed, ClearAllResults);

Call this action to solve all of the contingencies that are not marked to be skipped.

DoDistributed : Optional parameter — default is NO
Set to YES or NO. If set to YES, distributed methods will be used to solve contingency
analysis if the Distributed Contingency Analysis add-on is installed. Distributed analysis
requires the proper configuration and security settings to work.

ClearAllResults : Optional parameter — default is YES
Set to YES or NO. If set to YES, all existing contingency results will be cleared even if a
contingency is marked to be skipped. If set to NO, only those contingencies that are
marked to not be skipped will have their results cleared.

CTGWriteAllOptions(“filename”, KeyField, UseSelectedDataMaintainer, SaveDependencies,
UseAreaZoneFilters);

Writes out all information related to contingency analysis as an auxiliary file using concise variable names and
headers. Data is written using DATA sections instead of SUBDATA sections.
“filename” : Name of the auxiliary file to save.
KeyField : Optional parameter — default is PRIMARY
Indicates the identifier that should be used for the data. Valid entries are
PRIMARY, SECONDARY, or LABEL. PRIMARY will save using bus numbers and
other primary key fields. SECONDARY will save using bus name and nominal
kV and other secondary fields. LABEL will save using device labels. If no labels
are specified then the primary key field will be used.
UseSelectedDataMaintainer : Optional parameter — default is NO
Set to YES or NO. YES means to save only the
information belonging to Data Maintainers where the
Selected field is set to YES. NO means to save all
information. Default is NO.
SaveDependencies : Optional parameter — default is NO
Set to YES or NO. YES means that all relevant objects that are required to
define the selected objects will also be saved. NO means to only save
the selected objects.
UseAreaZoneFilters : Optional parameter — default is NO
Set to YES or NO. YES means to save only the information for objects that meets
the Area, Zone, Owner filters for Contingency Options and Limit Monitoring
Settings related to the Area, Zone, Bus, Gen, and Shunt Objects. (Opt2 and Opt3
of CTGWriteResultsAndOptions)

See the CTGWriteResultsAndOptions script command for a list of the option settings that are considered. The
equivalent options are set as follows for this script command:

Opt1 = NO, Opt2 = YES, Opt3 = YES, Opt4 = YES ,Opt5 = NO ,Opt6 = NO, Opt7 = NO, Opt8 = YES, Opt9 = YES,
Opt10 = NO, Opt11 = NO, Opt12 = YES, Opt13 = YES, Opt14 = YES, Opt15 = YES, Opt16 = YES, Opt17 = NO,
Opt18 = YES, Opt19 = YES

The UseObjectIDs parameter with the CTGWriteResultsAndOptions script command is set automatically for this
script command. The equivalent setting is YES_MS_3W.

54

CTGWriteFilePTI("filename", BusFormat, TruncateCTGLabels);

Write contingencies to file in the PTI CON format.

“filename" : The name of the text file to write out.

BusFormat : Number — |dentify buses using numbers
Name8 -- Identify buses using BusName_NomkV strings truncated to 8
characters
Name12 — Identify buses using BusName_NomkV strings truncated to 12
characters

TruncateCTGLabels : Set to YES or NO. YES means that the contingency labels will be
truncated after 12 characters.

CTGWriteResultsAndOptions(“filename", [opt1, opt2, opt3, ..., opt19], KeyField, UseDATASection,
UseConcise, UseObjectIDs, UseSelectedDataMaintainers, SaveDependencies, UseAreaZoneFilters);

Writes out all information related to contingency analysis as an auxiliary file.
“filename” : Name of the auxiliary file to save.

Each entry in the Option Settings parameter, [opt1, opt2, ..., opt19], is either a YES or NO entry corresponding to
the following options. These are all optional parameters, so if they are not specified or blank, the default entry
given for each will be used.

Opt1 - Save Unlinked Contingency Actions, default = NO

Opt2 - Save Contingency Options, default = YES

Opt3 - Save Limit Monitoring Settings, default = NO

Opt4 — Save General Power Flow Solution Options, default = YES

Opt5 - Save List Display Settings, default = NO

Opt6 — Save Contingency Results, default = YES

Opt7 - Save Inactive Violations, default = YES

Opt8 — Save Interface Definitions, default = NO

Opt9 - Save Injection Group Definitions, default = NO

Opt10 — Save Distributed Computing Options, default = YES

Opt11 — Suppress Gen and Load options when writing out Options, default = NO

Opt12 - Save Contingency Definitions, default = YES

Opt13 — Save Remedial Actions and Global Actions, default = YES

Opt14 — Save Custom Monitor Definitions, default = YES

Opt15 — Save Model Conditions, Model Filters, and Model Expressions, default = YES

Opt16 — Save Advanced Filters used as part of Custom Monitors, Model Conditions, Remedial Actions, and Global
Actions, default = YES

Opt17 — Save Limit Cost Functions with Limit Sets, default = YES

Opt18 — Automatically Convert Contingency Blocks and Global Actions, default = NO

Opt19 - Save Voltage Control Groups, default = YES

KeyField : Optional parameter — default is PRIMARY
Indicates the identifier that should be used for the data. Valid entries are
PRIMARY, SECONDARY, or LABEL. PRIMARY will save using bus numbers and other
primary key fields. SECONDARY will save using bus name and nominal kV and other
secondary fields. LABEL will save using device labels. If no labels are specified then
the primary key field will be used.

UseDATASection : Optional parameter — default is NO
Set this to YES or NO. If YES, data that by default is specified using SUBDATA
sections will instead be specified using DATA sections. For example, the actions
that define a contingency by default are specified using a SUBDATA section. If
choosing to use the DATA section instead, each action will be specified in a DATA
record belonging to the ContingencyElement objecttype.

55

UseObjectIDs . Optional parameter — default is NO
Possible settings are YES, NO, YES_MS, YES_3W, and YES_MS_3W.

UseSelectedDataMaintainer :

SaveDependencies

UseAreaZoneFilters

YES Any input with YES means to use the ObjectID field when writing objects
with contingency settings instead of using multiple key fields to identify
an object. The advantage to using ObjectIDs is that you only have one
field to be used as an identifier rather than a changing number of fields
that depends on the type of object. This will simplify your auxiliary file.

NO This means to use the specified key fields to identify an object.

MS Any input with MS means to write out a multi-section line by identifying
it by the from bus, to bus, and circuit ID of the multi-section followed by
the number of the particular section. This follows the PSLF format. If not
writing out in this manner, individual sections will be written based on
their from bus, to bus, and circuit ID.

3w Any input with 3W means to write out a three-winding transformer using
the buses at the three terminals of the transformer followed by the circuit
ID with the first bus listed being the particular winding that is desired. If
not writing out in this manner, a particular winding will be written with its
terminal bus, the star bus of the transformer, and the circuit ID of the
transformer.

Optional parameter — default is NO

Set to YES or NO. YES means to save only the information belonging to Data

Maintainers where the Selected field is set to YES. NO means to save all

information.

Optional parameter — default is NO

Set to YES or NO. YES means that all relevant objects that are required to define

the selected objects will also be saved. NO means to only save the selected

objects.

Optional parameter — default is NO

Set to YES or NO. YES that to save only the information for objects that meets

the Area, Zone, Owner filters for Contingency Options and Limit Monitoring

Settings related to the Area, Zone, Bus, Gen, and Shunt Objects. (Opt2 and Opt3)

56

Fault Related Actions

Fault ([BUS num], faulttype, R, X);
Fault ([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X);

Fault([Bus num, faulttype, R, X]);

Fault([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X]);

Call this function to calculate the fault currents for a fault. If the fault element is a bus then do not specify the

fault location parameter. If the fault element is a branch, then the fault location is required.

[Bus num]

. This specifies the bus at which the fault occurs. You may also specify the

bus using secondary keys or labels.
[BUS "name_nomkv"]
[BUS "label"]

[BRANCH nearbusnum farbusnum ckt]

Faultlocation

Faulttype

R, X

. This specifies the branch on which the fault occurs. You may also specify

the branch using secondary keys or labels.
[BRANCH "name_kv1" "name_kv2" ckt]
[BRANCH "buslabel1" "buslabel2" ckt]
[BRANCH "label"]

: This specifies the percentage distance along the branch where the fault

occurs. This percent varies from 0 (meaning at the nearbus) to 100
(meaning at the far bus)

. This specified the type of fault which occurs. There are four options:

SLG : Single Line To Ground fault
LL : Line to Line Fault

3PB : Three Phase Balanced Fault
DLG : Double Line to Group Fault.

: These parameters are optional and specify the fault impedance. If none

are specified, then a fault impedance of zero is assumed.

57

ATC (Available Transfer Capability) Related Actions

ATCCreateContingentlnterfaces(filter);

ATCDetermine ([transactor seller], [transactor buyer], DoDistributed);
ATCDetermineATCFor (RL, G, 1, ApplyTransfer);

ATCIncreaseTransferBy (amount);

ATCRestorelnitialState;

ATCTakeMeToScenario (RL, G, D);

ATCWriteResultsAndOptions ('filename'™, AppendFile);

ATCWriteToExcel ("'worksheetname') ;

ATCWriteToText (C'filename™, filetype);

ATCSetAsReference;

ATCCreateContingentinterfaces(filter);

This command creates an interface based Transfer Limiter results from an ATC run. Each Transfer Limiter is
comprised of a Limiting Element/Contingency pair. Each interface is then created with contingent elements from
the contingency and the Limiting Element included as the monitored element.
filter : This is the name of an Advanced Filter. Only objects of type
TransferLimiter that meet the named filter will be used to create new
interfaces.

ATCDetermine([transactor seller], [transactor buyer], DoDistributed);

Use this action to calculate the Available Transfer Capability (ATC) between a seller and a buyer. The buyer and
seller must not be the same. Other options regarding ATC calculations should be set using a DATA section via the
ATC_Options object type. If the distributed ATC add-on is installed, the optional DoDistributed flag may bet set to
indicate that the ATC should be solved using the distributed methods.
[transactor seller] : The seller (or source) of power. There are six possible settings:

[AREA num], [AREA "name"], [AREA "label"]

[ZONE num], [ZONE "name"], [ZONE "label"]

[SUPERAREA "name"], [SUPERAREA "label"]

[INJECTIONGROUP "name"], [INJECTIONGROUP "label"]

[BUS num], [BUS "name_nomkv"], [BUS "label"]

[SLACK]
[transactor buyer] : The buyer (or sink) of power. There are six possible settings, which are
the same as for the seller.
DoDistributed . Set to YES to use the distributed ATC solution method.

ATCDetermineATCFor(RL, G, I, ApplyTransfer);

Call this action to determine the ATC for Scenario RL, G, I.

ApplyTransfer . Set this value to YES to leave the system state at the transfer level that
was determined. When using the lterated Linear then Full Contingency
solution method, the system state will retain the transfer level but the
contingency will not be applied.

ATCIncreaseTransferBy(amount);

Call this action to increase the transfer between the buyer and seller .

ATCRestorelnitialState;
Call this action to restore the initial state for the ATC tool.

ATCTakeMeToScenario(RL, G, I);
Call this action to set the present case according to Scenario RL, G, I.

58

ATCWriteResultsAndOptions("filename"”, AppendFile);
Writes out all information related to ATC analysis as an auxiliary file. This includes Contingency Definitions, Limit
Monitoring Settings, Solution Options, ATC Options, ATC results, as well as any Model Criteria that are used by the

Contingency Definitions.
“filename” : Name of auxiliary file.
AppendFile : Optional parameter. YES means to append results to existing "filename."
NO means to overwrite "filename" with the results. Default setting is YES.

ATCWriteToExcel("worksheetname"”);
Sends ATC analysis results to an Excel spreadsheet. This script command is available only for Multiple Scenarios

ATC analysis.
"worksheetname" . The name of the Excel sheet where the results will be sent to.

ATCWriteToText("filename"”, filetype);
This is used with Multiple Scenario ATC analysis. Multiple files are created with "filename" as the primary identifier
and the Interface scenario label appended to the end of the filename. Separate files are created for each of the
Interface scenarios. Results inside the files are separated into sections based on the number of Rating/Load

scenarios.

“filename” : Primary identifier for the name of the file in which to save the results.
“filename" gets appended with the Interface scenario label to complete
the filename.

filetype : Either TAB or CSV. This indicates the delimiter to use when writing out
the file(s). This is an optional parameter with TAB being the default if
omitted.

ATCSetAsReference;

Call this action to set the present system state to the reference state for ATC analysis.

59

GIC (Geomagnetically Induced Current) Related Actions

GICCalculate (MaxField, Direction, SolvePF);
GICClear;
GICLoadAERData ("'CoarseCridFileName', "FineGridPointsFileName",

"FineGridEastVectorFileName",
"FineGridNorthVectorFileName™);
GICTimeVaryingCalculate (TheTime, SolvePF);
GICTimeVaryingAddTime (NewTime);
GICTimeVaryingDeleteAllTimes;
GICTimeVaryingEFieldCalculate (TheTime, SolvePF);
GICWriteOptions ("FileName", KeyField);

GICCalculate(MaxField, Direction, SolvePF);
Calculates the "Single Snapshot" using GICSolution Options

MaxField . Maximum Electric Field in Volts/km
Direction : Storm Direction, Degrees from 0 to 360
SolvePF . Select YES or NO to include GIC in the Power Flow

GICClear;
Clear GIC Values

GICLoadAERData(CoarseFile, FineFilePoints, FineFileEast, FineFileNorth);

Allows loading of time varying electric field inputs.

"CoarseGridFileName" : contains an origin point (latitude and longitude), grid spacing
in units of degrees longitude, and data points for e-field
strength and orientation

"FineGridPointsFileName" . alist of latitude and longitude coordinates for which fine grid
data is provided. The fine grid has a higher resolution than the
coarse grid.

"FineGridEastVectorFileName" : a list of the eastward rectangular component for the e-field at
each point listed in the "FineGridPointsFileName"

"FineGridNorthVectorFileName" : a list of the northward rectangular component for the e-
field at each point listed in the "FineGridPointsFileName"

GICTimeVaryingCalculate(TheTime,SolvePF);
Calculates "Time Varying Input" GIC at specified time
TheTime . Specified Time Point
SolvePF : Select YES or NO to include GIC in the Power Flow
GICTimeVaryingAddTime(NewTime);
Adds a new input values at specified time
NewTime : New Time for new input values
GICTimeVaryingDeleteAllTimes;
Delete All Input Time values

GICTimeVaryingEFieldCalculate(TheTime,SolvePF);

Run the GIC solution using the time varying non-uniform AER data.
TheTime . Specified Time Point
SolvePF : Select YES or NO to include GIC in the Power Flow

60

GICWriteOptions(“FileName”, KeyField);
Calculates the "Single Snapshot using GICSolution Options

FileName
KeyField

: Name of Aux file name to write out the options
: KeyField indicates the identifier that should be used for the data. Valid

entries are PRIMARY, SECONDARY, or LABEL. The default setting is
PRIMARY. PRIMARY will save using bus numbers and other primary key
fields. SECONDARY will save using bus name and nominal kV and other
secondary fields. LABEL will save using device labels. If no labels are
specified then the primary key field will be used.

61

ITP (Integrated Topology Processing) Related Actions

CloseWithBreakers (objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects,
[SwitchingDeviceTypes], CloseNormallyClosedDisconnects);

ExpandAl 1BusTopology;

ExpandBusTopology (Busldentifier, TopologyType);

OpenWithBreakers (objecttype, filter or [object identifier], [SwitchingDeviceTypes],

OpenNormal lyOpenDisconnects);

SaveConsol idatedCase ('filename', filetype, [BusFormat, TruncateCtglLabels,

AddCommentsForObjectLabels]);

CloseWithBreakers(objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects,
[SwitchingDeviceTypes], CloseNormallyClosedDisconnects);

This action is used to specify which objects are to be energized by closing breakers and to actually close those
breakers. The status of an object will be set to closed if necessary in addition to closing the breakers. If only the
status of an object needs to be changed to close an object, that will occur without requiring any breakers to be

closed.
objecttype : Objects that are valid to be energize. Only allowed for Buses, Generators,
Loads, Transmission Lines, Switched Shunts, DC Lines, Injection Groups,
and Interfaces.
Filter : The second parameter can either be a filter specification or an object identifier.
When specifying a filter, the following options are available:
SELECTED : only objects whose Selected field = YES will be
energized
AREAZONE : only objects that meet the area/zone/owner filters will
be energized
"FilterName" : only objects that meet the specified filter will be
energized. See the Using Filters in Script Commands
section for more information on specifying the
filtername.
[object identifier] : The second parameter can either be a filter specification or an object

identifier. When using an object identifier, the objecttype is applicable
and no further specification of the type needs to be included with the
object identifier as is done with some other script commands. The
following describe the possible objecttypes and identifier options:
BUS: [busnum]

["name_nomkv"]

["label"]
GEN: [busnum id]

["name_nomkv" id]

["buslabel" id]

["label"]
LOAD: [busnum id]

["name_nomkv" id]

["buslabel"]

["label"]
BRANCH: [busnum1 busnum?2 ckt]

["name_kv1" "name_kv2" ckt]

["buslabel1" "buslabel2" ckt]

["label"]

SHUNT: [busnum id]
["name_nomkv" id]
["buslabel" id]
["label™]

62

INJECTIONGROUP: ["name"]
INTERFACE: ["name"]
DCLINE: [num rectnum invnum]
[num “"rectnam_nomkv" "invname_nomkv"]
[num "rectlabel" "invlabel"]
["label"]
OnlyEnergizeSpecifiedObjects : optional parameter, default is NO.
YES — No extra objects in addition to those specified in the filter
can be energized. Each object will be evaluated individually.
NO - Extra objects could be energized in addition to those
specified if a group of breakers required to energize a specified
object also causes other objects to be energized. All objects will
be evaluated collectively for determining which objects can be
energized, i.e. breakers that cause one object to be energized
might also be needed for another object to be energized.
[SwitchingDeviceTypes] : optional parameter, default is "Breaker". This is a comma-separated list
naming the Branch Device Types for switching devices that should be
included when determining which devices to close to energize objects.
Options include "Breaker" and "Load Break Disconnect".
CloseNormallyClosedDisconnects : optional parameter, default is NO.
YES — When searching for the specified SwitchingDeviceTypes
and a Disconnect is encountered that is open but normally
closed, it will be closed and the search for open switching
devices will continue past the Disconnect. Additionally,
Disconnects that are in series with any open devices of the
specified SwitchingDeviceTypes will be closed if they are
normally open.
NO - Only switching devices of the specified
SwitchingDeviceTypes will be closed.

ExpandAllBusTopology;

This action is used to expand the topology around all buses in the case according to a topology type that is
specified with a custom string field (currently Custom String 5) for the bus. New breakers and nodes (buses) will
be inserted as necessary.

ExpandBusTopology(Busldentifier, TopologyType);

This action is used to expand the topology around the specified bus according to the specified topology type.
New breakers and nodes (buses) will be inserted as necessary.

Busldentifier : A bus can be identified in one of these formats: BUS busnum, BUS
name_nomkyv, BUS label.

TopologyType . These types of breaker configurations are allowed: DOUBLEBUSDOUBLEBREAKER,
MAINTRANSFER, RINGBUS, BREAKERANDAHALF, SINGLEBUS, and
SECTIONALIZEBUS.

OpenWithBreakers(objecttype, filter or [object identifier], [SwitchingDeviceTypes],
OpenNormallyOpenDisconnects);

This action is used to specify which objects are to be disconnected by opening breakers and to actually open
those breakers.
objecttype : Objects that are valid to be disconnected. Only allowed for Buses,
Generators, Loads, Transmission Lines, Switched Shunts, DC Lines,
Injection Groups, and Interfaces.
Filter : The second parameter can either be a filter specification or an object identifier.
When specifying a filter, the following options are available:

63

SELECTED

: only objects whose Selected field = YES will be

energized

AREAZONE

: only objects that meet the area/zone/owner filters will

be energized

"FilterName"

: only objects that meet the specified filter will be

energized. See the Using Filters in Script Commands
section for more information on specifying the
filtername.

[object identifier]

: The second parameter can either be a filter specification or an object

identifier. When using an object identifier, the objecttype is applicable
and no further specification of the type needs to be included with the
object identifier as is done with some other script commands. The
following describe the possible objecttypes and identifier options:

BUS:

GEN:

LOAD:

BRANCH:

SHUNT:

INJECTIONGROUP:
INTERFACE:
DCLINE:

[SwitchingDeviceTypes] :

[ousnum]

["name_nomkv"]

["label"]

[busnum id]
["name_nomkv" id]
["buslabel" id]

["label"]

[busnum id]
["name_nomkv" id]
["buslabel"]

["label"]

[busnum1 busnum?2 ckt]
["name_kv1" "name_kv2" ckt]
["buslabel1" "buslabel2" ckt]
["label"]

[busnum id]

["name_nomkv" id]

["buslabel" id]

["label"]

["name"]

["name"]

[num rectnum invnum]

[num "rectnam_nomkv" "invname_nomkv"]
[num "rectlabel" "invlabel"]

["label"]

Optional parameter — default is "Breaker"

This is a comma-separated list naming the Branch Device Types
for switching devices that should be included when determining
which devices to open to disconnect objects. Options include
"Breaker" and "Load Break Disconnect".
OpenNormallyOpenDisconnects : optional parameter, default is NO.
YES — When searching for the specified SwitchingDeviceTypes
and a Disconnect is encountered that is closed but normally
open, it will be opened and the search for closed switching
devices will terminate along that path.
NO - Only switching devices of the specified
SwitchingDeviceTypes will be opened.

SaveConsolidatedCase("filename”, filetype, [BusFormat, TruncateCtgLabels,

AddCommentsForObjectLabels]);

This action saves the full topology model into a consolidated case.

"filename"
Filetype

BusFormat

TruncateCTGLabels

: The name of the consolidated case file to be saved.
: Optional parameter to specifiy the type of the file to be saved. If

omitted, the latest version of the PWB will be used.

PWB — save a pwb file with the most recent version

PWBX — save a pwb with version X

PTIXX — save the file with PTI version XX, where XX is between 23 and 33
GEXX — save the file with GE PSLF version XX, where XX is between 14 and
19

: optional parameter used to specifiy the bus identifier format in the .CON

file used to store contingencies when saving a PTI file

Number — identify buses using number

Name8 — identify buses using the Name_kV identifier truncated to 8
characters

Name12 — identify buses usingthe Name_kV identifier truncated to 12
characters

: optional parameter used to specify if the contingency labels should be

truncated to 12 characters when saving the contingencies in PTI format
YES — truncate the contingency labels to 12 characters
NO - do not truncate the contingency labels

AddCommentsForObjectLabels : (optional) YES adds object labels to the end of data records

when saving a RAW file. (default NO)

65

OPF (Optimal Power Flow) and SCOPF Related Actions

SolvePrimalLP (C'filenamel™, "filename2", CreatelfNotFoundl, CreatelfNotFound2);
InitializePrimalLP ("filenamel”, "filename2", CreatelfNotFoundl, CreatelfNotFound2);
SolveSinglePrimalLPOuterLoop (“'filenamel', "filename2'", CreatelfNotFoundl, CreatelfNotFound2);
SolveFul ISCOPF (BCMethod, "filenamel™, "filename2", CreatelfNotFoundl, CreatelfNotFound2);
OPFWriteResultsAndOptions (C'filename™);

SolvePrimalLP("filename1"”, "filename2", CreatelfNotFound1, CreatelfNotFound2);

Call this action to perform a primal LP OPF solution. The parameters are all optional and specify a conditional
response depending on whether the solution is successfully found. If parameters are not passed then default
values will be used.
“filename1" : The filename of the auxiliary file to be loaded if there is a successful
solution. You may also specify STOP, which means that all AUX file
execution should stop under the condition. Default Value = "*.
“filename2" : The filename of the auxiliary file to be loaded if there is a NOT successful
solution. You may also specify STOP, which means that all AUX file

execution should stop under the condition. Default Value = "*.

CreatelfNotFound1 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename1. Default Value =
NO.

CreatelfNotFound2 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename2. Default Value =
NO.

InitializeLP("filename1”, "filename2", CreatelfNotFound1, CreatelfNotFound2);

This commands clears all the structures and results of previous primal LP OPF solutions. The parameters are all
optional and specify a conditional response depending on whether the solution is successfully found. If
parameters are not passed then default values will be used.
“filename1" : The filename of the auxiliary file to be loaded if there is a successful
solution. You may also specify STOP, which means that all AUX file
execution should stop under the condition. Default Value = "".
"filename2" : The filename of the auxiliary file to be loaded if there is a NOT successful
solution. You may also specify STOP, which means that all AUX file
execution should stop under the condition. Default Value = "".
CreatelfNotFound1 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename1. Default Value =
NO.
CreatelfNotFound2 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename2. Default Value =

NO.

SolveSinglePrimalLPOuterLoop("“filename1”, “filename2", CreatelfNotFound1, CreatelfNotFound?2);

This action is basically identical to the SolvePrimalLP action, except that this will only perform a single
optimization. The SolvePrimalLP will iterate between solving the power flow and an optimization until this
iteration converges. This action will only solve the optimization routine once, then resolve the power flow once
and then stop.

66

SolveFullSCOPF (BCMethod, "filename1”, "filename2", CreatelfNotFound1, CreatelfNotFound2);

Call this action to perform a full Security Constrained OPF solution. The parameters are all optional and specify a
conditional response depending on whether the solution is successfully found. If parameters are not passed then
default values will be used.
BCMethod : The solution method to be used for solving the base case. The options
are:
POWERFLOW - for single power flow algorithm.
OPF — for the optimal power flow algorithm.
Default Value = POWERFLOW.
“filename1" : The filename of the auxiliary file to be loaded if there is a successful
solution. You may also specify STOP, which means that all AUX file
execution should stop under the condition. Default Value = "".
“filename2" . The filename of the auxiliary file to be loaded if there is a NOT successful
solution. You may also specify STOP, which means that all AUX file
execution should stop under the condition. Default Value = "".
CreatelfNotFound1 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename1. Default Value =
NO.
CreatelfNotFound2 : Setto YES or NO. YES means that objects which cannot be found will be
created while reading in DATA sections of filename2. Default Value =
NO.

OPFWriteResultsAndOptions(“filename");

Writes out all information related to OPF analysis as an auxiliary file. This includes Limit
Monitoring Settings, options for Areas, Buses, Branches, Interfaces,
Generators, SuperAreas, OPF Solution Options.

67

PV Related Actions

PVClear;

PVDestroy;

PVQVTrackSingleBusPerSuperBus;

PVRun ([elementSource], [elementSink]);
PVSetSourceAndSink ([elementSource], [elementSink]);
PVStartOver;

PVWritelnadequateVoltages(*'filename™, AppendFile, lnadequateType);
PVWriteResultsAndOptions ("filename", AppendFile);
RefineModel (objecttype, filter, Action, Tolerance);

Changes were made with Simulator version 14 to eliminate the need for a PV study name. To maintain functionality
with any existing processes that users might have in place using older script definitions, scripts from older versions of
Simulator will still be supported if the name is specified. However, the name will just be ignored. The script formats
given here reflect the changes for versions 14 and later.

The PVCreate script required in previous versions is no longer necessary starting with Simulator version 14. Versions
starting with 14 will still recognize this action if is included and will simply set the source and sink for the study. This
does the same thing as PVSetSourceAndSink.

It is highly recommended that for any new processes the new script formats specified here be used.

PVClear;
Call the function to clear all the results of the PV study.

PVDestroy;

Call the function to destroy the PV study. This will remove all results and prevent any restoration of the initial
state that is stored with the PV study.

PVQVTrackSingleBusPerSuperBus;

If the topology processing add-on is installed, then this script command can be used to reduce the number of
monitored buses. The script action examines each monitored value for each bus and determines if that bus is part
of a super bus and selects monitored buses so that only the pnode is monitored.

PVRun([elementSource], [elementSink]);

Call this function start the PV study and optionally specify the source and sink elements.
[elementSource] : Optional parameter — default to using element already set
The source of power for the PV study. Only injection groups can be used:
[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"]
[elementSink] : Optional parameter — default to using element already set
The sink of power for the PV study. Only injection groups can be used:
[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"]

PVSetSourceAndSink([elementSource], [elementSink]);

Call the function to specify the source and sink elements to perform the PV study.

[elementSource] : The source of power for the PV study. There is only one possible setting:
[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"]
[elementSink] : The sink of power for the PV study. There is only one possible setting,

which is the same as for the source.

PVStartOver;

Call the function to start over the PV study. This includes clear the activity log, clear results, restore the initial
state, set the current state as initial state, and initialize the step size.

68

PVWritelnadequateVoltages(“filename", AppendFile, InadequateType);
Call this action to save PV Inadequate Voltages in a CSV file.

“filename” : Name of the CSV file to save. See the Specifying File Names in Script
Commands section for special keywords that can be used when specifying the
file name.

AppendFile : Optional parameter — default is YES

Set this to YES or NO. Setting this to YES will cause the data to be appended to
an existing file. Setting this to NO will cause any existing file to be overwritten.

InadequateType: Optional parameter — default is LOW
Set this to HIGH or LOW to indicate the type of inadequate voltages to save to
file.

PVWriteResultsAndOptions(“filename”, AppendFile);
Call this action to save all of the PV results and options in an auxiliary file.

“filename” : Name of the auxiliary file to save. See the Specifying File Names in Script
Commands section for special keywords that can be used when specifying the
file name.

AppendFile : Optional parameter — default is YES

Set this to YES or NO. Setting this to YES will cause the data to be appended to
an existing file. Setting this to NO will cause any existing file to be overwritten.
RefineModel(objecttype, filter, Action, Tolerance);

Call this function to refine the system model to fix modeling idiosyncrasies that cause premature loss of
convergence during PV and QV studies.

Objecttype : The objecttype being selected.
AREA
ZONE
Filter : Specify a filter to limit the objects that will be included.
Blank : Select all objects of specified type
AREAZONE : Only objects that meet the area/zone/owner
filters will be selected
SELECTED : Only objects whose Selected field = YES will be
selected
“FilterName" : Only objects that meet the specified filter will be

selected. See Using Filters in Script Commands
section for more information on specifying the
filtername.

Action : The way the model will be refined. Choices are:

TRANSFORMERTAPS : Fix all transformer taps at their present
values if their Vmax — Vmin is less than or
equal to the user specified tolerance.

SHUNTS : Fix all shunts at their present values if their
Vmax — Vmin is less than or equal to the
user specified tolerance.

OFFAVR : Remove units from AVR control, thus locking
their MVAR output at its present value if
their Qmax — Qmin is less or equal to the
user specified tolerance.

Tolerance : Tolerance value.

69

QV Related Actions

QVRun (C'filename', InErrorMakeBaseSolvable);
QVWriteResultsAndOptions ("filename™);
QVSelectSingleBusPerSuperBus;

QVRun("filename", InErrorMakeBaseSolvable);
Call the function to start a QV study for the list of buses whose SELECTED field is set to YES.

“filename” : This specifies the file to which to save a comma-delimited version of
the results.
InErrorMakeBaseSolvable : This specifies whether to perform a solvability analysis of the

base case if the pre-contingency base case cannot be solved. If not
specified, then YES is assumed.

QVWriteResultsAndOptions(“filename");
Call this action to save all the QV results and options in the auxiliary file "filename".

QVSelectSingleBusPerSuperBus;

If the QV tool is being used on a full topology model, this action can be used to modifiy the monitored
buses. This action examines the monitored buses and sets the monitored status so that only one bus is
monitored for each pnode.

70

TS (Transient Stability) Related Actions

TSAutoCorrect;

TSAutolnsertDistRelay (Reach, filter);

TSAutolnsertZPOTT (Reach, filter);

TSCalculateCriticalClearTime ([branch] or filter);

TSCalculateSMIBEigenValues;

TSClearAl IModels;

TSGetVCurveData ('FileName™, filter);

TSGetResults ("FileName", Single/Separate, [contingencies], [plots], StartTime,
EndTime);

TSLoadBPA ("FileName™);

TSLoadGE ('FileName'™, GENCCYN, EnableOutOfOrderModels);

TSLoadPTI ("FileName", "MCREFilename'™, "MTRLOfilename'™, "GNETFfilename",
""BASEGENfi1 lename'™);

TSLoadRDB ('FileName™, ModelType, filter);

TSLoadRelayCSV ('FileName', ModelType, filter);

TSResultStorageSetAll (objecttype, YES/NO);

TSRunUntilSpecifiedTime (*ContingencyName', [StopTime, StepSize, StepsinCycles,
ResetStartTime, NumberofTimeStepstoDo]);

TSSaveBPA ('FileName', DiffCaseModifiedOnly);

TSSaveGE (""FileName™, DiffCaseModifiedOnly);

TSSavePTI ('FileName', DiffCaseModifiedOnly);

TSSaveTwoBusEquivalent (""AuxFileName", [BUS]);

TSSolve ('ContingencyName', [StartTime, StopTime, StepSize]);

TSSolveAll (DoDistributed);

TSWriteModels ('FileName', DiffCaseModifiedOnly);

TSWriteOptions ('FileName", [SaveDynamicModel , SaveStabilityOptions,

SaveStabilityEvents, SaveResultsSettings, SavePlotDefinitions], KeyField);

TSAutoCorrect;

Runs the auto correction of parameters for a transient stability run. If there are still validation errors after
running this script that would prevent the stability simulation from running, then the remainder of a script
will be aborted.

TSAutolnsertDistRelay(Reach, filter);

Inserts DistRelay models on the lines meeting the specified filter.
Reach : Zone 1 reach
filter . Lines meeting this filter will have DistRelay models inserted. See the Using
Filters in Script Commands section for information on specifying the filter.

TSAutolnsertZPOTT(Reach, filter,);

Inserts ZPOTT models on the lines meeting the specified filter.
Reach : Zone 1 reach
filter . Lines meeting this filter will have ZPOTT models inserted. See the Using Filters
in Script Commands section for information on specifying the filter.

TSCalculateCriticalClearTime([branch] or filter,);

Use this action to calculate critical clearing time for faults on the lines that meet the specified filter.
[line] or filter : A ssingle line can be specified in the format [BRANCH keyfield1 keyfield2

ckt] or [BRANCH label]. Multiple lines can be selected by specifying a
filter. See the Using Filters in Script Commands section for information
on specifying the filter. For the specified lines, this calculation will
determine the first time a violation is reached (critical clearing time),
where a violation is determined based on all enabled Transient Limit
Monitors. For each ling, results are saved as a new Transient Contingency
on a line, with the fault duration equal to the critical clearing time.

71

TSCalculateSMIBEigenValues;
Calculate single machine infinite bus eigenvalues. Initialization to the start time is always done before
calculating eigenvalues.
TSClearAllModels;
Added in the November 15, 2018 patch of Simulator 20
Clears all the transient stability models and contingencies.
TSGetVCurveData("FileName"”, filter);

For a synchronous generator a curve of points for field current and field voltage is created from a fixed
terminal voltage and MW (P) power output and varying Mvar (Q) output.

FileName : Name of file to create. If no file extension is specified this defaults to
CSV.
filter . Specifies for which generators to create curves.
SELECTED . only generators whose Selected field = YES will be
included
AREAZONE : only generators that meet the area/zone/owner filters

will be included

"FilterName" : only generators that meet the specified filter will be
included. See the Using Filters in Script Commands
section for more information on specifying the
filtername.

TSGetResults("FileName", SINGLE/SEPARATE/JSIS, [Contingencies], [Plots, ObjectFields], StartTime,
EndTime]);

Use this to save out results for specific variables from plots, subplots, and object/field pairs after a
transient stability simulation has been run. If StartTime and StopTime are not specified, results for the
entire simulation time are obtained.

FileName - Name of the CSV result file to write out
SINGLE/SEPARATE
/JSIS . Determines whether the results are all saved in one file (SINGLE) with

name “filename” or whether results for each transient contingency is
saved in a separate file (SEPARATE) with name “filename_ctgname.csv.”
A separate header file is also saved out, with a name of
“filename_Header.csv”. If using the JSIS format, a single file with the
name “filename” is written in the WECC JSIS format.

Contingencies : Alist of contingency names for which to save out results

Plots, ObjectFields : A list of plots and object/field pairs to save out for the specified
contingencies

StartTime . Start of the window of simulation time from which the results are to be
retrieved

EndTime : End of the window of simulation time from which the results are to be
retrieved

TSLoadBPA("FileName");

Loads transient stability data stored in the BPA format.
FileName : Name of the BPA file to load

72

TSLoadGE("FileName", GENCCYN, EnableOutOfOrderModels);
Loads transient stability data stored in the GE DYD format.
: Name of the DYD file to load
. YES to split combined cycle units, NO to leave them alone
EnableOutOfOrderModels : (optional) Default is YES. If set to YES, models that are specified out

FileName
GENCCYN

of order in the file will be enabled. If set to NO, out of order models will
be disabled.

TSLoadPTI("FileName", "MCREfilename", "MTRLOfilename”, "GNETfilename", "BASEGENfilename");

Loads transient stability data in the PTI format.

FileName
MCREfilename
MTRLOfilename
GNETfilename
BASEGEN(filename

: Name of the DYR file to load
: (optional) If not loading a MCRE file, specify

: (optional) If not loading a MTRLO file, specify ""

. (optional) If not loading a GNET file, specify
: (optional) If not loading a BASEGEN file, specify

TSLoadRDB("filename", ModelType, filter);

Loads a SEL RDB file. The RDB file is a Schweitzer format for describing a relay. This command will load
the file and translate the relay settings into a PowerWorld transient stability model. An attempt is made
to match up the protected lines in the power flow model with the SID field in the RDB data. A SID in the
format "FROM SUB/BREAKERS/TO SUB" is expected. If the SID does not match this format, or a match is
not found in the case, the objects can be linked to the transient stability model in the user interface

manually.
“filename"

ModelType

filter

: The directory path or filename of the RDB file(s). If pointed to a

directory, the script command will load every RDB file in that directory. If
pointed to a file, the script command will load the single RDB file. See
the Specifying File Names in Script Commands section for special
keywords that can be used when specifying the file name.

: DISTRELAY - create a Simulator DistRelay model from the RDB data

ZPOTT - create a Simulator ZPOTT model from the RDB data

: Optional parameter

Lines meeting this filter are searched to find ones matching the SID. See the
Using Filters in Script Commands section for information on specifying the
filter.

TSLoadRelayCSV("filename”, ModelType, filter);

This is a quicker alternative to using the TSLoadRDB command for loading RDB files. Relevant relay data
can be exported to a CSV file so that a single CSV file contains multiple relay models. This is much faster
because it does not contain the unused data that an RDB file contains.

: Name of the CSV file to load

: DISTRELAY - create a Simulator DistRelay model from the RDB data

“filename"
ModelType

filter

ZPOTT - create a Simulator ZPOTT model from the RDB data

: Optional parameter

Lines meeting this filter are searched to find ones matching the SID. See the
Using Filters in Script Commands section for information on specifying the
filter.

73

TSResultStorageSetAll(objecttype, YES/NO);

This command will allow setting which object types are stored in memory during a transient stability run.
This will affect all fields and states for the specified objecttype.
objecttype . Specifies which objects to set. The objecttype is the object name of
supported objects such as GEN, BUS, BRANCH, etc. ALL can be used to
set all supported object types.

YES/NO : Using this command will toggle all the “Save All" fields to YES/NO. It will
also toggle all the “state” fields (such as exciter, machine, governor, etc.)
to YES/NO.

TSRunUntilSpecifiedTime("ContingencyName", [StopTime, StepSize, StepsinCycles, ResetStartTime,
NumberOfTimeStepsToDo]);

This command allows manual control of the transient stability run. The simulation can be run until a
specified time or number of times steps and then paused for further evaluation.

ContingencyName : The name of the contingency to solve.

StopTime . (optional) This is the time to which the simulation will be run. This should
be entered in seconds. If NumberOfTimeStepsToDo > 0, this field will be
ignored. If not specified, the stop time specified with the contingency
will be used.

StepSize . (optional) Simulation step size in either seconds or cycles. If
StepsInCycles = YES this should be specified in cycles. If not specified,
the step size specified with the contingency will be used.

StepsInCycles . (optional) Set to YES to specify StepSize in cycles. If not specified, the units of the
step size specified with the contingency will be used.

ResetStartTime : (optional) Set to YES to reset the simulation start time. Default value is
NO.

NumberOfTimeStepsToDo: (optional) Number of time steps to run. If

NumberOfTimeStepsToDo > 0, StopTime is ignored. Default value is 0.

TSSaveBPA("FileName", DiffCaseModifiedOnly);

Added in the November 15, 2018 patch of Simulator 20
Save transient stability data stored in the BPA IPF format.
FileName Name and path for the output file. Typically this will be an *.swi file extension.
lefCaseModlfledOnIy (optional) Default is NO. When set to YES, it will only save models that are either
new or models which have had a parameter modified as compared to the
difference case tool base case.

TSSaveGE("FileName", DiffCaseModifiedOnly);
Added in the November 15, 2018 patch of Simulator 20
Save transient stability data stored in the GE DYD format.
FileName : Name and path for the output file. Typically this will be an *.dyd file extension.
DiffCaseModifiedOnly : (optional) Default is NO. When set to YES, it will only save models that are either
new or models which have had a parameter modified as compared to the
difference case tool base case.

TSSavePTI("FileName", DiffCaseModifiedOnly);
Added in the November 15, 2018 patch of Simulator 20
Save transient stability data stored in the PTI DYR format.
FileName Name and path for the output file. Typically this will be an *.dyr file extension.
lefCasel\/IodlfledOnIy (optional) Default is NO. When set to YES, it will only save models that are either
new or models which have had a parameter modified as compared to the
difference case tool base case.

74

TSSaveTwoBusEquivalent (“AuxFileName", [BUS]);

Save the two bus equivalent model of a specified bus to a PWB file. Initialization to the start time is
always done before saving the two bus equivalent.

AuxFileName : Name and path for the output AUX file

BUS : Bus can be specified in three ways:
Number 1 [BUS busnum]
Name/NomkV :[BUS "busname_nominalKV"]
Label : [BUS "buslabel"]

TSSolve("ContingencyName", [StartTime, StopTime, StepSize]);
Solves only the specified contingency.

ContingencyName : The name of the contingency to solve
StartTime . (optional) Start time in seconds
StopTime . (optional) Stop time in seconds
StepSize . (optional) Step size in seconds

TSSolveAll(DoDistributed);

Solves all defined transient contingencies that are not set to skip.
DoDistributed . (optional) Set to YES to use Distributed Computing with the transient analysis.
Default is NO.

TSWriteModels("FileName", DiffCaseModifiedOnly);

Added in the November 15, 2018 patch of Simulator 20
Save transient stability dynamic model records only the auxiliary file format.
FileName : Name and path for the output file. Typically this will be an *.aux file extension.
DiffCaseModifiedOnly : (optional) Default is NO. When set to YES, it will only save models that are either
new or models which have had a parameter modified as compared to the
difference case tool base case.

TSWriteOptions("FileName",[SaveDynamicModel, SaveStabilityOptions, SaveStabilityEvents,
SaveResultsEvents, SavePlotDefinitions], KeyField);

Save the transient stability optlon settings to an auxiliary file.
FileName : Name and path of the file to save
SaveDynamicModel : (optional) NO doesn’t save dynamic model (default YES)
SaveStabilityOptions : (optional) NO doesn’t save stability options (default YES)
SaveStabilityEvents : (optional) NO doesn’t save stability events (default YES)
SaveResultsSettings : (optional) NO doesn’t save results settings (default YES)
SavePlotDefinitions : (optional) NO doesn't save plot definitions (default YES)
KeyField . (optional) Specifies key: can be Primary, Secondary, or Label (default

Primary)

75

Scheduled Actions Related Actions

SetScheduleView
SetScheduleWindow

IdentifyBreakersForScheduledActions (ldentifyFromNormalStatus);

(ViewTime, ApplyActions, UseNormalStatus, ApplyWindow);
(StartTime, EndTime, Resolution, ResolutionUnits);

IdentifyBreakersForScheduledActions(ldentifyFromNormalStatus);

For each Scheduled Outage, identifies breakers that are necessary to implement OpenBreakers and
CloseBreakers actions. New Scheduled Actions are added to the Scheduled Outage if new breakers are
identified that do not already exist as actions.

IdentifyFromNormalStatus : Set to YES to return all branches to their normal status before

searching for breakers. If using this option, all branches will be
returned to their current status at the end of the process. Set to
NO to leave all branches at their current status before searching
for breakers.

SetScheduleView(ViewTime, ApplyActions, UseNormalStatus, ApplyWindow);

Sets the View Time for Schedule
ViewTime :

ApplyActions

UseNormalStatus

ApplyWindow

d Actions.
: The desired view time. Must be between the currently configured Start

and End times, and fall on a valid view point given current resolution
settings.

. (optional) Set to YES or NO to override current "Apply Actions” settings to either

apply actions at this view time or suppress the application of actions at this time.
If left blank, current “Apply Actions” settings will be used.

. (optional) Set to YES or NO to override current “Use Normal Status”

settings to either restore devices to their Normal Status after they are
restored, or to use whatever status they had before the action was
applied. If left blank, current “Use Normal Status” settings will be used.

. (optional) Set to YES or NO to override current “Apply Window" settings

to either apply any actions active in the window starting at this View Time
and extending forward one Resolution step forward in time, or only apply
actions active at the specific View Time specified. If left blank, current
"Apply Window" settings will be used.

SetScheduleWindow(StartTime, EndTime, Resolution, ResolutionUnits);

Defines the window of interest for Scheduled Actions.

StartTime
EndTime

Resolution

ResolutionUnits

. Defines the start of the window.
. Defines the end of the window. Must fall on a valid time relative to the Start

Time as defined by the Resolution (e.g. if the Start Time is 5/20/17 8:00 and the
resolution is 1 DAY, the End Time must be at 8:00 as well on a later date.)

. (optional) Decimal value defining the time step between the Start Time

and any valid View Time.

. (optional but must be specified if Resolution is specified) May be

MINUTES, HOURS, or DAYS

76

DATA Section

DATA DataName(object type, [list of fields], file_type specifier, create_ if_not_found)

{
data_list 1

data list n

3

Immediately following the DATA keyword, you may optionally include a DataName. By including the DataName, you can
make use of the script command LoadData("filename", DataName) to call this particular data section from another
auxiliary file. Following the optional DataName is an argument list. The argument list is contained inside left and right
parentheses "()". There are 4 arguments in this list which will be described shortly: object_type,

[list_of fields], file_type_specifier, and create_if_not_found.

Concise Auxiliary File Header

Starting in Simulator Version 19, PowerWorld supports a concise header which replaces the keyword DATA with the
object_type string and removes the File_type_specifier and create_if_not_found options. This leaves only
the list_of_fields as the argument between the parentheses, and the square brackets are removed from the
field_list as well making for a much more concise header. When using the concise header, it is always assumed that
file_type_specifier=AUXDEF and create_if _not found=YES.

object_type DataName(list_of_fields)

data list 1

data list n

b

When writing out an auxiliary file there is an option within Simulator Version 19 called Use Concise Variable Names and
Auxiliary File Headers that determines whether to write out the DATA keyword and other arguments or to write out the
concise auxiliary file header. See the online help documentation for more details:
http://www.powerworld.com/WebHelp/#MainDocumentation HTML/Auxiliary Files.htm

ObjectType
The object_type parameter identifies the type of object or data element the information section describes or models.
For example, if object_type equals BUS, then the data describes BUS objects.

There are some special object types that start with the keyword REMOVED. If these are loaded into Simulator while in Edit
mode, the corresponding objects will be deleted. For example REMOVEDBUS will delete BUS objects, REMOVEDBRANCH
will delete BRANCH objects, etc. Not all object types have a corresponding REMOVED object type, and simply prepending
this keyword to the front of an object_type will not allow this functionality. The objects that exist of this with this
functionality are the ones that allow comparison of topological changes through the Difference Flows tool.

The list of object types Simulator’s auxiliary file parser can recognize will grow as new applications are developed. Within

Simulator, you will always be able to obtain a list of the available object types by going to the main menu and choosing
Window, Export Case Object Fields, and then exporting the objects to Excel or a text file.

77

http://www.powerworld.com/WebHelp/#MainDocumentation_HTML/Auxiliary_Files.htm

File_Type_Specifier
The File_type_specifier parameter distinguishes the information section as containing custom auxiliary data (as
opposed to Simulator's native auxiliary formats), and indicates the format of the data. Currently, the parser recognizes two
values for File_type_specifier:

(blank)or AUXDEF or DEF Data fields are space delimited

AUXCSV or CSV or CSVAUX Data fields are comma

delimited

Create_if not_found

The create_if_not_found field is optional. This specifies whether or not to create a new object if an existing one is
not found. If the value is YES, objects will be created. If the value is NO, objects will not be created. If omitted, the default
behavior of prompting the user about whether or not to create a non-existing object will continue. If loading an auxiliary
file using the LoadAux script command, the create_if_not_found field for the data section will override the
CreatelfNotFound field with the script.

List_of Fields

The list_of_fields parameter lists the types of values the ensuing records in the data section contain. The order in
which the fields are listed in list_of_fields dictates the order in which the fields will be read from the file. Simulator
currently recognizes many different field types, each identified by a specific field variable name. Because the available
fields for an object may grow as new applications are developed for the convenience of our customers, you will always be
able to obtain a list of the available object types and fields by going to the main menu and choosing Window, Export
Object Fields, and then choosing to export to Excel or a text file. Certainly, only a subset of these fields would be found in
a typical custom auxiliary file. In crafting applications to export custom auxiliary files, developers need concern themselves
only with the fields they need to communicate between their applications and Simulator. A few points of interest
regarding the list_of_fields are:
e The list_of_fields may take up several lines of the text file.
e When using the older heading starting with the keyword DATA, the list_of_fields should be enclosed by
square brackets []. When using the concise heading these square brackets are not used.
e When encountering the PowerWorld comment string ‘//' in one of these lines of the text file, all text to the right is
ignored.
e Blank lines, or lines whose first characters are '//" will be ignored as comments.
e Field variable names must be separated by commas.

Example:

DATA (BUS, [BusNomKV, Bus, // comment here
ABCPhaseAngle:1, ABCPhaseAngle:2, ABCPhaseV, ABCPhaseV:1,
// comments allowed here to

// note that blank rows are ignored
AreaNum, BusAngle, BusB, BusCat, BusEquiv, BusG,
BusGenericSensV, BuskKVVolt, BusLambda, BusLoadMVA, // more comment
BusLoadMW, BusLongName])

// The following is an equivalent representation using the more concise header.
BUS (BusNomKV, Bus, // comment here
ABCPhaseAngle:1, ABCPhaseAngle:2, ABCPhaseV, ABCPhaseV:1,
// comments allowed here to
// note that blank rows are ignored
AreaNum, BusAngle, BusB, BusCat, BusEquiv, BusG,
BusGenericSensV, BusKVVolt, BuslLambda, BusLoadMVA, // more comment
BusLoadMW, BusLongName)

78

Field Variable Naming (Legacy)

When listing fields, some field variable names may be augmented with a field location. These are in the format
variablename: location. One example of this is the field LineMW. For a branch, there are two MW flows associated
with the line: one MW flow at the from bus, and one MW flow at the to bus. So that the number of fields does not
become huge, the same field variable name is used for both of these values. For the from bus flow, we write LineMW:0,
and for the to bus flow, we write LineMW:1. Note that field variable names using a location of 0, such as LineMW:0, may
simply leave off the :0.

These field variable names have been updated with Concise Field Variable Names starting in Simulator version 19. These
are described in the next section. The Legacy field variable names can still be used to support existing auxiliary files or
files needed for loading into earlier versions of Simulator.

Concise Field Variable Names

Variable names within Simulator have been overhauled starting with version 19. Most no longer utilize the special

location integer and instead spell out such information in the field variable name. In general, the variable names have
been made more concise or at least more understandable. Therefore what was once called for a BRANCH object
LineMW:1 is now called MWTo. Similarly LineMW:2 is now called MWFromCalc (representing the MW flow at the from bus
of branch calculated from the terminal voltages). The only fields that continue to use the location integer are those that
represent fields for which a dynamic number of fields are available. Examples of this include the CustomInteger,
CustomString, and CustomFloat fields which use the location integer to specify which value is used. Other examples
include the multiple direction PTDF results fields PTDFMult:0, PTDFMult:1, and so on.

When writing out an auxiliary file there is an option within Simulator Version 19 called Use Concise Variable Names and
Auxiliary File Headers that determines whether to write out the DATA keyword and other arguments or to write out the
concise auxiliary file header. See the online help documentation for more details:
http://www.powerworld.com/WebHelp/#MainDocumentation HTML/Auxiliary Files.htm

Special Naming

There are several fields that can be referred to by the user-defined name for the field rather than using the location
number. These are fields that might have their location numbers change when different auxiliary files are merged in the
same case. Referring to these by name can eliminate this possible confusion. These fields can be defined in the format
variablename: location_by name. They can also be referred to by location number as well.

Fields that allow referring to the location by name are:
e Expressions — "CustomExpression:my expression name"
e String Expressions — "CustomExpressionStrmy string expression name"
e Custom fields (Floating Point, Integer, and String) - "CustomSingle:my custom single name". Using this
format for custom fields requires that Custom Field Descriptions be created for the fields to be used.
e Calculated Fields — "BGCalcField:my calculated field variable name"

Key Fields

Simulator uses certain fields to identify the specific object being described. These fields are called key fields. For example,
the key field for BUS objects is BusNum, because a bus can be identified uniquely by its number. The key fields for GEN
objects are BusNum and GenlD. To properly identify each object, the object’s key fields must be present. They can
appear in any order in the list_of_fields (i.e. they need not be the first fields listed in list_of_fields). As long as the
key fields are present, Simulator can identify the specific object. By going to the main menu and choosing Window and
then Export Case Object Fields you will obtain a list of fields available for each object type in either Excel or text format. In
this output, the key fields will appear with asterisks *.

79

http://www.powerworld.com/WebHelp/#MainDocumentation_HTML/Auxiliary_Files.htm

Data List

After the data argument list is completed, the Data list is given. The data section lists the values of the fields for each
object in the order specified in list_of_fields. The data section begins with a left curly brace and ends with the a
right curly brace. A few points of interest regarding the value_list:
e The value_list may take up several lines of the text file.
e Each new data object must start on its own line of text.
e When encountering the PowerWorld comment string ‘//' in one of these lines of the text file, all text to the right
of this is ignored.
e Blank lines, or lines whose first characters are '//' will be ignored as comments.
e Remember that the right curly brace must appear on its own line at the end of the data_list.
o |Ifthe File_type_specifier is CSV, the values should be separated by commas. Otherwise, separate the field
variable names using spaces.
e Strings can be enclosed in double quotes, but this is not required. You should however always inclose strings that
contain spaces (or commas) in quotes. Otherwise, strings containing commas would cause errors for comma-
delimited files, and spaces would cause errors for space-delimited formatted files.

Special Data List Entries

When specifying values in case information displays, AUX files, and script commands, there are some special formats that
can be used. These formats will allow the value of a model or object field to be used instead of specifying an explicit
value. Formats that are allowed include those described in the Special Identifiers for Model Fields in Data section as
well as others mentioned below in this section.

A string of the format
"@Variablenamelegacy:location:digits:decimals"

Or
"@concisename:location:digits:decimals”

will be treated as though the value of the named variable is entered in the field, with digits total and decimals digits
to the right of the decimal point. This format may be used in case information displays, AUX files, and script commands
that set values. String fields that can be converted to a valid numeric value can be used to populate either floating point
or integer fields. Floating point values that are used to populate integer fields are truncated before populating the integer
field.

When parsing an AUX file while reading, the treatment of concise and legacy variable names is automatically handled by
the parser.

Special Identifiers for Model Fields in Data

The following special formats can be used in case information displays, AUX files, and script commands that set values.
They are also used in some script commands as part of parameters that input text. These formats will allow the value of a
model or object field to be used instead of specifying and explicit value.

A string in the format ""&Mode lExpressionName:digits:decimals" will be treated as though the value of the named
model expression is entered in the field, with digits total and decimals digits to the right of the decimal point. If no
digits or decimals are specified, 7 decimal places will be used. Trailing zeros will be removed if no decimals are specified.

A string of the format

"&0Objecttype "key fields® variablenamelegacy:location:digits:decimals"

Or

"&0Objecttype "key fields®™ concisename:digits:decimals"

will be treated as though the value of the named object and object field is entered in the field, with digits total and
decimals digits to the right of the decimal point. If no digits or decimals are specified, 7 decimal places will be used.
Trailing zeros will be removed if no decimals are specified.

80

Using Labels for Identification

Most data objects (such as buses, generators, loads, switched shunts, transmission lines, areas, zones, and interfaces) may
have an alternative names assigned to them. These alternative names are called labels. Labels allow you to refer to
equipment in the model in a way that may be unique to your organization. Labels may thus help clarify which elements
are described by a particular set of data, especially when the short names employed by the power system model prove
cryptic. Furthermore, since labels are likely to change less frequently than bus numbers, and since a label must, by
definition, identify only one power system component, they may function as an immutable key for importing data from
auxiliary files into different cases, even when bus numbering schemes change between the cases. Labels must be unique
for devices of the same type, but the same label can be used for a device of a different type.

Information dialogs corresponding to buses, generators, loads, switched shunts, transmission lines, areas, zones, and
interfaces feature a button called Labels. If you press this button, the device’s Label Manager Dialog will appear. The Label
Manager Dialog lists the labels associated with the device. You can delete a label from the list by selecting it and pressing
the delete key on the keyboard or clicking the Delete button. You may add a label to the device by typing its name in the
textbox and pressing the Add New button. You will not be allowed to add a Label that already exists for the same type of
device. A single power system device may have multiple labels, but each label may be associated with only one device of a
given type. For example, a bus could have the label Bus North while a generator could also have the same label, but there
could not be another bus or generator with this same label.

You also may designate a particular label to be the primary label for the device by checking the box Primary before adding
the label. Alternatively, you can select the device from the list and click the Make Primary button. A device's primary label
is the one that is listed first in the Labels (All) field (variablename = LabelsAll) in a Case Information Display. This
field lists all labels assigned to a device as a comma-delimited string. Any label can be used to import data from auxiliary
data files.

Labels can be used to map data from an auxiliary data file to a power system device. Recall that auxiliary data files require
you to include a device's key fields in each data record so that data may be mapped to the device. Labels provide an
alternative key. Instead of supplying the bus number to identify a bus, for example, you can supply one of the bus's labels.
The label will enable Simulator to associate the data with the device associated with that label. This mechanism performs
most efficiently when the primary label is used, but other labels will also provide the mapping mechanism. The Label (for
use in input from AUX or Paste) field (variablename = Label) is used for importing data using labels and is blank when
viewing in a case information display. Keep in mind that all devices read via an auxiliary file using the label field should
have a non-blank label. Otherwise, information for that device will not be read. Even if the primary or secondary key fields
are provided with the device, as long as the label field is present, that is the only field that will be used to identify the
device. New devices cannot be created by simply identifying them by label. Either the primary or secondary key fields must
be present to create a new device and the label field should not be present.

Again, it is important to remember this: a single power system device may have multiple labels, but each label may be
associated with only one device of a particular type. This is the key to enabling data to be imported from an auxiliary file
using labels.

Saving Auxiliary Files Using Labels

All devices that can be identified by labels will have the Labels (All) and Label (for use in input from AUX or Paste) fields
available in their case information displays. In order to save auxiliary files that identify devices by label, the two label fields
should be added to the case information display prior to saving the data in an auxiliary file. Because the Label (for use in
input from AUX or Paste) field will be blank when saved in the auxiliary file, this field must be populated with one of the
labels in the Labels (All) field before loading the auxiliary file back in. Keep in mind that devices with blank labels cannot
be identified when loading in an auxiliary file, so avoid saving auxiliary files by label if all devices do not have labels. Note
that when saving out an entire case as an auxiliary file, the field "AllLabels" is included for each object type that allows
labels and has some labels defined.

Many devices require SUBDATA sections. These sections have custom formats specific to the type of information that they
contain. When saving auxiliary files with devices that require SUBDATA sections, the user can choose to use primary or

81

secondary key fields or labels to identify devices in the SUBDATA sections. The user will either be prompted when saving
the devices, or there is an option to change the key field to use when saving subdata sections on the PowerWorld
Simulator Options dialog under the Case Information Displays category. When choosing to use labels, if a device has a
label, it will be used. If it is a device that can be identified by buses and bus labels exist, bus labels will be used. Finally, if
the device does not have a label and the buses do not have labels, the primary key for the device will be used for
identification.

Devices that have SUBDATA sections that contain other devices that can be identified by labels include: contingencies,
interfaces, injection groups, post power flow solution actions, and owners.

The setting to choose which identifier to use for the SUBDATA sections does not just apply to SUBDATA sections. Often
when saving groups of options, this setting will apply to everything being saved with those options and not just the
SUBDATA sections. This includes contingency options, ATC options, limit monitoring settings, and PVQV options. In these
cases, there will be a prompt asking the user to decide which identifier to use in the auxiliary file.

Loading Auxiliary Files SUBDATA Sections Using Labels

The various SUBDATA sections that represent references to other objects can also be read using labels. Examples include
contingencies, interfaces, injection groups, post power flow solution actions, and owners. When reading a

SUBDATA section such as this, PowerWorld makes no assumption ahead of time about what identification was used to
write this SUBDATA section. Instead, an order of precedence for the identification is as follows

Identification | Explanation Example

1 | Key Fields assumes that the strings represent Key Fields | BRANCH 8 9 1

2 | Secondary assumes that the strings represent Secondary | BRANCH Eight_138 Nine_230 1
Key Fields Key Fields
3 | Labels for the key/secondary key fields for some objects | BRANCH Label8 Label9 1
component | consist of references to other objects. An
objects example of this is the BRANCH object that is
described by the From Bus, To Bus, and
Circuit ID. This assumes that labels of the
component objects are used.

4 | Labels Assumes that the string represents one of the | BRANCH LabelForBranch
Labels of the object

Special Use of Labels in SUBDATA

There are a few special cases where objects have fields that identify other devices. These devices can be identified by label
but not in the conventional means because the label field applies to the object that contains the device and a SUBDATA
section is not necessary. These special cases include: (Note all fields given below are by variable name because the use of
labels is most relevant with auxiliary files.)

ATC Scenarios: ATC Scenario change records usually contain primary key fields to identify the devices that should be
adjusted during the scenario. If using labels, these primary key fields will be replaced with a single Label field. The use
of this field is different because the Label field refers to the device in the change record and not to the change record
itself. When labels are used with ATC scenarios, device labels only can be used. Bus labels cannot be used to identify
devices for which no label exists but a bus label does.

ATC Extra Monitors: ATC Extra Monitors identify either branches or interfaces to monitor during the ATC analysis.
These devices are identified in the WhoAml field of ATC Extra Monitor records. Usually, the WhoAml field is a special
format that contains key field tags. Optionally, this field can use the label of the device for the extra monitor. If the
device label is not available, the standard format will be used. There is no option to use bus labels if they exist and the
device labels do not.

82

Model Conditions: Devices in Model Conditions are usually identified by the WhoAml field which is in a special
format that contains key field tags. Optionally, this field can use the label of the device. If the device label does not
exist, the standard format will be used. There is no option to use bus labels if they exist and the device labels do not.

Model Expressions: Model Expressions contain Model Fields. Model Fields are identified by the WhoAml fields in the
Model Expressions. Usually, the WhoAml fields are in a special format that contains key field tags. Optionally, these
fields can use the label of the device associated with the Model Field. If the device does not exist, the standard format
will be used. There is no option to use bus labels if they exist and the device labels do not.

Bus Load Throw Over Records: Bus Load Throw Over Records are used with contingency analysis. These records
have an option to identify the bus to which the load will be transferred by either number or name_kV combination. If
choosing to identify objects by label, the BusName_NomVolt:1 field will contain the label of the bus instead of the
name_kV combination.

Bus Load Throw Over Records will be saved in an auxiliary file if choosing to Save settings on the Contingency Analysis
dialog.

Injection Group Participation Points: All participation points and the injection groups to which they belong can be
listed on the Injection Group Display. Load, generator, bus, and shunt devices that can be assigned to a participation
point must be identified by bus and ID. The bus can be identified by either the number or name. When identifying by
name, the BusName_NomVolt field is used to provide the name_kV combination for the bus. If choosing to identify
devices by label, this field instead will contain the label of the device. If the device does not have a label but the bus
does, the bus label will be used instead in conjunction with the ID of the device. Even if the device does contain a
label, the ID field must be included in any auxiliary file that is going to be loaded because it is a key field. Injection
groups can be included in other injection groups. Injection groups can be identified by label, even though this is not a
normal thing to do. If any injection groups have labels and these injection groups are included in other injection
groups, their labels will also appear in the BusName_NomVolt field. If they do not have labels, they will be identified
by the injection group name that appears in the PPntID field.

83

SubData Sections

The format described thus far works well for most kinds of data in Simulator. It does not work as well however for data
that stores a list of objects. For example, a contingency stores some information about itself (such as its name), and then a
list of contingency elements, and possible a list of limit violations as well. For data such as this, Simulator allows
<SubData>, </SubData> tags that store lists of information about a particular object. This formatting looks like the
following

DATA (object_type, [list _of_fields], file_type_specifier, create_if_not_found)
{
value list 1
<SUBDATA subobject_typel>
precise format describing an object typel
precise format describing an object typel

</SUBDATA>

<SUBDATA subobject_ type2>
precise format describing an object type2
precise format describing an object_ type2

</SUBDATA>
value list 2

value_list n

b

Note that the information contained inside the <SubData>, </SubData> tags may not be flexibly defined. It must be
written in a precisely defined order that will be documented for each SubData type. The description of each of these
SubData formats follows.

84

ATC Options

RLScenarioName
GScenarioName

IScenarioName
These three sections contain the pretty names of the RL Scenarios, G Scenarios, and | Scenarios. Each line
consists of two values: Scenario Number and a name string enclosed in quotes.

Scenario Number : The scenarios are number 0 through the number of scenarios minus 1.
Scenario Name : These represent the names of the various scenarios.
Example:

<SUBDATA RLScenarioName>
//1ndex Name

0 "Scenario Name 0"
1 ""Scenario Name 1"
</SUBDATA>

ATCMemo
This section contains the memo text for the ATC analysis.

Example:

<SUBDATA ATCMemo>

//Nemo

"Comments for the ATC analysis"
</SUBDATA>

ATCExtraMonitor

ATCFlowValue
This subdata section contains a list of a flow values for specified transfer levels. Each line consists of two
values: Flow Value (flow on the monitored element) and a Transfer Level (in MW).

Flow Value : Contains a string describing which monitor this belongs to.
Transfer Level : Contains the value for this extra monitor at the last linear iteration.
Example:

<SUBDATA ATCFlowValue>
//MWWFlow TransferlLevel
94.05 55.30
105.18 80.58
109.02 107.76
</SUBDATA>

ATCScenario

TransferLimiter
This subdata section contains a list of the TransferLimiters for this scenario. Each line contains fields
relating one of the Transferlimiters. The fields are written out in the following order:

85

Limiting Element

Limiting Contingency

MaxFlow
PTDF

OTDF
LimitUsed
PreTransEst

MaxFlowAtLastlteration:
lterativelyFound

Example:

: Contains a description of the limiting element. The possible values are:

"PowerFlow Divergence"
"AREA num"

"SUPERAREA name"
"ZONE num"

"BRANCH num1 num?2 ckt"
"INJECTIONGROUP name"
"INTERFACE name"

. The name of the limiting contingency. If blank, then this means it's a

limitation in the base case.

: The transfer limitation in MW in per unit.

. The PTDF on the limiting element in the base case (not in percent).
: The OTDF on the limiting element under the limiting contingency.

. The limit which was used to determine the MaxFlow in per unit.

: The estimated flow on the line after the contingency but before the

transfer in per unit.
The total transfer at the last iteration in per unit.

. Either YES or NO depending on whether it was iteratively determined.

<SUBDATA TransferLimite
""BRANCH 40767 42103
""BRANCH 42100 42321
""BRANCH 42168 42174
""BRANCH 42168 42170
""BRANCH 41004 49963
""BRANCH 46403 49963
""BRANCH 42163 42170

</SUBDATA>

r >

1" “contin"™ 2.84 -0.0771 -0.3883 -4.35 -4.35 -0.01 "-55.88" YES
1" "Contin™ 4.42 0.1078 0.5466 6.50 5.64 1.57 ' 22.59" NO
1" "Contin" 7.45 -0.0131 -0.0651 -1.39 -1.09 4.60 "-33.31" NO
1" "Contin" 8.54 0.0131 0.0651 1.39 1.02 5.69 " 26.10" NO
1" "Contin™ 9.17 -0.0500 -0.1940 -4.39 -3.16 6.32 " 68.73" NO
1" "Contin™ 9.53 0.0500 0.1940 4.46 3.16 6.68 '"-68.68" NO
1" "Contin"™ 10.14 -0.0131 -0.0651 -1.39 -0.92 7.29 "-15.58" NO

ATCExtraMonitor

This subdata section contains a list of the ATCExtraMonitors for this scenario. Each line contains three
fields relating one of the ATCExtraMonitors. The first field describes the ATCExtraMonitor which this
subdata corresponds to. The second and third variables are the initial value and sensitivity for this extra

monitor for the sceanario. An op

tional fourth field may be included if we are using one of the iterated

ATC solution options. This field must be the String "ATCFlowValue".

Monitor Description
InitialValue
Sensitivity
ATCFlowValue

Example:

: Contains a string describing which monitor this belongs to.

: Contains the value for this extra monitor at the last linear iteration.

: Contains the senstivity of this monitor.

: A string which signifies that a block will follow which stores a list of flow

values for specified transfer levels. Each line of the block consists of two
values: Flow Value (flow on the monitored element) and a Transfer Level
(in MW). The block is terminated when a line of text that starts with
‘END' is encountered.

</SUBDATA>

<SUBDATA ATCExtraMonitor>
"Interface<KEY1l>Left-Right</KEY1>" 40.0735 0.633295
"Branch<KEY1>2</KEY1><KEY2>5</KEY2><KEY3>1</KEY3>" 78.7410 0.266589

86

AUXFileExportFormatData

DataBlockDescription
This subdata section is used to define the objects that should be included in an auxiliary file along with
their fields, subdata sections, and any filter used to specify which objects should be included. Each line
contains the following:

ObjectType : Name of the object to include in the auxiliary file.

[FieldList] . List of fields to include. Must be enclosed in brackets. This list can either
be space-delimited or comma-delimited.

[SubdatalList] . List of subdata sections to include. This list must be enclosed in brackets

and can be either space-delimited or comma-delimited. Include empty
brackets to not include subdata or for objects that do not have any
subdata sections.

"Filter" : Description of the filter to use for determining which objects to include.
This must be enclosed in double quotes. If no filter is to be used, empty
double quotes should be included. Valid entries are: "", "filtername",
"AREAZONE", and "SELECTED". See the Using Filters in Script

Commands section for more information on specifying the filtername.

Example:

<SUBDATA DataBlockDescription>

// ObjectType [FieldList] [SubdataList] "Filter"”

Area [AreaName, AreaNum] [] "'SELECTED"

Gen [BusNum, BusName, GenlD] [BidCurve, ReactiveCapability] ""
</SUBDATA>

AUXFileExportFormatDisplay

DataBlockDescription
Same format as for the AUXFileExportFormatData subdata section.

Example:

<SUBDATA DataBlockDescription>
// ObjectType [FieldList] [SubdatalList] "Filter™
DisplayArea [AreaName, AreaNum, SOAuxiliaryID] [] ™"
DisplayTransmissionLine [BusNum, BusNum:1, LineCircuit, SOAuxiliarylD]
[Line] "Nominal Voltage > 138 kV"
</SUBDATA>

BGCalculatedField

Condition

Calculated Fields allow you to define a calculation over most network and aggregation objects along with
a few other types of objects. The calculation can then be used to show an aggregation calculation on
objects that link to these calculation objects in some manner. Part of the definition is a filter which
specifies which objects to operate over. This subdata section is identical to the Condition subdata section
of the Filter object type.

87

o
wn

MWMarginalCostValues
MvarMarginalCostValues
LPOPFMarginalControls

These three sections contain specific values computed for an OPF solution. In MWMarginalCostValues or
MvarMarginalCostValues these specific values are the MW or Mvar marginal prices for each constraint. In
LPOPFMarginalControls the values are the sensitivities of the controls with respect to the cost of each bus.

Example:

<SUBDATA MWMarginalCostValues>
//Value
16.53
0.00
21.80
</SUBDATA>

BusViewFormOptions

BusViewBusField
BusViewFarBusField
BusViewGenField
BusViewLineField
BusViewLoadField
BusViewShuntField

The values represent specific fields on the custom defined bus view onelines. Each line contains two
values:

Location : The various locations on the customized bus view contain slots for fields. This
is the slot number.

FieldDescription : This is a string enclosed in double quotes. The string itself is delimited by the
@ character. The string contains five values:

Name of Field : The name of the field. Special fields that appear on dialog
by default have special names. Otherwise these are the
same as the fieldnames of the AUX file format (for the
"other fields" feature on the dialogs).

Total Digit - Number of total digits for a numeric field.
Decimal Points : Number of decimal points for a numeric field.
Color : This is the color of the field. It is not presently used.

Increment Value : This is the "delta per mouse" click for the field.

Example:

<SUBDATA BusViewLineField>
0 "MW Flow@6@1@0@0""
1 "Mvar Flow@6@1@0@0"
2 "MVA Flow@6@1@0@0""
3 "BusAngle:1@6@2@0@0""
</SUBDATA>

88

ColorMap

ColorPoint

A colorpoint is simply described by a real number (between 0 and 100) indicating the percentage
breakpoint, an integer describing the color, and a field indicating if the color should be used or the
contour should be transparent. These three values are written on a single line of text. Each line contains

two values:
cmvalue : Real number between 0 and 100 (minimum to maximum value).
cmcolor . Integer between 0 and 16,777,216. Value is determined by taking the red,

green and blue components of the color and assigning them a value between
0 and 255. The color is then equal to red + 256*green + 256*256*blue.

cmalpha . Integer between 0 and 255, where only 0 and 255 are valid values. A value of
0 indicates that the color point is transparent, while a value of 255 indicates
that the color point is opaque. If the alpha channel is omitted, a default value
of 255 (opaque) will be assigned.

Example:
<SUBDATA ColorPoint>
// Value Color Alpha
100.0000 127 255
62.5000 65535 255
50.0000 8388479 0O
12.5000 16711680 O
0.0000 8323072 255
</SUBDATA>

Contingency
CTGElementAppend

Normally when reading in contingency definitions, the CTGElement SubData section is used to define the
list of elements. When reading a CTGElement SubData section, all existing elements of the contingency
are deleted are replaced with the ones read from the file. Using the CTGElementAppend as the SubData
section will modify this behavior so that the elements are appended to the existing ones instead of
deleted.

CTGElement

A contingency element is described by up to the following entries. All entries must be on a single line of
text:
"Action” "ModelCriteria" Status InclusionFilter TimeDelay Persistent ArmingCriteria ArmingStatus //comment

Action : String describing the action associated with this element. See below for
actions available.
ModelCriteria . This is the name of a ModelFilter or ModelCondition under which this action

should be performed. This entry is optional. If it is not specified, then a blank
(or no criteria) is assumed. If you want to enter a Status, then use must specify
"" as the ModelCriteria.

89

Status

InclusionFilter

TimeDelay

Persistent

ArmingCriteria

ArmingStatus

Comment

Possible Actions:

: The following options are available:

CHECK — perform action if ModelCriteria is true
ALWAYS — perform action regardless of ModelCriteria
NEVER — do not perform action
TOPOLOGYCHECK - perform action if ModelCriteria is true following
implementation of other actions and before solving the
power flow
POSTCHECK — perform action if ModelCriteria is true following
implementation of other actions and solving the power flow
SOLUTIONFAIL - perform the action if ModelCriteria is true or not defined
following the failure of the power flow solution.
This entry is optional. If it is not specified, then CHECK is assumed.

: This entry is optional and will only exist for elements of RemedialAction or

GlobalContingencyActions objects. This is the name of an advanced filter or
device filter that gets applied to each contingency. If the contingency meets
the filter, that contingency will include this element. Otherwise, the element
will be ignored.

: This entry is optional. If not specified, 0 is assumed. This entry will only exist

for elements of Contingency, RemedialAction, or GlobalContingencyActions
objects. This is the time delay in seconds to wait before the action takes place.

: This entry is optional. It not specified, NO is assumed. Normally after a

contingency action has been implemented it will not be applied again. Setting
this option to YES to mark an action as persistent will change this behavior.
Any action marked as persistent that also has a Status of TOPOLOGYCHECK,
POSTCHECK, or SOLUTIONFAIL will be applied in the appropriate section of
the overall contingency process any time that its ModelCriteria is met. An
exception is that a SOLUTIONFAIL element will only remain persistent until a
solution is successfully achieved.

: This entry is optional and will only exist for elements of RemedialAction

objects. This is the name of a ModelFilter or ModelCondition under which this
action should be armed. [f it is not specified, then a blank (or no criteria) is
assumed. If you want to enter a ArmingStatus, then use must specify "" as the
ArmingCriteria.

. This entry is optional and will only exist for elements of RemedialAction

objects. If not specified, CHECK is assumed.

The following options are available:
CHECK — action is armed if ArmingCriteria is true
ALWAYS —action is considered armed regardless of ArmingCriteria
NEVER — action is not armed

: All text to the right of the comment symbol (//) will be saved with the

CTGElement as a comment.

Many actions have a value field that can be specified. This value can be expressed in three ways:
1. A numerical value that will be used directly.
2. The variablename of a field for the object in the action preceded by the tag <Field>.
This field will be evaluated and that value will be used. Including the keyword REF in the
appropriate place in the action string will cause the field to be evaluated in the
contingency reference case. Otherwise, the field will be evaluated at the moment the
action is implemented.

90

3. The name of a Model Expression preceded by the tag <Expression>. Single quotes
should enclose the entirety of the tag and the name if the name contains spaces. The
model expression will be evaluated and the result will be used as the value. Including
the keyword REF in the appropriate place in the action string will cause the model
expression to be evaluated in the contingency reference case. Otherwise, the model
expression will be evaluated at the moment the action is implemented.

Transmission Line or Transformer outage or insertion

BRANCH | busl# bus2# ckt | OPEN
| | CLOSE
| | OPENCBS
| | CLOSECBS
| | SET_TO | value | LimitMVA | REF

Takes branch out of service, or puts it in service. The contingency rating of the branch
can also be set for the duration of the contingency using the SeT_To action. Note: bus#
values may be replaced by a string enclosed in single quotes where the string is the name
of the bus followed by an underscore character and then the nominal voltage of the bus.
These values may also be replaced by a string enclosed in single quotes which represents
the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be replaced by the
label of the branch.

Generator, Load, or Switched Shunt outage or insertion

GEN | bus# id | OPEN, CLOSE, OPENCBS, or CLOSECBS
LOAD | bus# id | OPEN, CLOSE, OPENCBS, or CLOSECBS
SHUNT | bus# id | OPEN, CLOSE, OPENCBS, or CLOSECBS
INJECTIONGROUP | name | OPEN, CLOSE, OPENCBS, or CLOSECBS

Takes a generator, load, or shunt out of service, or puts it in service. If specifying an
injection group, the status of all devices in the injection group will be changed. Note:
bus# values may be replaced by a string enclosed in single quotes where the string is the
name of the bus followed by an underscore character and then the nominal voltage of
the bus. These values may also be replaced by a string enclosed in single quotes which
represents the label of the bus. Also, the sequence [bus1# ckt] or [name] may be
replaced by the label of the device.

Generator, Load or Switched Shunt movement to another bus

For the following set of actions, all of the object types can use the same action keywords which are
associated with the value keyword following the actual value. The move is based on specifying a bus:

GEN | busil# | MOVE_P_TO | bus2# | value | MW | REF
LOAD |] MOVE_Q_TO | | | MVR |
SHUNT | | I | I I

For the following set of actions, all of the object types can use the same action keywords which are
associated with the value keyword following the actual value. The move is based on specifying a
particular device:

GEN | busl# id | MOVE_P_TO | bus2# | value | MW | REF
LOAD I | MOVE_Q_TO I I | MVR I
SHUNT | | | | | |

Generator actions that move a generator by a percentage only apply to the generator MW:
GEN | busl# | MOVE_P_TO | bus2# | value | PERCENT | REF
GEN | busi# id | MOVE_P_TO | bus2# | value | PERCENT | REF

The following set of actions are used for specifying a load move by maintaining a constant power

factor:
LOAD | busl# | MOVE_PQ_TO | bus2# | value | MW | REF
LOAD | busi# id | MOVE_PQ TO | bus2# | | mw |

The following set of actions apply to loads and shunts and are used to move a percentage of the

entire MW and Mvar output. The move is based on specifying a bus:
LOAD | busi# | MOVE_PQ_TO | bus2# ~ [value | PERCENT | REF
SHUNT | | | | | |

91

The following set of actions apply to loads and shunts and are used to move a percentage of the

entire MW and Mvar output. The move is based on specifying a particular device:
LOAD | busl# id | MOVE_PQ_TO | bus2# = | value | PERCENT | REF
SHUNT | | I | |

Use to move generation, load or shunt at a bus1 over to bus2. This can be used on a bus
or specific device basis in specifying what to move. Note: bus# values may be replaced
by a string enclosed in single quotes where the string is the name of the bus followed by
an underscore character and then the nominal voltage of the bus. These values may also
be replaced by a string enclosed in single quotes which represents the label of the bus.
When identifying specific devices, the device label can replace the bus number and device
id.

Generator, Load or Switched Shunt set or change a specific value

For the following set of actions, all of the object types can use the same action keywords which are
associated with the value keyword following the actual value. These changes are based on specifying

a bus:
GEN | bus# | SET_P_TO | value | MW | REF
LOAD | | SET_Q_TO | | MVR |
SHUNT | | CHANGE_P_BY | | Mw |
| | CHANGE_Q_BY | | MVR |

For the following set of actions, all of the object types can use the same action keywords which are
associated with the value keyword following the actual value. These changes are based on specifying

a bus:
GEN | bus# id | SET_P_TO | value | MW | REF
LOAD | | SET_Q_TO | | MVR |
SHUNT | | CHANGE_P_BY | | Mw |
| | CHANGE_Q_BY | | MVR |

The following set of actions are used to set or change the MW output of generation at a bus by a

percentage:
GEN | bus# | SET_P_TO | value | PERCENT | REF
GEN | | CHANGE_P_BY | | |

The following set of actions are used to set or change the MW output of a particular generator by a

percentage:
GEN | bus# id | SET_P_TO | value | PERCENT | REF
GEN | | CHANGE_P BY | | |

The following set of actions apply to loads and shunts and are used to set or change a percentage of

the entire MW and Mvar output. This based on specifying a bus:
LOAD | bus# | SET_PQ_TO | value | PERCENT | REF
SHUNT | | CHANGE_PQ_BY | | |

The following set of actions apply to loads and shunts and are used to set or change a percentage of

the entire MW and Mvar output. This based on specifying a specific device:
LOAD | bus# id | SET_PQ_TO | value | PERCENT | REF
SHUNT | | CHANGE_PQ_BY | |

The following set of actions are used to specify a load set or change by maintaining a constant power

factor. This is based on specifying a bus:
LOAD | bus# | SET_PQ_TO | value | Mw | REF
| | CHANGE_PQ_BY | | Mw I

The following set of actions are used to specify a load set or change by maintaining a constant power

factor. This is based on specifying a specific load:
LOAD | bus# id | SET_PQ_TO | value | Mw | REF
| | CHANGE_PQ_BY | | mw I

92

The following set of actions apply to generators and shunts and are used to set or change the

setpoint voltage of the devices at the specified bus:
GEN | bus# | SET_VOLT_TO | value | PU | REF
SHUNT | | CHANGE_VOLT_BY| I I

The following set of actions apply to generators and shunts and are used to set or change the

setpoint voltage of the specified device:
GEN | bus# id | SET_VOLT_TO | value | PU | REF
SHUNT | | CHANGE_VOLT_BY| I I

Note: bus# values may be replaced by a string enclosed in single quotes where the string
is the name of the bus followed by an underscore character and then the nominal voltage
of the bus. These values may also be replaced by a string enclosed in single quotes which
represents the label of the bus. When identifying specific devices, the device label can
replace the bus number and device id.

Bus outage causes all lines connected to the bus to be outage

BUS | bus# | OPEN
| OPENCBS

Takes all branches connected to the bus out of service. Also outages all generation, load,
or shunts attached to the bus. Note: bus# values may be replaced by a string enclosed in
single quotes where the string is the name of the bus followed by an underscore
character and then the nominal voltage of the bus. These values may also be replaced by
a string enclosed in single quotes which represents the label of the bus.

Interface outage or insertion

INTERFACE | name | OPEN
| CLOSE
| OPENCBS
| CLOSECBS

Takes all monitored branches in the interface out of service, or puts them all in service.
Open actions will also open all generators and loads contained in the interface including
generators and loads inside any injection groups or other interfaces. Note: the [name]
may be replaced by the label of the interface.

Interface change specific value

INTERFACE | name | CHANGE_P_BY | value | Option | REF | PPREF
| SET_P_TO | | | |

The following Option settings are allowed to set or change the MW flow of an interface

by or to a particular value:
MWMER I TORDEROPEN

Value will be interpreted as the amount of MW flow change or new MW flow.
The element in the interface with the highest participation factor will be opened,
followed by the second generator and so on. This will continue until the amount
of MW flow opened is as close to the desired amount as possible without
exceeding the amount of MW flow open. If an element will cause a change in
flow that is not in the desired direction, that element is not opened and the next

element is examined.
PERCENTMERITORDEROPEN or %MERITORDEROPEN

Same as MWMERITORDEROPEN except that the value will be interpreted as

percentage of the contingency reference state MW flow.
MWMER I TORDEROPENEXCEED

Same as MWMER I TORDEROPEN except that the amount of MW opened is allowed

to exceed the desired amount of change. Interface elements will be opened in

merit order until the desired amount is met or exceeded.
PERCENTMERITORDEROPENEXCEED or %MERITORDEROPENEXCEED

Same as MWMER I TORDEROPENEXCEED except that the value will be interpreted
as percentage of the contingency reference state MW injection.

93

MWEFFECTOPEN
Value that is specified with the action is the desired MW Effect that the action
should have. The participation factors defined with the interface elements will be
interpreted as effectiveness factors akin to transfer distribution factors. These
factors are supplied as input by the user when defining the interface. The
effectiveness factors are multiplied by the present MW flow of elements in the
interface to determine how much effect they will have if dropped. The flow of an
element is determined by its MW flow multiplied by the Weighting factor
specified with the element. If the effect of a particular element is in the opposite
direction of the desired effect, that element is skipped. The action will find the
smallest number of elements to drop that results in a total MW Effect that is
within 5% of the desired MW Effect, but does not exceed the desired MW Effect.

This option is not valid with SET_P_TO actions.
MWEFFECTOPENEXCEED

Same as MWEFFECTOPEN but it will ensure that the total MW Effect is within 5%
of the total desired MW Effect and also meets or exceeds the desired MW Effect.

This option is not valid with SET_P_TO actions.
MWBESTFITOPEN

Value will be interpreted as the amount of MW flow change or new MW flow.
When using this option the participation factors of interface elements do not
impact which elements are opened. The flow on an element, which is determined
by its MW flow multiplied by the weighting factor specified with the element, is
used to determine which elements should be opened. If the follow on an
element is in the appropriate direction to achieve the desired flow change on the
interface, that element is eligible fo being opened.

To determine if an element will actually be opened, the best fit algorithm
attempts to determine the combination of elements that will achieve the desired
flow change by opening the least amount of elements and achieving an actual
flow change within 5% fo the desired flow change without exceeding the desired

amount.
MWBESTF I TOPENEXCEED

Same as MWBESTFITOPEN except that the MW flow change is allowed to exceed

the desired amount of change.
PERCENTBESTFITOPEN or %BESTFITOPEN

Same as MWBESTFITOPEN except that the value will be interpreted as percentage

of the contingency reference state MW flow.
PERCENTBESTFITOPENEXCEED or %BESTFITOPENEXCEED

Same as PERCENTBESTFITOPEN except that the MW flow change is allowed to
exceed the desired amount of change.

When using an action that requires participation factors, an optional parameter PPREF
can be specified. This indicates that the participation factors should be determined in the

contingency reference case.

Interfaces can contain other interfaces. The treatment of interfaces within interfaces is to
open the entire contained interface when using the MIMER I TORDEROPEN type actions.

Notes: The [name] may be replaced by the label of the interface.

94

Line Shunt outage or insertion

LINESHUNT | busl# bus2# bus# ckt | OPEN
| CLOSE

Takes a line shunt out of service, or puts it in service. bus1# and bus2# identify the line
that the line shunt is on and bus# identifies the side of the line that the line shunt is on.
bus# values may be replaced by a string enclosed in single quotes where the string is the
name of the bus followed by an underscore character and then the nominal voltage of
the bus. bus# values may also be replaced by a string enclosed in single quotes that
represents the label of the bus. The sequence [bus1# bus2#] may be replaced by the
label of the line to which the line shunt is attached.

Injection Group outage or insertion

INJECTIONGROUP | name | OPEN
] CLOSE | value | REF | PPREF
| OPENCBS
] CLOSECBS
| OPEN | value | REF | PPREF

Takes all devices in the injection group out of service, or puts them all in service.

The OPEN action will open all devices in the injection group if no value is specified. If a
value is specified, only that number of devices will be opened in the order of highest to
lowest participation factor.

The CLOSE action will close all devices in the injection group if no value is specified. If a
value is specified, only that number of devices will be closed in the order of highest to
lowest participation factor.

When using an action that requires participation factors, an optional parameter PPREF
can be specified. This indicates that the participation factors should be determined in the
contingency rerference case. This will only be done for participation points using an
AutoCalcMethod that indicates the factor should be dynamically determined and the
AutoCalc field is set to YES for the participation point.

Notes: The [name] may be replaced by the label of the injection group. Bus participation
points will be completely ignored in this process.

Injection Group change specific value

INJECTIONGROUP | name | CHANGE_P BY | value | Option | REF | PPREF
| SET_P_TO | | | |

The following Option settings are allowed to set or change the MW generation/load in
an injection group by or to a particular value:

Value will be interpreted as the amount of MW injection change or new MW
injection. Each participation point in the injection group will be changed in
proportion to the participation factors of the group.

PERCENT or %
Same as MW except that the value will be interpreted as percentage of the

contingency reference state MW injection.
MWMER I TORDER

Value will be interpreted as the amount of MW injection change or new MW
injection. Both generator and load points will be modified in the injection group.
Elements will be adjusted in order of highest participation factor to lowest before
moving to the next element. This process continues until the desired injection is
met. Generators will not be opened in this process, which means all online
generators will continue to provide Mvar support. Loads that have both their
minimum and maximum MW limits set to zero will not be allowed to increase.
They can only decrease towards 0.

95

PERCENTMERITORDER or %MERITORDER
Same as MWMER I TORDER except that the value will be interpreted as percentage

of the contingency reference state MW injection.
MWMER I TORDEROPEN

Value will be interpreted as the amount of MW injection change or new MW
injection. Both generator and load points can be modified in the injection group.
If the MW injection change is negative, the generator in the injection group with
the highest participation factor will have its status changed to Open, followed by
the second generator and so on. This will continue until the amount of MW
opened is as close to the desired amount as possible without exceeding the
desired amount of drop. If the MW injection change is positive, loads will be
opened in the same manner. If an element would cause the desired gen drop
amount to be exceeded, that element is skipped and the next element in merit
order is processed. If the change requested is positive and there are no loads in
the injection group, generators will be increased toward their maximum MW
output in the same manner as MWMERITORDER as though the OPEN option was
not specified. If the change requested is negative and there are no generators in
the injection group, loads will be increased toward their maximum MW output in
the same manner as MWMER I TORDER as though the OPEN option was not
specified.

PERCENTMERITORDEROPEN or %MERITORDEROPEN
Same as MWMER I TORDEROPEN except that the value will be interpreted as

percentage of the contingency reference state MW injection.
MWMER 1 TORDEROPENEXCEED

Same as MWMER I TORDEROPEN except that the amount of MW opened is allowed
to exceed the desired amount of change. Generators or loads will be opened in

merit order until the desired amount is met or exceeded.
PERCENTMERI TORDEROPENEXCEED or %MERITORDEROPENEXCEED

Same as MWMER I TORDEROPENEXCEED except that the value will be interpreted

as percentage of the contingency reference state MW injection.
MWEFFECTOPEN

Value that is specified with the action is the desired MW Effect that the action
should have. The participation factors defined with the Injection Group will be
interpreted as effectiveness factors akin to transfer distribution factors. These
factors are supplied as input by the user when defining the injection group. The
effectiveness factors are multiplied by the present output of generators (or loads)
in the injection group to determine how much effect they will have if dropped.
The action will find the smallest number of generators (or loads) to drop which
results in a total MW Effect that is within 5% of the desired MW Effect, but does
not exceed the desired MW Effect.

This option is not valid with SET_P_TO actions.
MWEFFECTOPENEXCEED

Same as MWEFFECTOPEN but it will ensure that the total MW Effect is within 5%
of the total desired MW Effect and also meets or exceeds the desired MW Effect.

This option is not valid with SET_P_TO actions.
MWBESTFITOPEN

Value will be interpreted as the amount of MW injection change or new MW
injection. When using this option the participation factors do not impact which
elements are opened. All generators or loads defined with the injection group
can participate if they are online. Specifially which generators or loads depends
on an algorithm that attempts to get the actual injection change within 5% of the
desired injection change by opening the smallest number of generators or loads
without exceeding the desired amount.

96

MWBESTFITOPENEXCEED
Same as MWBESTFITOPEN except that the MW injection change is allowed to

exceed the desired amount of change.
PERCENTBESTFITOPEN or %BESTFITOPEN

Same as MWBESTFITOPEN except that the value will be interpreted as percentage

of the contingency reference state MW injection.
PERCENTBESTFITOPENEXCEED or %BESTFITOPENEXCEED

Same as PERCENTBESTFITOPEN except that the MW injection change is
allowed to exceed the desired amount of change.

When using an action that requires participation factors, an optional parameter PPREF
can be specified. This indicates that the participation factors should be determined in the
contingency reference case. This will only be done for participation points using an
AutoCalcMethod that indicates the factor should be dynamically determined and the
AutoCalc field is set to YES for the participation point.

Injection Groups can contain participation points that reference another injection group.
The treatment of injection groups within injection groups will be to drop the entire
contained injection group when using the MWMERITORDEROPEN and MWEFFECTOPEN
type actions.

Notes: The [name] may be replaced by the label of the injection group. Bus participation
points will be completely ignored in this process.

Series Capacitor Bypass or Inservice

SERIESCAP | busl# bus2# ckt | BYPASS
| INSERVICE

Bypasses a series capacitor, or puts it in service. Note: bus# values may be replaced by a
string enclosed in single quotes where the string is the name of the bus followed by and
underscore character and then the nominal voltage of the bus. Note: bus# values may
also be replaced by a string enclosed in single quotes which represents the label of the
bus. Also, the entire sequence [bus1# bus2# ckt] may be replaced by the label of the
branch.

Keyword SERIESCAP may also be replaced with BRANCH, which will allow bypassing or
not bypassing any branch and is not limited to series capacitors.

Series Capacitor set impedance

SERIESCAP | busl# bus2# ckt | SET_X_TO | value | PERCENT | REF
| | | PU |

Changes the impedance a series capacitor either specifying a new per unit value or
specifying a percentage of the value in the contingency reference case. Note: bus# values
may be replaced by a string enclosed in single quotes where the string is the name of the
bus followed by and underscore character and then the nominal voltage of the bus.

Note: bus# values may also be replaced by a string enclosed in single quotes which
represents the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be
replaced by the label of the branch.

Keyword SERIESCAP may also be replaced with BRANCH, which will allow setting the
impedance of any branch and is not limited to series capacitors.

97

DC Transmission or VSC DC Transmission Line outage

DCLINE | busl# bus2# ckt | OPEN

| OPENCBS
VSCDCLINE | “Name® | OPEN

| OPENCBS

Takes DC Line or VSC DC Line out of service. Note: bus# values may be replaced by a
string enclosed in single quotes where the string is the name of the bus followed by an
underscore character and then the nominal voltage of the bus. These values may also be
replaced by a string enclosed in single quotes which represents the label of the bus. Also,
the entire sequence [bus1# bus2# ckt] may be replaced by the label of the dc
transmission line.

For the VSC DC Line, the identifiers are replaced simply with the name of the VSCDCLINE
instead. (VSC DC Line actions added in January 11, 2018 patch of Simulator 20)

DC Line set a specific value or insertion

DCLINE | busl# bus2# ckt | SET_P_TO | value | MW | REF

| CHANGE_P_BY | | PERCENT

| SET_1_TO | | AVPS

| CHANGE_I_BY |

| CLOSE |

| CLOSECBS |

| SET_TO | value | OHMS | REF
VSCDCLINE | “Name*® | Same options as for the DC Line, except that

the AMPS option are not avaliade for VSC

Use to set the DC Line setpoint to a particular value, or puts it in service. Note: bus#
values may be replaced by a string enclosed in single quotes where the string is the name
of the bus followed by an underscore character and then the nominal voltage of the bus.
Note: bus# values may also be replaced by a string enclosed in single quotes which
represents the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be
replaced by the label of the dc transmission line. (Note: for the CLOSE and CLOSECBS
choice, only the units of MW or AMPS may be used.)

For the VSC DC Line, the identifiers are replaced simply with the name of the VSCDCLINE
instead. (VSC DC Line actions added in January 11, 2018 patch of Simulator 20)

MTDC Converter outage

DCCONVERTER | rec# bus# | OPEN
| OPENCBS

Takes multi-terminal DC converter out of service. The rec# specifies the multi-terminal
DC line record, while bus# specifies the AC bus to which the converter is connected.
Note: bus# values may be replaced by a string enclosed in single quotes where the string
is the name of the bus followed by an underscore character and then the nominal voltage
of the bus. These values may also be replaced by a string enclosed in single quotes which
represents the label of the bus.

MTDC Converter set a specific value or insertion

DCCONVERTER | rec# bus# | SET_P_TO | value | MW | REF
| CHANGE_P BY | | PERCENT
| SET_1_TO I | AMPS
| CHANGE_I BY |
| |
|

CLOSE
| CLOSECBS

Use to set the multi-terminal DC converter setpoint to a particular value, or puts it in
service. The rec# specifies the multi-terminal DC line record, while bus# specifies the AC
bus to which the converter is connected. Note: bus# values may be replaced by a string
enclosed in single quotes where the string is the name of the bus followed by an
underscore character and then the nominal voltage of the bus. Note: bus# values may
also be replaced by a string enclosed in single quotes which represents the label of the
bus. (Note: for the CLOSE and CLOSECBS choice, only the units of MW or AMPS may be
used.)

98

Phase Shifter set a specific value

PHASESHIFTER| busil# bus2# ckt | SET_P_TO | value | MW | REF
| CHANGE_P BY | | PERCENT
| SET_TO | value | DEG | REF
| CHANGE_BY I I I

Use the MW and PERCENT options to change or set the middle of the phase shifter MW
regulation range to the specified value.

Use the DEG option to change or set the phase shift angle in degrees to a particular
value.

Note: bus# values may be replaced by a string enclosed in single quotes where the string
is the name of the bus followed by an underscore character and then the nominal voltage
of the bus. These values may also be replaced by a string enclosed in single quotes which
represents the label of the bus. Also, the entire sequence [bus1# bus2# ckt] may be
replaced by the label of the branch.

Keyword PHASESHIFTER may also be replaced with BRANCH. If the branch is not a phase
shifter, no change will be made.

3-Winding Transformer outage or insertion

3WXFORMER | busi# bus2# bus3# ckt | OPEN
| CLOSE
| OPENCBS
| CLOSECBS

Takes all three windings of a 3-winding transformer out of service, or puts them in
service. Note: bus# values may be replaced by a string enclosed in single quotes where
the string is the name of the bus followed by an underscore character and then the
nominal voltage of the bus. Note: bus# values may also be replaced by a string enclosed
in single quotes which represents the label of the bus. Also, the entire sequence [bus1#
bus2# bus#3 ckt] may be replaced by the label of the three winding transformer.

Area Control Type Change
AREA | area# | SET_TO

| "OFF*®

| "PARTFAC*

| "AREASLACK bus#*

] "IGSLACK injectiongroup name*”

Specify to change the make-up power for an area so that it is different during a
contingency than the area control settings used in the reference case. The area may be
set to toggle the control setting to OFF, PARTFAC, AREASLACK, and IGSLACK. The Area
Control topic provides more information about these control types. If selecting Area Slack
is chosen, then a bus must be specified which will act as the area slack during the
contingency action. If selecting IG Slack, then an injection group must be specified by
name.

Note: bus# values may be replaced by a string where the string is the name of the bus
followed by an underscore character and then the nominal voltage of the bus. Note:
bus# values may also be replaced by a string which represents the label of the bus.

In order for the Area contingency action to work correctly, there are contingency and
power flow solution options that must be set correctly. Simulator does not automatically
set these options so the user must make sure they are set.

e Area control must be enabled in the contingency base case, i.e. the Power Flow
Solution Option for Island-Based AGC must be set to Disable (Use the Area and
Super Area Dispatch settings).

e The contingency Make-Up Power option must be set to Same as Power Flow
case.

e The option to Disable Automatic Generation Control (AGC) found with the Power
Flow Solution Options must NOT be selected.

99

Another suggestion, although not a strict requirement, is that the area should be on area
control prior to contingency analysis if a control type other than Off AGC is going to be
set during a contingency. If a large ACE exists in the base case with area control off,
switching the area on control during the contingency will zero out the ACE in addition to
compensating for required make-up power.

Substation outage

SUBSTATION | sub# | OPEN
| OPENCBS
| SET_P_TO | value | MW | REF
| CHANGE_P BY | | PERCENT

OPEN and OPENCBS will take a substation out of service.

The set and change actions will set the MW output of online generators in the substation
to the specified value.

sub# is the number that identifies the substation. sub# can be replaced by a string
enclosed in single quotes where the string is the name or label of the substation.

Abort
| ABORT
Include this action to cause the solution of the contingency to be aborted.

Execute a Power Flow Solution

| SOLVEPOWERFLOW
Include this action to cause the solution of the contingency to be split into pieces.
Actions that are listed before each SOLVEPOWERFLOW call will be performed as a group.

Calling of a name ContingencyBlock
| CONTINGENCYBLOCK | name
Calls a ContingencyBlock and executes each of the actions in that block.

Make-Up Power Compensation.

Only valid immediately following a SET, CHANGE, OPEN or CLOSE action on a
Generator, Shunt or Load. This describes how the change in MW or MVAR are
picked up by buses throughout the system. The values specify participation
factors. Note: bus# values may be replaced by a string enclosed in single quotes
where the string is the name of the bus followed by and underscore character

and then the nominal voltage of the bus.
COMPENSATION
bus#1 valuel
bus#2 value2

END

Example:

<SUBDATA CTGElement>
// just some comments
// action Model Criteria Status TimeDelay comment
"BRANCH 40821 40869 1 OPEN"™ " ALWAYS O //Raver - Paul 500 kV
"GEN 45041 1 OPEN" e ALWAYS O //Trip Unit #2
"BRANCH 42702 42727 1 OPEN"™ "Line X Limited™ CHECK O //Open Fern Hill
"GEN 40221 1 OPEN" "Interface L1" CHECK O //Drop ~600 MW
"GEN 40227 1 OPEN" "Interface L2" CHECK O //Drop ~1200 MW
"GEN 40221 1 OPEN" "Interface L3" CHECK O //Drop ~600 MW

</SUBDATA>

Note: ContingencyElement object types can also be directly created inside their own DATA section as well.
One of the key fields of the object is then the name of the contingency to which the ContingencyElement
belongs. The Action string will remain the same.

100

LimitViol

A LimitViol is used to describe the results of a contingency analysis run. Each Limit Violation lists nine

possible values:
ViolType

ViolElement

Limit
ViolValue
PTDF

OTDF
InitialValue

Reason

CTG Specified Limit

: One of six values describing the type of violation.

BAMP — branch amp limit violation
BMVA - branch MVA limit violation
VLOW - bus low voltage limit violation
VHIGH - bus high voltage limit violation
INTER — interface MW limit violation
CUSTOM - Custom Monitor value

. This field depends on the ViolType.

for VLOW, VHIGH - "bus1#" or "busname_buskv" or "buslabel"
for INTER - "interfacename" or "interfacelabel”
for BAMP, BMVA - "bus1# bus2# ckt violationbus# MWFlowDirection"
violationbus# is the bus number for the end of the branch which is
violated

MWFlowDirection is the direction of the MW flow on the line. Potential
values are "FROMTO" or "TOFROM".

Note: each bus# may be replaced with the name underscore nominal kV
string enclosed in single quotations. Or bus# values may be replaced
by a string enclosed in single quotes representing the label of the
bus. Also the entire sequence [bus1# bus2# ckt] may be replaced by
the label of the branch.

for CUSTOM - "custommonitorname deviceidentifier" where the
deviceidentifier will use the key fields or label as specified by the
option selected when saving

. This is the numerical limit which was violated.
: This is the numerical value of the violation.
. This field is optional. It only makes sense for interface or branch violations. It

stores a sensitivity of the flow on the violating element during in the base case
with respect to a transfer direction This must be calculated using the
Contingency Analysis Other Actions related to Sensitivities.

. Same as for the PTDF.
: This stores a number. This stores the base case value for the element which is

being violated. This is used to compare against when looking at change
violations.

: This will say whether this was a pure violation, or is being reported as a

violation because the change from the base case is higher than a specified
threshold.
LIMIT — means this is a violation of a line/interface/bus limit or simply a
Custom Monitor
CHANGE — means this is being reported as a limit because the change from
the initial value is higher than allowed
: This specifies if the Limit originated from a contingency action or from
the rating specified with the line and Limit Monitoring Settings.
NO - the Limit originated from the line and Limit Monitoring Settings
YES - the Limit originated from a contingency action

101

Example:

<SUBDATA LimitViol>
BAMP "1 3 1 1 FROMTO™ 271.94031 398.48096 10.0 15.01 //Note OTDF/PTDF
// values can also be specified with name underscore nominal kV string
// enclosed inside a single quote as shown next
BAMP """One_138" "Three_138" 1 1 FROMTO" 271.94031 398.48096 10.0 15.01
INTER "Right-Top"™ 45.00000 85.84451 None None 56.000 LIMIT NO
</SUBDATA>

Note: ViolationCTG object types can also be directly created inside their own DATA section as well. One
of the key fields of the object is then the name of the contingency to which the ViolationCTG belongs.

Sim_Solution_Options
These describe the power flow solution options which should be used under this particular contingency.
The format of the subdata section is two lines of text. The first line is a list of the fieldtypes for
Sim_Solution_Options which should be changed. The second line is a list of the values. Note that in
general, power flow solution options are stored at three different locations in contingency analysis. When
implementing a contingency, Simulator gives precendence to these three locations in the following order:
1. Contingency Record Options (stored with the particular contingency).
2. Contingency Tool Options (stored with CTG_Options).
3. The global solution options.

WhatOccurredDuringContingency

Each line of this subdata section is part of a text description of what actually ended up being
implemented for this contingency. This will list which actions were executed and which actions ended up
being skipped because of their model criteria. Each line of the subdata section must be enclosed in

quotes.
Example:
<SUBDATA WhatOccurredDuringContingency>
“"Applied: "
" OPEN Branch Two (2) TO Five (5) CKT 1 | | CHECK | | ELEMENT"
</SUBDATA>

ContingencyMonitoringException

Each line of this subdata section contains a string identifying a specially handled monitored element for
this contingency followed by a string indicating how this monitored element should be handled with this
contingency. The elements can be identified by their primary or secondary key fields or by label. The
element descriptions should be enclosed in quotes because they contain spaces.

Example:

<SUBDATA ContingencyMonitoringException>
"Branch "2 "3" "1°" "Exclude"
"Branch "Three_138.00" "Four_138.00"" *"Include™
"Branch "Line_2 5"" "Default”

</SUBDATA>

CTG Options
Sim_Solution_Options
These describe the power flow solution options which should be used under this particular contingency.
The format of the subdata section is two lines of text. The first line is a list of the fieldtypes for
Sim_Solution_Options which should be changed. The second line is a list of the values. Note that in
general, power flow solution options are stored at three different locations in contingency analysis. When
implementing a contingency, Simulator gives precendence to these three locations in the following order:
1. Contingency Record Options (stored with the particular contingency).
2. Contingency Tool Options (stored with CTG_Options).
3. The global solution options.

102

CTGElementBlock
CTGElement

This format is the same as for the Contingency objecttype, however, you cannot call a ContingencyBlock
from within a contingencyblock.

CTGElementAppend

When a subdata section is defined as CTGElementAppend rather than CTGElement, the actions of this subdata
section will be appended to the contingency actions, instead of replacing them. This format is the same as for the
Contingency objecttype, however, you cannot call a ContingencyBlock from within a contingencyblock.

Note: CTGElementBlockElement object types can also be directly created inside their own DATA section as
well. One of the key fields of the object is then the name of the contingency block to which the

CTGElementBlockElement belongs.

CustomColors

CustomColors

These describe the customized colors used in Simulator, which are specified by the user. A custom color
is an integer describing a color. Each custom color is written on a single line of text and is an integer
between 0 and 16,777,216. The value is determined by taking the red, green, and blue components of the
color and assigning them a value between 0 and 255. The color is then equal to red + 256*green +
256*256*blue. Each line contains only one integer that corresponds to the color specified.

Example:

<SUBDATA CustomColors>
9823301
8613240

</SUBDATA>

CustomCaselnfo

Columninfo

Each line of this SUBDATA section can be used for specifying the column width of particular columns of
the respective Custom Case Information Sheet. The line contains two values — the column and then a
column width. This is shown in the following example.

Example:
<SUBDATA Columninfo>
""SheetCol™ 133
""SheetCol:1" 150
""'SheetCol:2" 50
</SUBDATA>
DataGrid

Columnlinfo

Contains a description of the columns which are shown in the respective data grid. Each line of text
contains at least four fields: VariableName, ColumnWidth, TotalDigits, DecimalPoints. The remaining
fields are used when showing a Data View based on this DataGrid object. See help website for Data View
or the OpenDataView script command for more information about this.

Variablename
ColumnWidth
TotalDigits

DecimalPoints

: Contains the variable which is shown in this column.
. The column width.

. The total digits displayed for numerical values.

: The decimal points shown for numerical values.

103

TabBreak . Optional. Default to NO. Set to YES to indicate that a new tab should be
started immediately before this field.

TabCaption : Optional. Default to blank string. Specifies a caption for the tabbed control
for fields occurring after the Tab Break.

RowBreak : Optional. Default to NO. Set to YES to indicate that a new row should be
started immediately before this field.

RowCaption : Optional. Default to blank string. Specifies a caption for a group box for the
fields occurring after the row break.

ColBreak : Optional. Default to NO. Set to YES to indicate that a new Column should be

started immediately before this field. Also, a special feature for column breaks
only is you may specify a number after YES to indicate multiple column breaks
to skip over a column. For example "YES 2" to skip a column because there
are 2 consecutive column breaks.
RowCaption . Optional. Default to blank string. Specifies a caption for a group box for the
fields occurring after the column break.
Example:

DATA (DataGrid, [DataGridName])

BUS
<SUBDATA COLUMNINFO>
BusNomVolt 100 8 2

AreaNum 50 8 2 "YES" "Tab Caption™ "NO™ ™" "NO™ "
ZoneNum 50 8 2

</SUBDATA>

BRANCHRUN

<subdata COLUMNINFO >
BusNomVolt:0 100 8 2

BusNomVolt:1 100 8 2 "NO" ™ “NO" "™ "YES 2" "Col Caption”
LineMw:0 100 9 3 "NO" "™ "YES" “"Row Caption” "NO" "
</SUBDATA>

}

DynamicFormatting

DynamicFormattingContextObject

This subdata section contains a list of the display object types which are chosen to be selected. Each line
of the section consists of the following:
DisplayObjectType (WhichFields) (ListOfFields)
DisplayObjectType : The object type of the display object. These are generally the same as the
values seen in the subdata section SelectByCriteriaSetType of
SelectByCriteriaSet object types. The only exception is the string Caselnfo,
which is used for formatting applying to the case information displays.
(WhichFields) . For display objects that can reference different fields, this sets which of
those fields it should select (e.g. select only Bus Name Fields). The value
may be either ALL or SPECIFIED.
(ListOfFields) . If WhichFields is set to SPECIFIED, then a delimited list of fields follows.

104

Example:

<SUBDATA DynamicFormattingContextObject>
// Note: Caselnfo applies to case information displays
Caselnfo "SPECIFIED" BusName
DisplayAreaField "ALL™
DisplayBus
DisplayBusField "SPECIFIED" BusName BusPUVolt BusNum
DisplayCircuitBreaker
DisplaySubstation
DisplaySubstationField "SPECIFIED"™ SubName SubNum BusNomVolt BGLoadMVR
DisplayTransmissionLine
DisplayTransmissionLineField "ALL"
</SUBDATA>

LineThicknessLookupMap
LineColorLookupMap
FillColorLookupMap
FontColorLookupMap
FontSizeLookupMap
BlinkColorLookupMap
XoutColorLookupMap
FlowColorLookupMap

SecondaryFlowColorLookupMap

The values of the lookup table for the characteristics that can be modified by the dynamic formatting tool.
The first line contains the two following fields:

fieldname . Itis the field that the lookup table is going to look for.
usediscrete : Setto YES or NO. If set to YES, the characteristic values will be discrete,
meaning that the characteristic value will correspond exactly to the one
specified in the table. If set to NO, the characteristic values will be
continuous, which means the characteristic value will be an interpolation of
the high and low closest values specified in the table.
The following lines contain two fields:

fieldvalue : The value for the field.
characteristicvalue : The corresponding characteristic value for such field value.
Example:

<SUBDATA LineColorLookupMap>
// FieldName UseDiscrete
BusPUVolt YES
// FieldvValue Color
1.02 16711808
1.05 8454143
1.1 16744703
</SUBDATA>

105

ilter

Condition

Conditions store the conditions of the filter. Each condition is described by one line of text which can

contain up to five fields:

variablename

Condition

value

(othervalue)

(FieldOpt)

. It is one of the fields for the object_type specified. It may optionally be

followed by a colon and a non-negative integer. If not specified, 0 is assumed.
Example: on a LINE, 0 = from bus, 1 = to bus
Thus: sgLineMW:0 = the MW flow leaving the from bus
SglLineMW:1 = the MW flow leaving the to bus
Note: this value may also be the string "_UseAnotherfilter" which would then
be followed by either meets or notmeets and then the name of another Filter.
Possible Values Alternate Alternate2 Requirements
between >< requires othervalue
notbetween ~>< requires othervalue
equal =
notequal <
greaterthan >
lessthan <
>
<

2

>

greaterthanorequal
lessthanorequal
about requires othervalue
notabout requires othervalue
contains

notcontains

startswith

notstartswith

inrange

notinrange

meets

notmeets

isblank

notisblank

: The value used for comparison.

For fields associated with strings, this must be a string.
For fields associated with real numbers, this must be a number.
For fields associated with integers, this is normally an integer, except when
the Condition is "inrange" or "notinrange”. In this case, value is a
comma/dash separated number string.
If required, the other value used for comparison. For conditions "about" and
“notabout” this is the tolerance with which the value should be equal or not
equal.

: Optional string with following meanings.

= ABS - strings are case sensitive, take ABS of field values (older files may
have had an integer 1 as well)

*= Not specified means that strings are case insensitive, use number fields
directly (older files may have had an integer 0 as well)

106

Example:

DATA (FILTER, [objecttype, filtername, filtertype, prefilter])
{
BUS "a bus filter™ "AND" ""no"
<SUBDATA CONDITION>
BusNomVolt > 100
AreaNum inrange "1 -5, 7 , 90-95"
ZoneNum between
</SUBDATA>
BRANCH "a branch filter™ "OR"™ "no"
<subdata CONDITION>

BusNomVolt:0 > 100 // Note location 0O means from bus
BusNomVolt:1 > 100 // Note location 1 means to bus
LineMW:0 > 100 1 // Note, final field 1 denotes absolute value
_UseAnotherFilter meets
</SUBDATA>
3
Gen
BidCurve

BidCurve subdata is used to define a piece-wise linear cost curve (or a bid curve). Each bid point consists
of two real numbers on a single line of text: a MW output and then the respective bid (or marginal cost).
Example:

<SUBDATA BidCurve>
// W Price[$/MWhr]
100.00 10.6
200.00 12.4
400.00 15.7
500.00 16.0
</SUBDATA>

ReactiveCapability

Reactive Capability subdata is used to the reactive capability curve of the generator. Each line of text
consists of three real numbers: a MW output, and then the respective Minimum MVAR and Maximum
MVAR output.

Example:

<SUBDATA ReactiveCapability>
// MWW MinMVAR MaxMVAR
100.00 -60.00 60.00
200.00 -50.00 50.00
400.00 -30.00 20.00
500.00 - 5.00 2.00
</SUBDATA>

Note: ReactiveCapability object types can also be directly created inside their own DATA section as well.
Two of the key fields of the object are then the bus number and generator ID of the generator to which
the ReactiveCapability point belongs.

107

GeoDataViewStyle

TotalAreaValueMap

This subdata section is used to define the lookup table for determining the total area size of geographic
data view objects based on the value of a selected field. Two values are entered for each mapping:

FieldValue: Value of the field selected for the Total Area attribute.
TotalArea: The total area size of the object.

Example:

<SUBDATA TotalAreaValueMap>
// Fieldvalue TotalArea
1.000 0O

4.000 23

7.000 46

</SUBDATA>

RotationRateValueMap

This subdata section is used to define the lookup table for determining the rotation rate of geographic
data view objects based on the value of a selected field. Two values are entered for each mapping:

FieldValue: Value of the field selected for the Rotation Rate attribute.
RotationRate: The rotation rate of the object. Entered in Hz.

Example:

<SUBDATA RotationRateValueMap>
// Fieldvalue RotationRate
1.000 0.00

4.000 0.10

7.000 0.20

</SUBDATA>

RotationAngleValueMap

This subdata section is used to define the lookup table for determining the rotation angle of geographic
data view objects based on the value of a selected field. Two values are entered for each mapping:

FieldValue: Value of the field selected for the Rotation Angle attribute.
RotationAngle: The rotation angle of the object. Entered in degrees.

Example:

<SUBDATA RotationAngleValueMap>
// Fieldvalue RotationAngle
1.000 -90.0

4.000 0.0

7.000 90.0

</SUBDATA>

108

LineThicknessValueMap

This subdata section is used to define the lookup table for determining the thickness of the border line
around geographic data view objects based on the value of a selected field. Two values are entered for
each mapping:

FieldValue: Value of the field selected for the Line Thickness attribute.
LineThickness: The line thickness of the border line around the object. This should be an integer
value.

Example:

<SUBDATA LineThicknessValueMap>
// FieldValue LineThickness
1.000 1

4.000 2

7.000 3

</SUBDATA>

GlobalContingencyActions

CTGElementAppend
This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed.
CTGElement

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed.

Note: GlobalContingencyActionsElement object types can also be directly created inside their own DATA section
as well.

HintDefValues
HintObject

Stores the values for the custom hints. Each line has one value:

FieldDescription : This is a string enclosed in double quotes. The string itself is delimited by the
@ character. The string contains five values:

Name of Field : The name of the field. Special fields that appear on dialog
by default have special names. Otherwise these are the
same as the fieldnames of the AUX file format (for the
"other fields" feature on the dialogs).

Total Digit : Number of total digits for a numeric field.

Decimal Points : Number of decimal points for a numeric field.

Include Suffix : Set to 0 for not including the suffix, and set to 1 to include
it.

Field Preffix : The prefix text.

Example:

<SUBDATA HintObject>
"BusPUVolt@4@1@1@PU Volt ="
"BusAngle@4@1@1@Angle ="

</SUBDATA>

109

InjectionGroup

PartPoint

A participation point is used to describe the contents of an injection group. Each participation point lists

six values:
PointType

PointBusNum

PointID

PointParFac
ParFacCalcType

: One of five values describing the type of point.

GEN : agenerator

LOAD : aload
SHUNT : a switched shunt
BUS : abus

INJECTIONGROUP : another injection group

: The bus number of the partpoint if the type is a GEN, LOAD, SHUNT, or BUS.

Value will be blank for an injection group type. Note: bus# values may be
replaced by a string enclosed in double quotes where the string is the name of
the bus followed by an underscore character and then the nominal voltage of
the bus. These values may also be replaced by a string enclosed in double
quotes that represents the label of the bus or a string representing the label of
the generator, load, or switched shunt.

. For GEN, LOAD, or SHUNT type, this is the id for the partpoint. For an

INJECTIONGROUP type, this is the name or label of the injection group. This is
blank for a BUS type.

. The participation factor for the point.
. How the participation factor is calculated. There are several options

depending on the PointType.

Generators : SPECIFIED, MAX GEN INC, MAX GEN DEC, or MAX

GEN MW

Loads : SPECIFIED or LOAD MW
Shunts : SPECIFIED, MAX SHUNT INC, MAX SHUNT DEC, or
MAX SHUNT MVAR
Bus : SPECIFIED
Injection Groups : SPECIFIED

All PointTypes can also set their participation factor based on a field
associated with the device. To specify this, the tag <Field> should be
followed by the variable name of the field: <Field>variablename. All
PointTypes can also set their participation factor based on a Model Expression.
To specify this, the tag <Expression> should be followed by the name of
the Model Expression: <Expression>ModelExpression.

ParFacNotDynamic: Should the participation factor be recalculated dynamically as the system
changes.
Example:

<SUBDATA PartPoint>
"GEN" 1 1" 1.00 "SPECIFIED" ""NO"
"GEN" 4 1" 104.96 ""MAX GEN INC™ "*NO"
"GEN" 6 "1'" 50.32 "MAX GEN DEC'" "YES"
"GEN" 7 "1 600.00 ""MAX GEN MW'™ **NO"
"LOAD"™ 2 "1™ 5.00 "SPECIFIED" ""NO"
"LOAD"™ 6 "1' 200.00 ""LOAD Mmw' "YES"

</SUBDATA>

Note: PartPoint object types can also be directly created inside their own DATA section as well. One of
the key fields of the PartPoint object is then the name of the injection group to which the participation

point belongs.

110

Interface

InterfaceElement

A interfaces’s subdata contains a list of the elements in the interface. Each line contains a text
descriptions of the interface element. Note that this text description must be encompassed by quotation
marks. There are eleven kinds of elements allowed in an interface. Please note that the direction
specified in the monitoring elements is important.

"BRANCH num1 num2 ckt"

"AREA num1 num2"

"ZONE num1 num2"

"BRANCHOPEN num1 num2 ckt" :

"BRANCHCLOSE num1 num2 ckt"

"DCLINE num1 num?2 ckt"
"INJECTIONGROUP 'name""

"GEN num1 id"

"LOAD num1 id"

"MSLINE num1 num2 ckt"

"INTERFACE 'name" "

"GENOPEN num1 id"

"LOADOPEN num1 id"

: Monitor the MW flow on the branch starting from bus num?

going to bus num2 with circuit ckt. (order of bus numbers
defines the direction)

: Monitor the sum of the AC branches that connect areal and

area?2.

: Monitor the sum of the AC branches that connect zone1 and

zone2.
When monitoring the elements in this interface, monitor them
under the contingency of opening this branch.

When monitoring the elements in this interface, monitor
them under the contingency of closing this branch.

: Monitor the flow on a DC line.
: Monitor the net injection from an injection group (generation

contributes as a positive injection, loads as negative).

: Monitor the net injection from a generator (output is positive

injection)

: Monitor the net injection from a load (output is negative

injection).

: Monitor the MW flow on the multi-section line starting from bus

num1 going to bus num2 with circuit ckt.

: Monitor the MW flow on the interface given by name.
: When monitoring the elements in this interface, monitor them

under the contingency of opening this generator.
(GENOPEN add in January 9, 2018 patch of Simulator 20)

. When monitoring the elements in this interface, monitor them

under the contingency of opening this load.
(LOADOPEN add in January 9, 2018 patch of Simulator 20)

Note: bus# values may be replaced by a string enclosed in single quotes where the string is the name of
the bus followed by an underscore character and then the nominal voltage of the bus. Labels may also be

use as follows.

e bus# values for all element types may be replaced by a string enclosed in single quotes where the

string is the label of the bus.

e for GEN or LOAD elements, the section num7 id may be replaced by the device's label.
e For MSLINE, DCLINE, or BRANCH elements, the num1 num2 ckt section may be replaced by the

device's label.

For the interface element type "BRANCH num1 num2 ckt" and "DCLINE num1 num2 ckt", an optional field
can also be written specifying whether the flow should be measured at the far end. This field is either YES

or NO.

111

Example:

<SUBDATA InterfaceElement
"BRANCH 8 9 1" NO // monitor the flow from bus 8 to bus 9 on this branch

"BRANCH 12 33 1" YES // monitor the flow from bus 12 to bus 33 on branch
// measurefarend is set to true, therefore, we are
// monitoring the MW flow that arrives at bus 33

// the following demonstrates the format when bus names and

// nominal voltages are used.

"BRANCH "Twelve_230" "name33_230" 1" YES

""AREA 2 1 // monitor tie line flow from area 2 to area 1

""ZONE 66 53" // monitor tie lines flows from zone 66 to zone 53

"BRANCHOPEN 5 6 1" // does monitoring after branch opens

"BRANCHCLOSE 7 10 1" // does monitoring after branch closes

"GENOPEN"™ 55 1" // does monitoring after generator opens
</SUBDATA>

Note: InterfaceElement object types can also be directly created inside their own DATA section as well.
One of the key fields of the InterfaceElement object is then the name of the interface to which the
interface element belongs.

KMLExportFormat

DataBlockDescription

This subdata section is used to describe the objects and fields that should be saved to a KML file. Same
format as for the AUXFileExportFormatData subdata section.

LimitSet

LimitCost

LimitCost records describe the piece-wise unenforceable constraint cost records for use by
unenforceable line/interface limits in the OPF or SCOPF. Each row contains two values

PercentLimit . Percent of the transmission line limit.
Cost : Cost used at this line loading percentage value.
Example:

<SUBDATA LimitCost>
//Percent Cost [$/MWhr]
100.00 50.00
105.00 100.00
110.00 500.00
</SUBDATA>

Load

BidCurve

BidCurve subdata is used to define a piece-wise linear benefit curve (or a bid curve). Each bid point
consists of two real numbers on a single line of text: a MW output and then the respective bid (or
marginal cost). These costs must be increasing for loads.

Example:

<SUBDATA BidCurve>
// W Price[$/MWhr]
100.00 16.0
200.00 15.7
400.00 12.4
500.00 10.6
</SUBDATA>

112

LPVariable
LPVariableCostSegment

Stores the cost segments for the LP variables. Each line contains four values:
Cost (Up) : Cost associated with increasing the LP variable.

Minimum value : Minimum limit of the LP variable.

Maximum value : Maximum limit of the LP variable.

Artificial : Whether the cost segment is artificial or not.
Example:
<SUBDATA LPVariableCostSegment>
//Cost(Up) MEInimum Maximum Artificial
-20000.0000 -10000000000.5801 -0.6000 YES
16.2343 -0.6000 0.0000 NO
16.5526 0.0000 0.6000 NO
16.8708 0.6000 1.2000 NO
17.1890 1.2000 1.8000 NO
17.5073 1.8000 2.4000 NO
20000.0000 2.4000 9999999999.4199 YES
</SUBDATA>

ModelCondition

Condition

ModelConditions are the combination of an object and a Filter. They are used to return when the
particular object meets the filter specified. As a result, the subdata section here mostly identical to the
Condition subdata section of a Filter. See the description there. There is one exception however with the

FieldOpt which has additional strings

(FieldOpt)

: Optional string with following meanings.

= ABS - strings are case sensitive, take ABS of field values (older files may
have had an integer 1 as well)

» REF — Means that the variablename is evaluated in the contingency
reference state

= ABSREF — means that both ABS and REF are being used

= Noting specified means that strings are case insensitive, use number
fields directly and values are evaluated as normal (older files may have
had an integer 0 as well)

113

ModelExpression

LookupTable

LookupTables are used inside Model Expressions sometimes. These lookup table represent either one or
two dimensional tables. If the first string in the SUBDATA section is "x1x2", this signals that it is a two
dimensional lookup table. From that point on it will read the first row as "x2" lookup points, and the first
column in the remainder of the rows as the x1 lookup values.

Example:

DATA (MODELEXPRESSION, [CustomExpression,ObjectType,CustomExpressionStyle,
CustomExpressionString,WhoAml ,VariableName,WhoAml :1,VariableName:1], AUXDEF)

// The following demonstrated a one dimensional lookup table
22.0000, "oneD'", 'Lookup'™, "', "Gen<KEY1>1</KEY1><KEY2>1</KEY2>",
""Gen<KEY1>1</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>'",6 "', 6 """
<SUBDATA LookupTable>
// because it does not start with the string x1x2 this will
// represent a one dimensional lookup table
x1 value
0.000000 1.000000
11.000000 22.000000
111.000000 222.000000
</SUBDATA>
0.0000, "twod", ''Lookup™, ",
"Gen<KEY1>1</KEY1><KEY2>1</KEY2>",
"'Gen<KEY1>1</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>",
"Gen<KEY1>6</KEY1><KEY2>1</KEY2>",
"'Gen<KEY1>6</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>"
<SUBDATA LookupTable>
// because this starts with x1x2 this represent a two dimensional
// lookup table. The first column represents lookup values for x1.
// The First row represents lookup values for x2
X1x2 0.100000 0.300000 // these are lookup heading for x2
0.000000 1.000000 3.000000
11.000000 22.000000 33.000000
111.000000 222.000000 333.000000
</SUBDATA>

}

ModelFilter
ModelCondition

A Model Filter's subdata contains a list of each ModelCondition in the filter. Because a list of Model
Conditions is stored within Simulator, this subdata section only requires the name of each
ModelCondition on each line and whether or not the condition is using the NOT operator as part of the
Model Filter.

Example:

<SUBDATA ModelCondition>

// ModelConditionName NotCondition
"Name of First Model Condition'™ "NO"
""Name of Second Model Condition'™ '"NO"
""Name of Third Model Condition'™ "NO"

</SUBDATA>

114

MTDCRecord

An example of the entire multi-terminal DC transmission line record is given at the end of this record description.

Each of the SUBDATA sections is discussed first.

MTDCBus

For this SUBDTA section, each DC Bus is described on a single line of text with exactly 8 fields specified.

DCBusNum

DCBusName
ACTerminalBus

: The number of the DC Bus. Note DC bus numbers are independent AC bus

numbers.

: The name of the DC bus enclosed in quotes.
. The AC terminal to which this DC bus is connected (via a MTDCConverter). If

the DC bus is not connected to any AC buses, then specify as zero. You may
also specify this as a string enclosed in double quotes with the bus name
followed by an underscore character, following by the nominal voltage of the
bus.

DCResistanceToground : The resistance of the DC bus to ground. Not used by Simulator.

DCBusVoltage
DCArea
DCZone
DCOwner

: The DC bus voltage in kV.

: The area that this DC bus belongs to.

: The zone that this DC bus belongs to.

: The owner that this DC bus belongs to.

Note: MTDCBus object types can also be directly created inside their own DATA section as well. One of
the key fields of the object is then the number of the MTDCRecord to which the MTDCBus belongs.

MTDCConverter

For this SUBDTA section, each AC/DC Converter is described by exactly 24 field which may be spread across
several lines of text. Simulator will keep reading lines of text until it finds 24 fields. All text to the right of the 24"

field (on the same line of text) will be ignored. The 24 fields are listed in the following order:

BusNum : AC terminal bus number.
MTDCNBridges : Number of bridges for the converter.
MTDCConvEBas : Converter AC base voltage.
MTDCConvAngMxMn : Converter firing angle.

MTDCConvAngMxMn:1 : Converter firing angle max.
MTDCConvAngMxMn:2 : Converter firing angle min.

MTDCConvComm : Converter commutating resistance.
MTDCConvComm:1 : Converter commutating reactance.
MTDCConvXFRat . Converter transformer ratio.
MTDCFixedACTap : Fixed AC tap.

MTDCConvTapVals : Converter tap.

MTDCConvTapVals:1 : Converter tap max.
MTDCConvTapVals:2 : Converter tap min.
MTDCConvTapVals:3 : Converter tap step size.
MTDCConvSetVL : Converter setpoint value (current or power).
MTDCConvDCPF : Converter DC participation factor.
MTDCConvMarg : Converter margin (power or current).
MTDCConvType : Converter type.
MTDCMaxConvCurrent : Converter Current Rating.
MTDCConvStatus : Converter Status.
MTDCConvSchedVolt : Converter scheduled DC voltage.
MTDCConvIDC : Converter DC current.

MTDCConvPQ : Converter real power.
MTDCConvPQ:1 : Converter reactive power.

Note: MTDCConverter object types can also be directly created inside their own DATA section as well.
One of the key fields of the object is then the number of the MTDCRecord to which the MTDCConverter

belongs.

115

MTDCTransmissionLine

For this SUBDTA section, each DC Transmission Line is described on a single line of text with exactly 5

fields specified:

DCFromBusNum
DCToBusNum

CKTID

Resistance
Inductance

Example:

From DC Bus Number.
: To DC Bus Number.
: The DC Circuit ID.

Resistance of the DC Line in Ohmes.
Inductance of the DC Line in mHenries (Not used by Simulator).

// The first Multi-Terminal

"Current”
<SUBDATA Bus>

// A second Multi-Terminal

DATA (RECORD, [Num,Mode,ControlBus])

"SYLMAR3 (26098)"

DC Transmission Line Record

// DC Bus data must appear on a single line of text
// The data consists of exactly 8 values
// DC Bus Num, DC Bus Name, AC Terminal Bus, DC Resistance to ground,

// DC Bus Voltage, DC Bus Area, DC
"CELILO3P" 0 9999.00
""'SYLMAR3P"* 0 9999.00
"“DC7" 41311 9999.00
"*DC8" 41313 9999.00
"*DCO" 26097 9999.00
""DC10" 26098 9999.00

3
4
7
8

9
10

</SUBDATA>
<SUBDATA Converter>

// convert subdata keeps reading lines of text until

// values specified for 24 fields.

Bus Zone, DC Bus Owner
497 .92 40 404
439.02 404
497 .93 404
497 .94 404
439.01 404
439.00 404

RPRrRRRPR

it has found
This can span any number of lines

// any values to the right of the 24th field found will be ignored
// The next converter will continue on the next line.

41311 2 525.00 20.25 24.00
0.391048 1.050000 1.000000
1100.0000 1650.0000 0.0000
497.931 1100.0000 547.7241
4 232.50 15.36 17.50
0.457634 1.008700 1.030000
2000.0000 2160.0000 0.1550
497.940 2000.0000 995.8800
2 230.00 20.90 24.00
0.892609 1.000000 1.100000
-1100.0000 1650.0000 ****
439.009 1100.0000 -482.9099
4 232.00 17.51 20.00
0.458621 1.008700 1.100000
439.0000 2160.0000 '
439.000 1999.9999 -878.0000

41313

26097

26098

</SUBDATA>
<SUBDATA TransmissionLine>

v

5.00 0.0000 16.3100
1.225000 0.950000 0.012500
"Rect” 1650.0000 *Closed"

295.3274

5.00 0.0000 7.5130
1.150000 0.990000 0.010000
"Rect” 2160.0000 *Closed"

561.8186

5.00 0.0000 16.3100
1.225000 0.950000 0.012500
"Inv'' 1650.0000 **Closed™

274.5227

5.00 0.0000 7.5130
1.120000 0.960000 0.010000
2160.0000 **Closed™
544 2775

// DC Transmission Segment information appears on a single line of

// text.

3
7
8
9
10

19.0000
0.0100
0.0100
0.0100
0.0100

</SUBDATA>

116

It consists of exactly 5 value
// From DCBus, To DCBus, Circuit ID, Line Resistance,

Line Inductance

1300.0000

0.0000
0.0000
0.0000
0.0000

DC Transmission Line Record

2 "Current" "SYLMAR4 (26100)"

<SUBDATA Bus>
5 "CELILO4P™ 0 9999.00 497 .92 40 404 1
6 "'SYLMAR4P' 0 9999.00 439.02 26 404 1
11 'DC11" 41312 9999.00 497.93 40 404 1
12 'DcC12" 41314 9999.00 497 .94 40 404 1
13 'DC13" 26099 9999.00 439.01 26 404 1
14 'DC14" 26100 9999.00 439.00 26 404 1

</SUBDATA>

<SUBDATA Converter>

41312 2 525.00 20.26 24 .00 5.00 0.0000 16.3100

0.391048 1.050000 1.000000 1.225000 0.950000 0.012500
1100.0000 1650.0000 0.0000 '‘Rect™ 1650.0000 *"‘Closed™
497.931 1100.0000 547.7241 295.3969

41314 4 232.50 15.45 17.50 5.00 0.0000 7.5130
0.457634 1.008700 1.030000 1.150000 0.990000 0.010000
2000.0000 2160.0000 0.1550 "Rect™ 2160.0000 "*Closed"
497.940 2000.0000 995.8800 562.9448

26099 2 230.00 20.90 24 .00 5.00 0.0000 16.3100
0.892609 1.000000 1.100000 1.225000 0.950000 0.012500
-1100.0000 1650.0000 "*** "Inv" 1650.0000 "‘Closed"
439.009 1100.0000 -482.9099 274.5227
26100 4 232.00 17.51 20.00 5.00 0.0000 7.5130
0.458621 1.008700 1.100000 1.120000 0.960000 0.010000
439.0000 2160.0000 " “"Inv" 2160.0000 ""Closed"
439.000 1999.9999 -878.0000 544 2775
</SUBDATA>
<SUBDATA TransmissionLine>
5 6 at 19.0000 1300.0000
11 5 A 0.0100 0.0000
12 5 at 0.0100 0.0000
13 6 A 0.0100 0.0000
14 6 at 0.0100 0.0000
</SUBDATA>

3

Note: MTDCTransmissionLine object types can also be directly created inside their own DATA section as
well. One of the key fields of the object is then the number of the MTDCRecord to which the
MTDCTransmissionLine belongs.

MultiSectionLine

Bus

A multi section line's subdata contains a list of each dummy bus, starting with the one connected to the
From Bus of the MultiSectionLine and proceeding in order to the bus connected to the To Bus of the Line.
Note: bus# values may be replaced by a string enclosed in double quotes where the string is the name of
the bus followed by an underscore character and then the nominal voltage of the bus, or the string may
represent the label of the bus.

Example:

// The following describes a multi-section line that connnects bus
// 2-1-5-6-3

DATA (MultiSectionLine, [BusNum, BusName, BusNum:1, BusName:1,
LineCircuit, MSLineNSections, MSLineStatus])
{

2 "Two" 3 "Three"™ "&1"™ 2 "Closed"
<SUBDATA Bus>
1
5
6
</SUBDATA>

}

117

BusRenumber

This subdata section allows renumbering of the dummy buses. The entries in the subdata section must be
the new bus number that should be assigned to each dummy bus followed by the name of the new bus.
The entries can be either space or comma delimited. The bus number must be specified, but the name is
optional. If the name is not included and a new bus needs to be created, the name will be the same as
the number. If an incorrect number of dummy buses is entered for a multi-section line, none of the
dummy buses will be updated for that line. If a dummy bus number is specified that matches an existing
bus that is another dummy bus, the other dummy bus will be assigned to a new bus number and the
current dummy bus will be assigned to the number specified in the data.

Example:
DATA (MultiSectionLine, [BusNum, BusNum:1, LineCircuit])
{
12 "1
<SUBDATA BusRenumber>
3 "Bus 3"
4 "Bus 4"
5 "Bus 5"
</SUBDATA>
22 33 "1™
<SUBDATA BusRenumber>
14 "Bus 14"
15 "Bus 15"
</SUBDATA>
}
Nomogram

InterfaceElementA

InterfaceElementB

InterfaceElementA values represent the interface elements for the first interface of the nomogram.
InterfaceElementB values represent the interface elements for the second interface of the nomogram. The
format of these SUBDATA sections is identical to the format of the InterfaceElement SUBDATA section of a
normal Interface.

NomogramBreakPoint
This subdata section contains a list of the vertex points on the nomogram limit curve.

Example:
<SUBDATA NomogramBreakPoint>
// LimA LimB
-100 -20
-100 100
80 50
60 -10
</SUBDATA>

Nomogramlnterface

InterfaceElement

This follows the same convention as the InterfaceElement SUBDATA section described with the Interface
objecttype.

118

Owner

Bus

This subdata section contains a list of the buses which are owned by this owner. Each line of text contains
the bus number. As an alternative to specifying the bus number, a string enclosed in double quotes may
be used where the string represents the name of the bus followed by an underscore character and then
the nominal voltage of the bus, or the string may represent the label of the bus.

Example:

<SUBDATA Bus>
1
35
65
</SUBDATA>

Load

This subdata section contains a list of the loads which are owned by this owner. Each line of text contains
the bus number followed by the load id. As an alternative to specifying the bus number, a string enclosed
in double quotes may be used where the string represents the name of the bus followed by an
underscore character and then the nominal voltage of the bus, or the string may represent the label of the

bus. Also, instead of specifying the bus and load id, the label of the load enclosed in double quotes may
be used.

Example:

<SUBDATA Load>
5 1 // shows ownership of the load at bus 5 with id of 1
423 1
</SUBDATA>

Gen

This subdata section contains a list of the generators which are owned by this owner and the fraction of
ownership. Each line of text contains the bus number, followed by the gen id, followed by an integer
showing the fraction of ownership. As an alternative to specifying the bus number, a string enclosed in
double quotes may be used where the string represents the name of the bus followed by an underscore
character and then the nominal voltage of the bus, or the string may represent the label of the bus. Also,

instead of specifying the bus and generator id, the label of the generator enclosed in double quotes may
be used.

Example:

<SUBDATA Gen>
78 1 50 // shows 50% ownership of generator at bus 78 with id of 1
23 3 70

</SUBDATA>

Branch

This subdata section contains a list of the branches which are owned by this owner and the fraction of
ownership. Each line of text contains the from bus number, followed by the to bus number, followed by
the circuit id, followed by an integer showing the fraction of ownership. As an alternative to specifying
the bus numbers, strings enclosed in double quotes may be used where the string represents the name of
the bus followed by an underscore character and then the nominal voltage of the bus, or the string may
represent the label of the bus. Also instead of specifying the two numbers and a circuit id, the label of the
branch enclosed in double quotes may be used.

Example:

<SUBDATA Branch>

6 10 1 50 // shows 50% ownership of line from bus 6 to 10, circuit 1
</SUBDATA>

119

PostPowerFlowActions

CTGElementAppend

This format is the same as for the Contingency objecttype except that Abort, ContingencyBlock, and
SolvePowerFlow actions are not allowed.

CTGElement

This format is the same as for the Contingency objecttype except that Abort, ContingencyBlock, and
SolvePowerFlow actions are not allowed.

Note: PostPowerFlowActionsElement object types can also be directly created inside their own DATA section as
well.

PWCaselnformation

PWCaseHeader

This subdata section contains the Case Description in free-formatted text. Note: as it is read back into
Simulator all spaces from the start of each line are removed.

PWFormOptions

PieSizeColorOptions

There can actually be several PieSizeColorOptions subdata sections for each PWFormOptions object. The
first line of each subdata section, the first line of text consist of exactly four values

ObjectName : The objectname of the type of object these settings apply to. Will be either be
BRANCH or INTERFACE.

FieldName : The fieldname for the pie charts that these settings apply to.

UseDiscrete : Set to YES to use a discrete mapping of colors and size scalars instead of
interpolating for intermediate values.

UseOtherSettings : Set to YES to default these settings to the BRANCH MVA values for

BRANCH object. This allows you to apply the same settings to all pie charts.

After this first line of text, if the UseOtherSettings Value is NO, then another line of text will contain
exactly three values:

ShowValue : This is the percentage at which the value should be drawn on the pie chart.

NormalSize : This is the scalar size multiplier which should be used for pie charts below the
lowest percentage specified in the lookup table.

NormalColor : This is the color which should be used for pie charts below the lowest

percentage specified in the lookup table.

Finally the remainder of the subdata section will contain a lookup table by percentage of scalar and color
values. This lookup table will consist of consecutive lines of text with exactly three values

Percentage . This is the percentage at which the follow scalar and color should be applied.
Scalar : A scalar (multiplier) on the size of the pie charts.
Color : A color for the pie charts.

120

Example:

<SUBDATA PieSizeColorOptions>
// ObjectName FieldName UseDiscrete UseOtherSettings
Branch MVA YES NO
// ShowValue NormalSize NormalColor
80.0000 1.0000 16776960
// Percentage Scalar Color
80.0000 1.5000 33023
100.0000 2.0000 255
</SUBDATA>
<SUBDATA PieSizeColorOptions>
// ObjectName FieldName UseDiscrete UseOtherSettings
Branch MW YES YES
</SUBDATA>

PWLPOPFCTGViol
OPFControlSense

OPFBusSenseP

OPFBusSenseQ

This stores the control sensitivities for each contingency violation during OPF/SCOPF analysis. Each line
contains one value:

Sensitivity : The value of the sensitivity with respect to each control in OPFControlSense or
with respect to each bus in OPFBusSenseP and OPFBusSenseQ.

Example:

<SUBDATA OPFControlSense>
// Value
1.000441679
2.447185E-7
-1.1109307E-6
1.6427327E-7
0
</SUBDATA>

PWLPTabRow

LPBasisMatrix

This subdata section stores the basis matrix associated with the final LP OPF solution. Each line contains
two values:

Variable : The basic variable.
Value . The sensitivity of the constraint to the basic variable.

Example:

<SUBDATA LPBasisMatrix>
// Var Value

1 1.00000
2 1.00000
5 1.00000
6 1.00000

</SUBDATA>

121

PWPVResultListContainer

PWPVResultObject

This subdata section contains the results of a particular PV Curve scenario. The data consists of two
general sections: the first three rows of text contain the "independent axis" of the PV Curve. The first row
starts with the string INDNOM and is followed by a list of numbers representing the nominal shift, the
second row starts with INDEXP and is followed by the export shift, and the third row starts with INDIMP
and is followed by the import shift. Following after these rows is a list of all the tracked quantities. Each
tracked quantity row consists of three parts which are separated by the strings ?f= and &v=". The first
part of the string represents a description of the power system object being tracked, the second part
represents the field variable name being tracked, and the third contains a list of all the values at the
various shift levels.

Example:
<SUBDATA PWPVResultObject>
INDNOM 0.00 500.00 1000.00 1500.00 1750.00 1875.00 1975.00
INDEXP 0.00 500.00 1000.00 1500.00 1750.00 1875.00 1975.00
INDIMP 0.00 -417.23 -701.58 -890.58 -952.60 -975.35 -990.43

Bus "3"?f=BusPUVolt&v= 0.993 0.983 0.964 0.939 0.926 0.919 0.914

Bus "5"?f=BusPUVolt&v= 1.007 1.000 0.982 0.956 0.940 0.932 0.926

Gen "4° "1"?f=GenMVR&v= 19.99 245.27 523.62 831.13 986.84 1060.6 1118.7

Gen "6° "1°?f=GenMVR&v= -6.59 -120.84 -131.37 -39.53 48.35 103.8 154.5
</SUBDATA>

LimitViol
This subdata section contains the limit violations of a particular PV Curve scenario. This subdata section
would only exist if using the option to monitor limit violations with the PV tool. Each row consists of an
identifier, either VLOW or VHIGH, to indicate the type of limit violation followed by the bus identifier
based on the key field identifier chosen. The bus can be identified by number, name and nominal kV
combination, or label. The bus identifier is followed by the limit in use to identify a voltage violation and
this is followed by the voltage at the bus.

Example:

<SUBDATA LimitViol>
VLOW 3 1.00000 0.99017
VLOW 5 1.00000 0.98245
</SUBDATA>

PVBusinadequateVoltages

This subdata section contains a list of buses that are considered to have inadequate voltages at each
transfer level for a particular PV Curve scenario. This subdata section would only exist if using the option
to store inadequate voltages. The data consists of two general sections: the first row starts with the string
INDNOM and is followed by a list of numbers representing the nominal shift. The second and subsequent
rows list the buses and inadequate voltages for any bus that has an inadequate voltage at any transfer
level. Each row starts with the bus identifier followed by the voltages at that bus at the corresponding
shift levels. If a voltage is not inadequate at a particular transfer level, a blank entry will appear instead of
a voltage value. The bus identifier is based on the key field identifier chosen and can be number, name
and nominal kV combination, or label.

Example:

<SUBDATA PVBuslnadequateVoltages>
// INDNOM ShiftLevell ShiftLevel2 ...
// BUS Voltagel Voltage2 ...
INDNOM 0.000 100.000 200.000 300.000 400.000 500.000
"Bus "3"" 0.99269 0.99278 0.99282 0.99280 0.99273 0.99262
"Bus "4"'" " 1.00000 "o
</SUBDATA>

122

PWQVResultListContainer

PWPVResultObject

This subdata section contains the results of a particular QV Curve scenario. These results will exist when
tracking quantities with the QV curve tool. The data consists of two general sections: the first three rows
of text contain the "independent axis" of the QV Curve. The first three rows start with the strings
INDNOM, INDEXP, and INDIMP and are followed by a list of numbers representing the setpoint voltage
representing the V of the QV curve. Following after these rows is a list of all the tracked quantities. Each
tracked quantity row consists of three parts which are separated by the strings ?f= and &v=". The first
part of the string represents a description of the power system object being tracked, the second part
represents the field variable name being tracked, and the third contains a list of all the values at the
various setpoint voltage levels.

Example:

<SUBDATA PWPVResultObject>

INDNOM 1.100 1.093 1.083 1.073 1.063

INDEXP 1.100 1.093 1.083 1.073 1.063

INDIMP 1.100 1.093 1.083 1.073 1.063

Bus "1"?f=BusPUVolt&v=1.05000 1.05000 1.05000 1.05000 1.05000

Bus "1"?f=BusKVVolt&v=144_.89999 144_.89999 144.89999 144.89999 144.89999
</SUBDATA>

QVCurve

QVPoints

This subdata section contains a list of the QV Curve points calculated for the respect QVCurve. Each line
consists of exactly six values:

PerUnitVoltage : The per unit voltage of the bus for a QV point.

FictitiousMvar : The amount of Mvar injection from the fictitious generator at this QV point.
ShuntDeviceMvar : The Mvar injection from any switched shunts at the bus.

TotalMvar : The total Mvar injection from switched shunts and the fictitious generator.
ReservesMvar : Total amount of Mvar reserves available at the bus.

ReservesTotalMvar : Total Mvar injection from the switched shunts, fictitious generator, and
available reserves.

Example:

DATA (QVCURVE, [BusNum,CaseName,qv_VQO,qv_Q0,qv_Vmax,qv_QVmax,qv_VQmin,qv_Qmin,
qv_Vmin,qv_QVmin,Qinj_Vmax,Qinj_0,Qinj_min,Qinj_Vmin])

{
5 "BASECASE™ 0.880 0.000 1.100 312.490 0.480 -221.072
0.180 -86.334 191.490 -77.373 -244.075 -89.562
<SUBDATA QVPoints>
// NOTE: This bus has a constant impedance
// switched shunt value of -100 Mvar at it.
//V(PU), Q(MVR), Q_shunt(MVR), Q_tot(MVR), Q_res(MVR), Q_tot res(MVR)
1.1000, 312.4898, -121.0000, 191.4898, 0.0000, 191.4898
0.9800, 124.6619, -95.9656, 28.6963, 0.0000, 28.6963
0.7800, -96.6202, -60.7808, -157.4010, 0.0000, -157.4010
0.5800, -206.9895, -33.5960, -240.5855, 0.0000, -240.5855
0.3800, -207.4962, -14.4113, -221.9075, 0.0000, -221.9075
</SUBDATA>

3

123

QVCurve Options

Sim_Solution_Options

This subdata section contains solution options that will be used when running QV Curves. See
explanation under the CTG_Options object type for more information.

RemedialAction

CTGElementAppend

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed.

CTGElement

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed.
Note: RemedialActionElement object types can also be directly created inside their own DATA section as well.

SelectByCriteriaSet

SelectByCriteriaSetType

This subdata section contains a list of the display object types which are chosen to be selected. Each line
of the section consists of the following:

DisplayObjectType : The object type of the display object.

(FilterName) : This field is optional, but must be given if either of the following fields is
given. See the Using Filters in Script Commands section for more
information on specifying the filtername.

(WhichFields) . For display objects that can reference different fields, this sets which of
those fields it should select (e.g. select only Bus Name Fields). The value
may be either ALL or SPECIFIED.

(ListOfFields) . If WhichFields is set to SPECIFIED, then a delimited list of fields follows.

Example:
<SUBDATA SelectByCriteriaSetType>
DisplayAreaField """ ™ ALL™
DisplayBus "'
DisplayBusField ""Name of Bus Filter™ "SPECIFIED" BusName BusPUVolt BusNum
DisplayCircuitBreaker "

DisplaySubstation ™"
DisplaySubstationField "™ " SPECIFIED" SubName SubNum BusNomVolt BGLoadMVR
DisplayTransmissionLine "
DisplayTransmissionLineField " *' ALL™
</SUBDATA>

Area

This subdata section contains a list of areas which were chosen to be selected. Each line of the section
consists of either the number or the name. When generated automatically by PowerWorld we also
include the other identifier as a comment.

Example:

<SUBDATA Area>
18 // NEVADA
22 // SANDIEGO
30 7/ PG AND E
52 // AQUILA

</SUBDATA>

124

Zone

This subdata section contains a list of zones which were chosen to be selected. Each line of the section
consists of either the number or the name. When generated automatically by PowerWorld we also
include the other identifier as a comment.

Example:

<SUBDATA Zone>
680 // 1D SOLUT
682 // WY NE IN

</SUBDATA>

ScreenlLayer

This subdata section contains a list of screen layers which were chosen to be selected. Each line of the
section consists of either the name.

Example:

<SUBDATA ScreenLayer>
“Border™
“"Transmission Line Objects"
</SUBDATA>

ShapefileExportDescription

This object uses the same subdata sections as SelectByCriteriaSet. The only distinction is that only buses and
lines can be exported.

StudyMWTransactions

ImportExportBidCurve

This subdata section contains the piecewise linear transactions cost curves for areas involved in a MW
transaction. Costs are only for areas that are not on OPF control. Curves must be monotonically
increasing. Each line corresponds to a point in the cost curve, and it has two values:

MW : The MW value. Use negative values for imports (purchase) and positive values for
exports (sales)
Price : The price in $/MWh.

Two different cost curves can be entered for each transaction. One is for the cost curve relative to the
Export Area specified in the transaction, and the other is for the cost curve relative to the Import Area
specified in the transaction. The first curve that is listed in the SUBDATA section is the curve relative to
the Export Area. The curve relative to the Import Area is denoted by the keyword REVERSE. Either or both
of the curves can be blank.

125

Example:

<SUBDATA ImportExportBidCurve>
//MW Price[$/Mwh]
-20.00 5.00
-10.00 10.00
0.00 15.00
10.00 20.00
20.00 45.00
30.00 70.00
REVERSE
-25.00 7.00
-15.00 12.00
5.00 17.00
15.00 22.00
25.00 47.00
35.00 72.00
</SUBDATA>

SuperArea

SuperAreaArea

This subdata section contains a list of areas within each super area. Each line of text contains two values,
the area number followed by a participation factor for the area that can be optionally used.

Example:
<SUBDATA SuperAreaArea>
1 48.9
5 34.2
25 11.2
</SUBDATA>
TSSchedule
SchedPoint
This section stores the schedule time points used in Time Step Simulation. Each line contains seven
values:
Date : The date of the point.
Hour : The hour of the point.
Pointtype . An integer specifying the point type.
0 — Numeric
1 - Boolean (Yes/No, Closed/Open)
2 — Text
Numeric Value : The numeric value if point type is Numeric. Otherwise it is just zero.
Boolean Value : The boolean value if point type is Boolean. Otherwise it is just false.
Text value : The text value if point type is Text. Otherwise it is just an empty string.
Audiofilename : The audio filename associated to the point. If none, it is just an empty
string.
Example:
<SUBDATA SchedPoint>
//Date Hour PointType NValue BValue TValue Avalue
5/8/2006 0 1.00 NO
5/8/2006 6:00:00 AM O 1.10 NO
5/8/2006 12:00:00 PM O 1.25 NO
</SUBDATA>

126

UserDefinedDataGrid

Columninfo

This follows the same convention as the Columninfo SUBDATA section described with the DataGrid
objecttype.

127

SCRIPT Section for Display Auxiliary File

The syntax for script commands in Display Auxiliary Files is the same as for Auxiliary Files. See the SCRIPT Section and its
sub-sections for details on the proper syntax. Any differences for display auxiliary files will be discussed below.

128

AXD Actions

The following script commands are available for AXD files

AutolnsertBorders;
AutolnsertBuses(LocationSource, MapProjection, AutolnsertBranches, InsertlfNotAlreadyShown,
"filename", FileCoordinates);
AutolnsertLoads(MinkV, InsertTextFields, InsertEquivObjects);
AutolnsertGens(MinkV, InsertTextFields);
AutolnsertSwitchedShunts(MinkV, InsertTextFields);
AutolnsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines,
SBRImpedance, NoStubsZBRs, SingleCBZRs);
AutolnsertLineFlowObjects(MinkV, InsertOnlylfNotAlreadyShown, LineLocation, Size, FieldDigits,
FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits,
ShowComplex) ;
AutolnsertSubstations(LocationSource, MapProjection, AutolnsertBranches,
InsertlIfNotAlreadyShown, "FileName"™, FileCoordinates);
AutolnsertLineFlowPieCharts(MinkV, InsertOnlylfNotAlreadyShown, InsertMSLines, Size);
Autolnsertinterfaces(InsertPieCharts, PieChartSize);
ResetStubLocations(ZBRImpedance ,NoStubsZBRs) ;
FixFlowArrowLineEnds("'OnelineName™, "'LayerName');

AutolnsertBorders;

Use this action to automatically insert borders according to the settings in the AutolnsertBordersOptions object
AutolnsertBuses(LocationSource, MapProjection, AutolnsertBranches, InsertifNotAlreadyShown, “filename",
FileCoordinates);

Use this action to automatically insert buses based on specified location data.

LocationSource . "Bus", "Substation" or "File"
MapProjection : "Simple Conic", "Mercator" or "x,y"
AutolnsertBranches : YES to insert transmission lines when finished, NO not to

InsertOnlylfNotAlreadyShown : YES if only buses that are not already shown should be inserted,
NO to insert all buses.

"filename" . (optional) path to location source file (if LocationSource is "File")
FileCoordinates . (optional) format of coordinates in file "x,y" or "lon,lat" (if LocationSource
is "File")

AutolnsertLoads(MinkV, InsertTextFields);

Use this action to automatically insert loads.
MinkV : Minimum kV level to insert (default=0)
InsertTextFields . (optional) insert text fields (default=YES)

AutolnsertSwitchedShunts(MinkV, InsertTextFields);

Use this action to automatically insert switched shunts.
MinkV : Minimum kV level to insert (default=0)
InsertTextFields . (optional) insert text fields (default=YES)

129

AutolnsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines,
ZBRImpedance, NoStubsZBRs, SingleCBZRs);

Use this action to automatically insert lines.

MinkV . (optional) minimum kV level to insert (default=0)

InsertTextFields . (optional) insert text fields (default=YES)

InsertEquivObjects : (optional) insert Equivalenced Objects (default=YES)

InsertZBRPieCharts : (optional) insert pie charts for lines with no limit and bus ties
(default=NO)

InsertMSLines . (optional) insert MultiSecton Lines (default=YES)

ZBRImpedance . (optional) maximum PU impedance for bus ties (default =0.0001)

NoStubsZBRs . (optional) ignore stubs for bus ties (default=YES)

SingleCBZBRs . (optional) only insert a single circuit breaker (default=YES)

AutolnsertLineFlowObjects(MinkV, InsertOnlylfNotAlreadyShown, LineLocation, Size, FieldDigits,
FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, ShowComplex);

Use this action to automatically insert line flow objects.

MinkV : Minimum kV level to insert (default=0)
InsertOnlylfNotAlreadyShown: (optional) if existing line flow objects are ignored (default=YES)
LineLocation . (optional) where to insert flow objects (default=0)
0 : middle
1 : 10%/90%
2 . after stubs
Size . (optional) size (default=5.0)
FieldDigits . (optional) total digits in field (default=6)
FieldDecimals . (optional) digits to the right of the decimal (default=2)
TextPosition . (optional) position of fields relative to flow object (default=YES)
YES . above
NO . below
ShowMW : (optional) show MW field (default=YES)
ShowMvar . (optional) show Mvar field (default=YES)
ShowMVA . (optional) show MVA field (default=YES)
ShowSuffix . (optional) show field units (default=YES)
ShowComplex . (optional) show complex form (MW +jMvar) (default=NO)

AutolnsertSubStations(LocationSource, MapProjection, AutolnsertBranches, InsertifNotAlreadyShown,
"filename"”, FileCoordinates);

Use this action to automatically insert substations based on specified location data.

LocationSource : "Bus", "Substation" or "File"
MapProjection : "Simple Conic", "Mercator" or "x,y"
AutolnsertBranches : YES to insert transmission lines when finished, NO not to

InsertOnlylfNotAlreadyShown : YES if only buses that are not already shown should be inserted,
NO to insert all buses.

"“filename" . (optional) path to location source file (if LocationSource is “File")
FileCoordinates . (optional) format of coordinates in file "x,y" or "lon,lat" (if LocationSource
is "File")

AutolnsertLineFlowPieCharts(MinkV, InsertOnlylfNotAlreadyShown, InsertMSLines, Size);
Use this action to automatically insert line flow pie charts.

MinkV : Minimum kV level to insert (default=0)

InsertOnlylfNotAlreadyShown: (optional) if existing line flow objects are ignored (default=YES)
InsertMSLines . (optional) insert pie charts for Multi-Section Lines (default=YES)

Size . (optional) size (default=5.0)

130

Autolnsertinterfaces(InsertPieCharts, PieChartSize);

Use this action to automatically insert line flow objects.
InsertPieCharts . (optional) Insert pie charts as well (default=YES)
PieChartSize . (optional) default size of interface pie charts (default=50.0)

ResetStubLocations(ZBRImpedance, NoStubsZBRs);

Use this action to reset stub locations.
ZBRImpedance . (optional) max P.U. impedance for bus ties (default=0.0001)
NoStubsZBRs . (optional) Ignore stubs for bus ties (default=YES)

FixFlowArrowLineEnds("OnelineName", "LayerName");

The unmoving line flow arrow indicators that can be displayed on lines may not always be setup correctly. This
script corrects the flow arrows so that they look at the end of the line to which they are the closest to determine
the direction of flow.

"OnelineName" : The name of the oneline to which this action should be applied. The
oneline must already be open.
"LayerName" : Name of the screen layer in which this action should be applied.

General Script Commands

The following script commands defined above in the general SCRIPT section are available for display auxiliary files
as well:
ExitProgram
LoadScript
LoadData
SelectAll
UnSelectAll
SetData
SaveData
SaveDataWithExtra
CreateData
DeleteFile
RenameFile
CopyFile
SetCurrentDirectory
SaveObjectFields

131

DATA Section for Display Auxiliary File

The syntax for Display Auxiliary Files is the same as for Auxiliary Files. See the DATA Section and its sub-sections for
details on the proper syntax. Any differences for display auxiliary files will be discussed below.

Key Fields
See the Key Fields topic in the DATA Section for general details.

Display objects have an additional key field used for identification because multiple objects can be present on the same
one-line diagram that represent the same power system element. This extra key field is SOAuxi liarylID. This is a field
that is unique for each type of display object and other key field combination. If there are two display buses that
represent bus one in the power system, the SOAuxi liaryID field will be different for both. Simulator will automatically
create unique identifiers when these objects are created graphically. They can also be user specified but are forced to be
unique. This field does not need to be present when reading in a display auxiliary file, but if it is missing, Simulator
assumes that the ID is "1". This field is the only key field identifier for objects that do not link to power system elements
such as background lines and pictures, and therefore, should always be included when reading in these objects or the
expected results may not be achieved.

By going to the main menu and choosing Help, Export Display Object Fields you will obtain a list of fields available for
each display object type. In this output, the key fields will appear with asterisks *.

Special Data Sections

There are several object types that should be noted here because they can impact the reading of an entire display auxiliary
file, overall look of the resulting one-line diagram, or require special input to properly import/export the object.

GeographyDisplayOptions

Most objects supported in the display auxiliary file have coordinates that can be specified in the appropriate data sections.
What these coordinates specify can be controlled by the GEOGRAPHYDISPLAYOPTIONS object. This object has only two
fields available: MapProjection and ShowlLonLat. There are three possible settings for MapProjection: *'x,y", "Simple
Conic", and ""Mercator™. The choice of projection will determine how the x,y values for display objects are interpreted.
Showlonlat can be either ""YES" or ""NO"". If ShowLonLat is "YES", the setting specified for the MapProjection will be the
longitude,latitude projection used when reading/writing the object x,y values. If ShowLonLat is "NO", the x,y values will
always be interpreted as x,y regardless of the MapProjection setting. This object should be placed in the display auxiliary
file before any other objects containing coordinates are read. If this object is not included in the auxiliary file, the
coordinates will be interpreted based on the current settings of map projection and whether or not coordinates are
showing longitude,latitude.

Picture

PICTURE objects represent background images that cannot be stored in a text file format. To properly include a PICTURE
object in a display auxiliary file, the file containing the image must be saved and read along with the auxiliary file. The

Fi leName field indicates the name and location of the image file. If the image file cannot be found when reading in a
display auxiliary file and attempting to create a new object, no PICTURE object will be created. If attempting to update an
existing object and the image file cannot be found, the object will not be updated with a new image, but the Fi leName
field will be updated with the specified file name.

PWFormOptions

One-line display options that affect the current display settings can be changed by using the PWFORMOPTIONS object.
Usually, this object specifies named sets of options that can be selected and used to change the various one-line display
options through the GUI. By including a specially named object, the current options can be changed through a display

132

auxiliary file. PWFORMOPTIONS are named using the OOName field. Setting this field to
"THESE_OPTIONS_ARE_APPLIED_TO_THE_CURRENT_DISPLAY" will apply the specified set of options to the current one-line
when the file is read. When saving the entire one-line to a display auxiliary file, a PWFORMOPTIONS object with this name
is added to the file by default.

View

Different views can be specified in the display auxiliary file using the VIEW object. Usually, this object is used to specify
named sets of options used to select and change the view through the GUI. By including a specially named object, the
current view can be changed through a display auxiliary file. VIEW objects are named using the ViewName field. Setting
this field to "THIS_VIEW_IS_APPLIED_TO_THE_CURRENT_DISPLAY" will apply the specified set of view options to the current
one-line when the file is read. When saving the entire one-line to a display auxiliary file, a VIEW object with this name is
added to the file by default.

133

SubData Sections

The format described thus far works well for most kinds of data in Simulator. It does not work as well however for data
that stores a list of objects. For example, a contingency stores some information about itself (such as its name), and then a
list of contingency elements, and possible a list of limit violations as well. For data such as this, Simulator allows
<SubData>, </SubData> tags that store lists of information about a particular object. This formatting looks like the
following

DATA (object_type, [list _of_fields], file_type_specifier, create_if_not_found)
{
value list 1
<SUBDATA subobject_typel>
precise format describing an object typel
precise format describing an object typel

</SUBDATA>

<SUBDATA subobject_ type2>
precise format describing an object type2
precise format describing an object_ type2

</SUBDATA>
value list 2

value_list n

b

Note that the information contained inside the <SubData>, </SubData> tags may not be flexibly defined. It must be

written in a precisely defined order that will be documented for each SubData type. The description of each of these
SubData formats follows.

ColorMap

Same format as in data auxiliary files.

CustomColors

Same format as in data auxiliary files.

DisplayDCTramisssionLine

Displaylnterface

DisplayMultiSectionLine

DisplaySeriesCapacitor

DisplayTransformer

DisplayTransmissionLine

134

Line

Line
This is a list of points defining the graphical line used to represent the object. Each set of coordinates can
be enclosed in square brackets, [], or the brackets can be eliminated. The brackets will be included when
Simulator generates an auxiliary file. The individual coordinates are separated by the specified delimiter,
either a space or a comma, and if the brackets are included, the same delimiter should be used to
separate sets of coordinates. The list of points is in a somewhat free form and sets of coordinates can
span multiple lines. Each point should either be in x,y coordinates or longitude,latitude coordinates.
Which coordinates should be used depends on the current option settings for map projection and
whether or not coordinates should be shown in longitude,latitude. If the display auxiliary file is
automatically generated by Simulator, a comment will be included in the subdata section indicating the
coordinate system in use during file creation.

Example using brackets and a comma delimiter:

<SUBDATA Line>
//Coordinates are X,y
[14.00000000, 63.00000000], [14.00000000, 60.00000000],
[20.00000000, 45.00000000], [20-00000000, 42.00000000]
</SUBDATA>

Example with no brackets and a space delimiter:

<SUBDATA Line>
//Coordinates are X,y
14 .00000000 63.00000000 14.00000000 60.00000000
20.00000000 45.00000000 20.00000000 42.00000000
</SUBDATA>

DyvnamicFormatting

Same format as in data auxiliary files.

Filter

Same format as in data auxiliary files.

GeoDataViewStyle

Same format as in data auxiliary files.

PieChartGaugeStyle

ColorMap

This is a lookup table by percentage of scalar and color values. This lookup table will consist of
consecutive lines of text with exactly three values:

Percentage : This is the percentage at which the following scalar and color should be
applied.
Scalar : A scalar (multiplier) on the size of the pie chart/gauge.
Color : A color for the pie chart/gauge.
Example:

<SUBDATA ColorMap>
//Percentage Scalar Color
85.0000 1.5000 33023
100.0000 2.0000 255
</SUBDATA>

135

PWFormOptions

Same format as in data auxiliary files.

SelectByCriteriaSet

Same format as in data auxiliary files.

UserDefinedDataGrid

Same format as in data auxiliary files.

View

ScreenlLayer
This is a list of screen layer names that are hidden in the current view. Each screen layer name is on a
separate line of text.

Example:

<SUBDATA ScreenLayer>

//These are hidden screen layers
"pie layer”

</SUBDATA>

136

	Introduction
	SCRIPT Section
	Using Filters in Script Commands
	Specifying Special Keywords in Script Command Parameters
	Specifying File Names in Script Commands
	Specifying Field Variable Names in Script Commands
	Specifying Field Values in Script Commands
	General Actions
	Generic Data Actions
	CopyFile("oldfilename", "newfilename");
	CreateData(objecttype, [fieldlist], [valuelist]);
	Delete(objecttype, filter);
	DeleteDevice([ObjectIDString]);
	DeleteFile("filename");
	DeleteIncludingContents(objecttype, filter);
	EnterDistMasterPassword(Password);
	ExportAreaSupplyCurves("filename", "User Defined String", NumPoints);
	ImportData("filename", FileType, HeaderLine, CreateIfNotFound);
	LoadAux("filename", CreateIfNotFound);
	LoadAuxDirectory("filedirectory", "filterstring", CreateIfNotFound);
	LoadCSV("filename", CreateIfNotFound);
	LoadData("filename", DataName, CreateIfNotFound);
	LoadScript("filename", ScriptName, CreateIfNotFound);
	RenameFile("oldfilename", "newfilename");
	SaveData("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], Transpose);
	SaveDataEPC("filename", objecttype, filter, GEFileType, SaveBuses, Append);
	SaveDataUsingExportFormat("filename", filetype, "FormatName", ModelToUse);
	SaveDataWithExtra("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], [Header_List], [Header_Value_List], Transpose);
	SaveObjectFields("filename", objecttype, [fieldlist]);
	SelectAll(objecttype, filter);
	SendtoExcel(objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", "worksheetname", [SortFieldList], [Header_List], [Header_Value_List], ClearExisting, RowShift, ColShift);
	SetCurrentDirectory("filedirectory", CreateIfNotFound);
	SetData(objecttype, [fieldlist], [valuelist], filter);
	StopAuxFile;
	UnSelectAll(objecttype, filter);
	WriteTextToFile("filename", "text");

	Case Related Actions
	AutoInsertTieLineTransactions;
	CalculateRXBGFromLengthConfigCondType(filter);
	CaseDescriptionClear;
	CaseDescriptionSet("text", Append);
	ChangeSystemMVABase(NewBase);
	ConditionVoltagePockets(VoltageThreshold, AngleThreshold, filter);
	DetermineBranchesThatCreateIslands(Filter, StoreBuses, "filename", SetSelectedOnLines, FileType);
	DeterminePathDistance([start], BranchDistMeas, BranchFilter, BusField);
	DetermineShortestPath([start], [end], BranchDistanceMeasure, BranchFilter, Filename);
	DoFacilityAnalysis ("Filename");
	DirectionsAutoInsert(Source, Sink, DeleteExisting, UseAreaZoneFilters, Start, Increment);
	EnterMode(mode);
	ExitProgram;
	GenForceLDC_RCC(filter);
	InitializeGenMvarLimits;
	InjectionGroupsAutoInsert;
	InjectionGroupCreate("Name", objecttype, InitialValue, filter, Append);
	LoadEMS("filename", filetype);
	LogAdd("text");
	LogAddDateTime("label", includedate, includetime, includemilliseconds);
	LogClear;
	LogSave("filename", AppendFile);
	NewCase;
	OpenCase("filename", OpenFileType,[LoadTransactions,StarBus]);
	OpenCase("filename", OpenFileType,[MSLine,VarLimDead,PostCTGAGC,MSLineDummyBus]);
	RenameInjectionGroup("OldName", "NewName");
	SaveCase("filename", SaveFileType, [PostCTGAGC, UseAreaZone]);
	SaveCase("filename", SaveFileType, [AddCommentForObjectLabels]);
	SaveGenLimitStatusAction("filename");
	SaveJacobian("JacFileName", "JIDFileName", FileType, JacForm);
	SaveYbusInMatlabFormat("filename", IncludeVoltages);
	Scale(scaletype, basedon, [parameters], scalemarker);
	SetGenPMaxFromReactiveCapabilityCurve(filter);
	SetParticipationFactors(Method, ConstantValue, Object);
	SetScheduledVoltageForABus([bus identifier], voltage);
	SetSelectedFromNetworkCut(SetHow, [BusOnCutSide], BranchFilter, InterfaceFilter, DCLineFilter, Energized, NumTiers, InitializeSelected, [ObjectsToSelect], UseAreaZone, UsekV, MinkV, MaxkV, LowerMinkV, LowerMaxkV);
	UpdateIslandsAndBusStatus;

	Oneline Actions
	CloseOneline("OnelineName");
	EditMultipleOnelineAction("Path", LinkType, SaveFileType);
	ExportOneline("filename", "OnelineName", ImageType, "view", FullScreen, ShowFull, [ExportOptions]);
	ExportOnelineAsShapeFile("filename", "OnelineName", "ShapeFileExportDescriptionName", UseLonLat, PointLocation);
	ImportDDLAsTranslation("filename");
	LoadAXD("filename", "OnelineName", CreateIfNotFound)
	OpenOneline("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, Height);
	RelinkAllOpenOnelines;
	SaveOneline("filename", "OnelineName", SaveFileType);
	OpenBusView("Bus key", ForceNewWindow);
	OpenSubView("Substation key", ForceNewWindow);

	User Interface Actions
	MessageBox("text");
	ObjectFieldsInputDialog("ObjectIDString", [fieldlist], "DialogCaption", "DialogExplain", [LabelCaptions], [TabBreaks], [TabCaptions], [RowBreaks], [RowCaptions], [ColBreaks], [ColCaptions]);
	OpenDataView("ObjectIDString", "DataGridIDString");

	Edit Mode Actions
	Case Related Actions
	AppendCase("filename", OpenFileType, [StarBus, EstimateVoltages]);
	AppendCase("filename", OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]);
	Combine([elementA], [elementB]);
	DeleteExternalSystem;
	Equivalence;
	InterfacesAutoInsert(Type, DeleteExisting, UseFilters, "Prefix", Limits);
	MergeBuses([element], Filter);
	MergeLineTerminals(Filter);
	MergeMSLineSections(Filter);
	Move([elementA], [destination parameters], HowMuch);
	ReassignIDs(objecttype, field, filter, UseRight);
	Remove3WXformerContainer(filter);
	Renumber3WXFormerStarBuses("filename", Delimiter);
	RenumberAreas(NumCI);
	RenumberBuses(NumCI);
	RenumberMSLineDummyBuses("filename", Delimiter);
	RenumberSubs(NumCI);
	RenumberZones(NumCI);
	SaveExternalSystem("Filename", SaveFileType, WithTies);
	SplitBus([element], NewBusNumber, InsertBusTieLine, LineOpen, BranchDeviceType);
	TapTransmissionLine([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine);

	Run Mode Actions
	Animate(DoAnimate);
	CalculatePTDF([transactor seller], [transactor buyer], LinearMethod);
	CalculatePTDFMultipleDirections(StoreForBranches, StoreForInterfaces, LinearMethod);
	CalculateLODF([BRANCH nearbusnum farbusnum ckt], LinearMethod, PostClosureLCDF);
	CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod, filterMonitorInterface, PostClosureLCDF);
	CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines, UseLODFThreshold, LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile, FileLocation, CustomFieldHighLODF, CustomFieldHighLODFLine, Cust...
	CalculateLODFAdvanced(IncludePhaseShifters, FileType, MaxColumns, MinLODF, NumberFormat, DecimalPoints, OnlyIncludingLinesIncreasing, "FileName", IncludeIslandingCTG);
	CalculateTLR([flow element], direction, [transactor], LinearMethod, SetOutOfServiceBuses, filter, AbortOnError);
	CalculateTLRMultipleElement(TypeElement,WhichElement,direction,[transactor],LinearMethod);
	CalculateVoltSense([BUS num]);
	CalculateFlowSense([flow element], FlowType);
	CalculateLossSense(FunctionType);
	CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR);
	CalculateVoltSelfSense(filter);
	RestoreState(WhichState, StateName);
	SetInterfaceLimitToMonitoredElementLimitSum(filter);
	SetSensitivitiesAtOutOfServiceToClosest(filter);
	StoreState(StateName);
	ZeroOutMismatches;
	Power Flow Related Actions
	ClearPowerFlowSolutionAidValues;
	DiffFlowClearBase;
	DiffFlowKeyType(KeyType);
	DiffFlowMode(diffmode);
	DiffFlowSetAsBase;
	DiffFlowShowPresentAndBase(How);
	DiffFlowRefresh;
	DiffFlowWriteCompleteModel ("filename", AppendFile, SaveAdded, SaveRemoved, SaveBoth, KeyFields, "ExportFormat", UseAreaZone, UseDataMaintainer, AssumeBaseMeet);
	DiffFlowWriteRemovedEPC ("filename", GEFileType, UseAreaZone, BaseAreaZoneMeetFilter, Append);
	DoCTGAction([contingency action]);
	ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle);
	SolvePowerFlow (SolMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);

	Contingency Related Actions
	CTGApply("ContingencyName");
	CTGAutoInsert;
	CTGCalculateOTDF([transactor seller], [transactor buyer], LinearMethod);
	CTGClearAllResults;
	CTGCompareTwoListsofContingencyResults (PRESENT or "ControllingFilename",PRESENT or "ComparisonFilename");
	CTGConvertAllToDeviceCTG(KeepOriginalIfEmpty);
	CTGCreateContingentInterfaces(filter);
	CTGCreateExpandedBreakerCTGs;
	CTGCreateStuckBreakerCTGs(filter, AllowDuplicates, "PrefixName", IncludeCTGLabel, BranchFieldName, "SuffixName", "PrefixComment", BranchFieldComment, "SuffixComment");
	CTGJoinActiveCTGs(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename");
	CTGProduceReport("filename");
	CTGReadFilePSLF("filename");
	CTGReadFilePTI("filename");
	CTGRelinkUnlinkedElements;
	CTGRestoreReference;
	CTGSaveViolationMatrices("filename", filetype, UsePercentage, [ObjectTypesToReport], SaveContingency, SaveObjects, FieldListObjectType, [FieldList], IncludeUnsolvableCTGs);
	CTGSetAsReference;
	CTGSolve("ContingencyName");
	CTGSolveAll(DoDistributed, ClearAllResults);
	CTGWriteAllOptions("filename", KeyField, UseSelectedDataMaintainer, SaveDependencies, UseAreaZoneFilters);
	CTGWriteFilePTI("filename", BusFormat, TruncateCTGLabels);
	CTGWriteResultsAndOptions("filename", [opt1, opt2, opt3, …, opt19], KeyField, UseDATASection, UseConcise, UseObjectIDs, UseSelectedDataMaintainers, SaveDependencies, UseAreaZoneFilters);

	Fault Related Actions
	Fault([Bus num, faulttype, R, X]);
	Fault([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X]);

	ATC (Available Transfer Capability) Related Actions
	ATCCreateContingentInterfaces(filter);
	ATCDetermine([transactor seller], [transactor buyer], DoDistributed);
	ATCDetermineATCFor(RL, G, I, ApplyTransfer);
	ATCIncreaseTransferBy(amount);
	ATCRestoreInitialState;
	ATCTakeMeToScenario(RL, G, I);
	ATCWriteResultsAndOptions("filename", AppendFile);
	ATCWriteToExcel("worksheetname");
	ATCWriteToText("filename", filetype);
	ATCSetAsReference;

	GIC (Geomagnetically Induced Current) Related Actions
	GICCalculate(MaxField, Direction, SolvePF);
	GICClear;
	GICLoadAERData(CoarseFile, FineFilePoints, FineFileEast, FineFileNorth);
	GICTimeVaryingCalculate(TheTime,SolvePF);
	GICTimeVaryingAddTime(NewTime);
	GICTimeVaryingDeleteAllTimes;
	GICTimeVaryingEFieldCalculate(TheTime,SolvePF);
	GICWriteOptions(“FileName”, KeyField);

	ITP (Integrated Topology Processing) Related Actions
	CloseWithBreakers(objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects, [SwitchingDeviceTypes], CloseNormallyClosedDisconnects);
	ExpandAllBusTopology;
	ExpandBusTopology(BusIdentifier, TopologyType);
	OpenWithBreakers(objecttype, filter or [object identifier], [SwitchingDeviceTypes], OpenNormallyOpenDisconnects);
	SaveConsolidatedCase("filename", filetype, [BusFormat, TruncateCtgLabels, AddCommentsForObjectLabels]);

	OPF (Optimal Power Flow) and SCOPF Related Actions
	SolvePrimalLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	InitializeLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	SolveSinglePrimalLPOuterLoop("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	SolveFullSCOPF (BCMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2);
	OPFWriteResultsAndOptions("filename");

	PV Related Actions
	PVClear;
	PVDestroy;
	PVQVTrackSingleBusPerSuperBus;
	PVRun([elementSource], [elementSink]);
	PVSetSourceAndSink([elementSource], [elementSink]);
	PVStartOver;
	PVWriteInadequateVoltages("filename", AppendFile, InadequateType);
	PVWriteResultsAndOptions("filename", AppendFile);
	RefineModel(objecttype, filter, Action, Tolerance);

	QV Related Actions
	QVRun("filename", InErrorMakeBaseSolvable);
	QVWriteResultsAndOptions("filename");
	QVSelectSingleBusPerSuperBus;

	TS (Transient Stability) Related Actions
	TSAutoCorrect;
	TSAutoInsertDistRelay(Reach, filter);
	TSAutoInsertZPOTT(Reach, filter,);
	TSCalculateCriticalClearTime([branch] or filter,);
	TSCalculateSMIBEigenValues;
	TSClearAllModels;
	TSGetVCurveData("FileName", filter);
	TSGetResults("FileName", SINGLE/SEPARATE/JSIS, [Contingencies], [Plots, ObjectFields], StartTime, EndTime]);
	TSLoadBPA("FileName");
	TSLoadGE("FileName", GENCCYN, EnableOutOfOrderModels);
	TSLoadPTI("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename", "BASEGENfilename");
	TSLoadRDB("filename", ModelType, filter);
	TSLoadRelayCSV("filename", ModelType, filter);
	TSResultStorageSetAll(objecttype, YES/NO);
	TSRunUntilSpecifiedTime("ContingencyName", [StopTime, StepSize, StepsInCycles, ResetStartTime, NumberOfTimeStepsToDo]);
	TSSaveBPA("FileName", DiffCaseModifiedOnly);
	TSSaveGE("FileName", DiffCaseModifiedOnly);
	TSSavePTI("FileName", DiffCaseModifiedOnly);
	TSSaveTwoBusEquivalent ("AuxFileName", [BUS]);
	TSSolve("ContingencyName", [StartTime, StopTime, StepSize]);
	TSSolveAll(DoDistributed);
	TSWriteModels("FileName", DiffCaseModifiedOnly);
	TSWriteOptions("FileName",[SaveDynamicModel, SaveStabilityOptions, SaveStabilityEvents, SaveResultsEvents, SavePlotDefinitions], KeyField);

	Scheduled Actions Related Actions
	IdentifyBreakersForScheduledActions(IdentifyFromNormalStatus);
	SetScheduleView(ViewTime, ApplyActions, UseNormalStatus, ApplyWindow);
	SetScheduleWindow(StartTime, EndTime, Resolution, ResolutionUnits);

	DATA Section
	Concise Auxiliary File Header
	ObjectType
	File_Type_Specifier
	Create_if_not_found
	List_of_Fields
	Field Variable Naming (Legacy)
	Concise Field Variable Names
	Special Naming
	Key Fields
	Data List
	Special Data List Entries
	Special Identifiers for Model Fields in Data
	Using Labels for Identification
	Saving Auxiliary Files Using Labels
	Loading Auxiliary Files SUBDATA Sections Using Labels
	Special Use of Labels in SUBDATA

	SubData Sections
	ATC_Options
	RLScenarioName
	GScenarioName
	IScenarioName
	ATCMemo

	ATCExtraMonitor
	ATCFlowValue

	ATCScenario
	TransferLimiter
	ATCExtraMonitor

	AUXFileExportFormatData
	DataBlockDescription

	AUXFileExportFormatDisplay
	DataBlockDescription

	BGCalculatedField
	Condition

	Bus
	MWMarginalCostValues
	MvarMarginalCostValues
	LPOPFMarginalControls

	BusViewFormOptions
	BusViewBusField
	BusViewFarBusField
	BusViewGenField
	BusViewLineField
	BusViewLoadField
	BusViewShuntField

	ColorMap
	ColorPoint

	Contingency
	CTGElementAppend
	CTGElement
	Transmission Line or Transformer outage or insertion
	Generator, Load, or Switched Shunt outage or insertion
	Generator, Load or Switched Shunt movement to another bus
	Generator, Load or Switched Shunt set or change a specific value
	Bus outage causes all lines connected to the bus to be outage
	Interface outage or insertion
	Interface change specific value
	Line Shunt outage or insertion
	Injection Group outage or insertion
	Injection Group change specific value
	Series Capacitor Bypass or Inservice
	Series Capacitor set impedance
	DC Transmission or VSC DC Transmission Line outage
	DC Line set a specific value or insertion
	MTDC Converter outage
	MTDC Converter set a specific value or insertion
	Phase Shifter set a specific value
	3-Winding Transformer outage or insertion
	Area Control Type Change
	Substation outage
	Abort
	Execute a Power Flow Solution
	Calling of a name ContingencyBlock
	Make-Up Power Compensation.

	LimitViol
	Sim_Solution_Options
	WhatOccurredDuringContingency
	ContingencyMonitoringException

	CTG_Options
	Sim_Solution_Options

	CTGElementBlock
	CTGElement
	CTGElementAppend

	CustomColors
	CustomColors

	CustomCaseInfo
	ColumnInfo

	DataGrid
	ColumnInfo

	DynamicFormatting
	DynamicFormattingContextObject
	LineThicknessLookupMap
	LineColorLookupMap
	FillColorLookupMap
	FontColorLookupMap
	FontSizeLookupMap
	BlinkColorLookupMap
	XoutColorLookupMap
	FlowColorLookupMap
	SecondaryFlowColorLookupMap

	Filter
	Condition

	Gen
	BidCurve
	ReactiveCapability

	GeoDataViewStyle
	TotalAreaValueMap
	RotationRateValueMap
	RotationAngleValueMap
	LineThicknessValueMap

	GlobalContingencyActions
	CTGElementAppend
	CTGElement

	HintDefValues
	HintObject

	InjectionGroup
	PartPoint

	Interface
	InterfaceElement

	KMLExportFormat
	DataBlockDescription

	LimitSet
	LimitCost

	Load
	BidCurve

	LPVariable
	LPVariableCostSegment

	ModelCondition
	Condition

	ModelExpression
	LookupTable

	ModelFilter
	ModelCondition

	MTDCRecord
	MTDCBus
	MTDCConverter
	MTDCTransmissionLine

	MultiSectionLine
	Bus
	BusRenumber

	Nomogram
	InterfaceElementA
	InterfaceElementB
	NomogramBreakPoint

	NomogramInterface
	InterfaceElement

	Owner
	Bus
	Load
	Gen
	Branch

	PostPowerFlowActions
	CTGElementAppend
	CTGElement

	PWCaseInformation
	PWCaseHeader

	PWFormOptions
	PieSizeColorOptions

	PWLPOPFCTGViol
	OPFControlSense
	OPFBusSenseP
	OPFBusSenseQ

	PWLPTabRow
	LPBasisMatrix

	PWPVResultListContainer
	PWPVResultObject
	LimitViol
	PVBusInadequateVoltages

	PWQVResultListContainer
	PWPVResultObject

	QVCurve
	QVPoints

	QVCurve_Options
	Sim_Solution_Options

	RemedialAction
	CTGElementAppend
	CTGElement

	SelectByCriteriaSet
	SelectByCriteriaSetType
	Area
	Zone
	ScreenLayer

	ShapefileExportDescription
	StudyMWTransactions
	ImportExportBidCurve

	SuperArea
	SuperAreaArea

	TSSchedule
	SchedPoint

	UserDefinedDataGrid
	ColumnInfo

	SCRIPT Section for Display Auxiliary File
	AXD Actions
	AutoInsertBorders;
	AutoInsertBuses(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, "filename", FileCoordinates);
	AutoInsertLoads(MinkV, InsertTextFields);
	AutoInsertSwitchedShunts(MinkV, InsertTextFields);
	AutoInsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines, ZBRImpedance, NoStubsZBRs, SingleCBZRs);
	AutoInsertLineFlowObjects(MinkV, InsertOnlyIfNotAlreadyShown, LineLocation, Size, FieldDigits, FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, ShowComplex);
	AutoInsertSubStations(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, "filename", FileCoordinates);
	AutoInsertLineFlowPieCharts(MinkV, InsertOnlyIfNotAlreadyShown, InsertMSLines, Size);
	AutoInsertInterfaces(InsertPieCharts, PieChartSize);
	ResetStubLocations(ZBRImpedance, NoStubsZBRs);
	FixFlowArrowLineEnds("OnelineName", "LayerName");
	General Script Commands

	DATA Section for Display Auxiliary File
	Key Fields
	Special Data Sections
	GeographyDisplayOptions
	Picture
	PWFormOptions
	View

	SubData Sections
	ColorMap
	CustomColors
	DisplayDCTramisssionLine
	DisplayInterface
	DisplayMultiSectionLine
	DisplaySeriesCapacitor
	DisplayTransformer
	DisplayTransmissionLine
	Line
	Line

	DynamicFormatting
	Filter
	GeoDataViewStyle
	PieChartGaugeStyle
	ColorMap

	PWFormOptions
	SelectByCriteriaSet
	UserDefinedDataGrid
	View
	ScreenLayer

