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Introduction 
PowerWorld has incorporated the ability to import data to/from data sources other than power flow models into PowerWorld 
Simulator.  The text file interface for exchanging data, as well as for executing a batch script command, is represented by the auxiliary 
files.  The script language and auxiliary data formats are incorporated together.  This format is described in this document. 
 
Script/Data files are called data auxiliary files in Simulator and typically have the file extension .AUX.  These files mostly contain 
information about power system elements and options for running the various tools within Simulator.  They do not contain any 
information about the individual display objects contained on a one-line diagram.  There are separate files called display auxiliary files 
that are available for importing display data to/from Simulator in a text format.  These files are distinguished from the data auxiliary 
files by using the extension .AXD.  The format for these two types of files is similar, but different object types are supported by each 
and require that the files be read separately.  
 
Both file types will be generically referred to as auxiliary files.  An auxiliary file may be comprised of one or more DATA or SCRIPT 
sections. A DATA section provides specific data for a specific type of object.  A SCRIPT section provides a list of script actions for 
Simulator to perform.  These sections have the following format: 
  

SCRIPT ScriptName1 
{ 
script_statement_1; 
   . 
script_statement_n; 
} 
 
DATA DataName1(object_type, [list_of_fields], file_type_specifier, create_if_not_found) 
{ 
data_list_1 
   . 
data_list_n 
} 
 
DATA DataName2(object_type, [list_of_fields], file_type_specifier, create_if_not_found) 
{ 
data_list_1 
   . 
data_list_n 
} 
 
SCRIPT ScriptName2 
{ 
script_statement_1; 
   . 
script_statement_n; 
} 

 
Note that the keywords SCRIPT or DATA must occur at the start of a text file line.  Auxiliary files may contain more than one DATA 
and/or SCRIPT section.  These sections always begin with the keyword DATA or SCRIPT.  DATA sections are followed by an 
argument list enclosed in (  ).   The actual data or script commands are then contained within curly braces { }.  Strings are enclosed in 
straight quotes – note that smart quotes will not work (this might be encountered when copy/pasting script commands from another 
program).  The Script commands available in Simulator 18 are described in the next main section.  The DATA sections are then 
described after this.  There are separate sections for describing the DATA sections for the data auxiliary files and the display auxiliary 
file. 
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SCRIPT Section 
SCRIPT ScriptName 
{ 
script_statement_1; 
   . 
script_statement_n; 
} 

Scripts may optionally contain a ScriptName.  This enables you to call a particular SCRIPT by using the LoadScript action (see 
General Actions).  After the optional name, the SCRIPT section begins with a left curly brace and ends with a right curly brace.  
Inside of this, script statements can be given.  In general, a script statement has the following format 
 

Keyword(arg1, arg2, ...); 
• Statement starts with a keyword. 
• The keyword is followed by an argument list which is encompassed in parentheses ( ).   
• The arguments are separated by commas. 
• If a single argument is a list of things, this list is encompassed by braces [ ].  
• Statements end with a semicolon. 
• Statements may take up several lines of the text file.   
• You may put more than one statement on a single text line. 

 
Those familiar with using Simulator will know that there is a RUN and EDIT mode in Simulator.  Some features in Simulator are only 
available in one mode or the other.  This functionality will be preserved in the script language.  In earlier versions of the software, 
certain functionality was organized by the "submode" feature.  While existing scripts designed to work with submodes will still 
function as before, moving between submodes is no longer necessary. 
 
Various script commands require that you be in RUN or EDIT mode.  If a script requires this, then the script will automatically change 
modes.  

Using Filters in Script Commands 
Many script commands allow the specification of a filtername.  Only those objects meeting this filter will be selected for the specified 
action.  This filtername can be the name of an advanced filter.  Advanced filters belonging to a different objecttype can also be used 
depending on the objectype in use.  For example, if filtering generator objects a bus filter can also be used.  When using an advanced 
filter that belongs to a different objecttype the format of the filter is "<Objecttype> filtername" instead of just specifying the 
filtername itself.   
   
The filtername can also be the name of a device filter.  A device filter allows you to specify a particular object for filtering instead of a 
class of object.  For example you might want to return all buses that belong to a particular substation.  You can specify the device 
filter for the particular substation and then apply this to the bus objects.  The format of a device filter is "<DEVICE> objecttype 
'key1' 'key2' 'key3'". 

Specifying File Names in Script Commands 
In place of the "filename" parameter in any script command, specially formatted text can be used to indicate that the user should be 
prompted to choose the file.  Depending on whether or not a file is being opened or saved, an Open or Save dialog will be presented 
for the user to choose the file.  This will not work when using the SimAuto Add-on. The special syntax of the filename parameter is 
generally "<PROMPT 'Caption' 'FileTypes'>". The entire string must start with <PROMPT and end with >. After the word PROMPT 
there may optionally be a space delimiter followed by a special caption to be placed at the top of the file dialog that appears (this 
caption must be enclosed in single quotes). If the special caption is omitted, either 'Save' or 'Open' is assumed. After the special 
caption there may optionally be a list of File Types and extensions specified. This list must be enclosed in single quotes. The list itself 
is composed of a pipe-delimited string (|) with the first string representing the first file type, the second string representing the first file 
extension, the third string representing the second file type, the fourth string representing the second file extension and so on. If no 
File Types are specified, 'All Files (*.*)|*.*' is assumed. An example string might be: 
<PROMPT 'Choose an AUX file' 'Auxiliary Files (*.aux)|*.aux|All Files (*.*)|*.*'> 
 
The special keywords @DATETIME, @DATE, @TIME, @BUILDDATE, @VERSION, and @CASENAME are allowed to be used 
as part of the filename for script commands that save files as well as some other script commands that modify files.  These special 
keywords will be replaced with their actual values when the file is saved. @DATETIME will replace the keyword with the actual date 
and time in the format yyyymmdd_hhnnss-hhmm with the UTC offset included on the end of the time.  
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Specifying Field Names in Script Commands 
See the Field Naming topic in the DATA Section for general information about naming fields. 
 
Within select script commands the keyword ALL can be used instead of using the location number of a field when specifying 
variablenames as part of a field list.  This will return all fields with the same variablename. This is intended to allow easier access to 
fields when the exact number of fields is not known, such as with multiple TLR (MultBusTLRSens:ALL) or PTDF 
(LinePTDFMult:ALL) results. This can be used with SaveData, SaveDataWithExtra, SaveObjectFields, and SendToExcel script 
actions.  
 
Within select script commands the keyword ALL can be used instead of a list of fields. This will return all fields for a particular 
objecttype.  This can be used with SaveData, SaveDataWithExtra, SaveObjectFields, and SendToExcel script actions. 

Specifying Field Values in Script Commands 
Several script commands require that a valuelist be specified to assign values to a corresponding fieldlist.  Instead of specifying the 
values explicitly, special formatting is available to assign values from other fields.  See the Specifying Special Data List Entries 
topic in the DATA Section for more information. 
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General Actions 

Generic Data Actions 
Available to you regardless of the mode 

CopyFile ("oldfilename", "newfilename"); 
CreateData (objecttype, [fieldlist], [valuelist]); 
Delete (objecttype, filter); 
DeleteFile ("filename"); 
DeleteIncludingContents (objecttype, filter); 
EnterDistMasterPassword (Password); 
ExportAreaSupplyCurves ("filename", "User Defined String", NumPoints); 
ImportData ("filename", FileType, CreateIfNotFound); 
LoadAux ("filename", CreateIfNotFound); 
LoadCSV ("filename", CreateIfNotFound); 
LoadData ("filename", DataName, CreateIfNotFound); 
LoadScript ("filename", ScriptName, CreateIfNotFound); 
RenameFile ("oldfilename", "newfilename"); 
SaveData ("filename",filetype,objecttype,[fieldlist],[subdatalist],filter, 
  [SortFieldList]); 
SaveDataUsingExportFormat("filename",filetype,"FormatName",ModelToUse); 
SaveDataWithExtra ("filename",filetype,objecttype,[fieldlist],[subdatalist],filter, 
  [SortFieldList],[Header_List],[Header_Value_List]); 
SaveObjectFields ("filename", objecttype, [fieldlist]); 
SelectAll (objecttype, filter); 
SendToExcel (objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", 

"worksheetname"); 
SetCurrentDirectory ("filedirectory", CreateIfNotFound); 
SetData  (objecttype, [fieldlist], [valuelist], filter); 
StopAuxFile; 
UnSelectAll (objecttype, filter); 
WriteTextToFile ("filename", "text..."); 

 

CopyFile("oldfilename", "newfilename"); 
Use this action to copy a file from within a script. 

"oldfilename"  : The present file name. 
"newfilename" : The new file name desired. 

CreateData(objecttype, [fieldlist], [valuelist]); 
Use this action to create particular objects.   Note that the key fields for the objecttype must be specified. 

objecttype  : The objecttype being set. 
[fieldlist] : A list of fields that you want to save. 
[valuelist] : A list of values to set the respective fields to. 

Delete(objecttype, filter); 
Use this delete objects of a particular type.  A filter may optionally be specified to only delete object which meet a filter. 

objecttype  : The objecttype being selected. 
filter : There are four options for the filter: 

Delete(objecttype); – No filter means to delete all objects of this type. 
Delete(objecttype, "filtername"); – See the Using Filters in Script 

Commands section for more information on 
specifying the filtername. 

Delete(objecttype, AREAZONE); – means delete those meeting the area/zone 
filters. 

Delete(objecttype, SELECTED); – means delete if Selected? = YES 

DeleteFile("filename"); 
Use this action to delete a file from within a script. 

"filename"  : The file name to delete.  See the Specifying File Names in Script Commands 
section for special keywords that can be used when specifying the file name. 
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DeleteIncludingContents(objecttype, filter); 
Use this to delete objects of a particular type and other objects that these contain. Currently, only multi-section lines 
(objecttype = MultiSectionLine) can be used with this command. The branches and dummy buses that belong to multi-section 
lines will also be deleted along with the multi-section lines. A filter may optionally be specified to only delete objects that 
meet a filter.  The syntax is identical to the Delete(objecttype, filter); action above. 

EnterDistMasterPassword(Password); 
Use this action to enter the master password used to unlock distributed machine login credentials. 

Password : Password that must be specified to unlock the credentials. 

ExportAreaSupplyCurves("filename", "User Defined String", NumPoints); 
Use this action to export Area Supply Curves to a CSV file. The output of the file will have 7 entries for each area for Fixed 
Gen MW, Fixed Load MW, Fixed Shunt MW, Losses MW, Variable Min MW, Variable Max MW, Variable Present MW, 
followed by a set of Bid MW/Price entries represents the supply curve for the variable MWs. 

"filename.csv" : The name of the CSV file to which results will be written.  
"User Defined String" : This is an optional parameter for specifying a user defined string written to each 

entry in the resulting CSV file. If this is omitted, blank will be assumed. 
NumPoints : This is an optional parameter and is related to converting a cubic cost model into 

a piece-wise linear model. If this is omitted, 5 is the default. 

ImportData("filename", FileType, CreateIfNotFound); 
Use this action to import data in various file formats that are not native to Simulator. 

"filename" : Name of the file to import 
FileType : Parameter that specifies the format of the data this is being read.  Currently there is only 

one file format supported. 
CROW : Describes system outages in a format that is created by the 

Equinox Control Room Operations Window application.  
This is used with the Scheduled Actions add-on tool.   

CreateIfNotFound : Optional parameter that is NO by default.  Set this to YES to create objects 
defined in the data if they do not already exist. 

LoadAux("filename", CreateIfNotFound); 
Use this action to load another auxiliary file from within a script. 

"filename"  : The filename of the auxiliary file being loaded. 
CreateIfNotFound : Set to YES or NO.  YES means that objects which cannot be found will be 

created while reading in DATA sections from filename.  If this parameter is not 
specified, NO is assumed. 

LoadCSV("filename", CreateIfNotFound); 
Use this action to load a CSV file that is formatted the same as the data sent to Excel in the Send All to Excel option found 
within a case information display, or by choose Save As CSV. 

"filename"  : The filename of the CSV file being loaded. 
CreateIfNotFound : Set to YES or NO.  YES means that objects which cannot be found will be 

created.  If this parameter is not specified, NO is assumed. 

LoadData("filename", DataName, CreateIfNotFound); 
Use this action to load a named Script Section from another auxiliary file.  This will open the auxiliary file denoted by 
"filename", but will only execute the script section specified. 

"filename"  : The filename of the auxiliary file being loaded. 
DataName : The specific ScriptName from the auxiliary file which should be loaded. 
CreateIfNotFound : Set to YES or NO.  YES means that objects which cannot be found will be 

created while reading in DATA sections from filename.  If this parameter is not 
specified, NO is assumed. 

LoadScript("filename", ScriptName, CreateIfNotFound); 
Use this action to load a named Script Section from another auxiliary file.  This will open the auxiliary file denoted by 
"filename", but will only execute the script section specified. 

"filename"  : The filename of the auxiliary file being loaded. 
ScriptName : The specific ScriptName from the auxiliary file which should be loaded.  
CreateIfNotFound : Set to YES or NO.  YES means that objects which cannot be found will be 

created while reading in SCRIPT sections from filename.  If this parameter is 
not specified, NO is assumed. 
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RenameFile("oldfilename", "newfilename"); 
Use this action to rename a file from within a script. 

"oldfilename"  : The present file name. 
"newfilename" : The new file name desired. See the Specifying File Names in Script 

Commands section for special keywords that can be used when specifying the 
file name. 

SaveData("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList]); 
Use this action to save data in a custom defined format.  The filter and [SortFieldList] are optional. 

"filename" : The file path and name to save. 
filetype : There are several options for the filetype 

AUXCSV : save as a comma-delimited auxiliary data file. 
AUX : save as a space-delimited auxiliary data file. 
CSV : save as a normal CSV file without the AUX file syntax. The 

first few lines of the text file will represent the object name 
and field names. 

CSVColHeader : save as a normal CSV file without the AUX file syntax. The 
first few lines of the text file will represent the object name 
and field names. 

objecttype  : The objecttype being saved. 
[fieldlist] : A list of fields that you want to save. For numeric fields, the number of digits 

and the number of decimal places (digits to right of decimal) can be specified by 
using the following format for the field, variablename:location:digits:rod.  See 
the Specifying Field Names in Script Commands topic for more information 
on specifying this list. 

[subdatalist] : A list of the subdata objecttypes to save with each object record. 
filter : There are four options for the filter: 

SaveData(…);– No filter specified means to save all objects of this type. 
SaveData(…, "filtername"); – See the Using Filters in Script Commands 

section for more information on specifying the 
filtername. 

SaveData(…, AREAZONE); – AREAZONE means save those that meet the 
area/zone/owner filters. 

SaveData(…, SELECTED); – SELECTED means save those that are selected. 
[SortFieldList] : This allows the specification of a sort order in which the data will be saved. The 

format is:  [variablename1:+:0, variablename2:-:1] where  
variablename : is the name of the field to sort by. There is no limit to how 

many fields can be specified for sorting. For fields that require 
a location other than zero , variablename can be in the format 
fieldname:location.  

+ or -  : for the second parameter indicates sort ascending for + and 
sort descending for -. This parameter must be specified. 

0 or 1  : for the third parameter 0 means case insensitive and do not use 
absolute value, 1 mean case sensitive or use absolute value. 
This parameter is optional. 

SaveDataUsingExportFormat("filename", filetype, "FormatName", ModelToUse);   
Use this action to save data in a user-defined format that has previously been defined. 

"filename" : The file to save the data to 
filetype  : There are several options for the filetype 

AUXCSV : save as a comma-delimited auxiliary data file. 
AUX : save as a space-delimited auxiliary data file. 
CSV : save as a normal CSV file without the AUX file syntax. The 

first few lines of the text file will represent the object name 
and field names. 

FormatName : The name of the Object Export Format Description to use. 
ModelToUse : Optional parameter that indicates the model to use.   

FULL   : Full-topology model.  This is the default if the 
parameter is omitted. 

CONSOLIDATED :  Consolidated planning-type model.  This option will 
only work with the Topology Processing add-on. 



 7 

SaveDataWithExtra("filename", filetype, objecttype, [fieldlist], [subdatalist], filter, [SortFieldList], 
[Header_List], [Header_Value_List]);  

Use this action to save data in a custom defined format. User-specified fields and field values can also be specified in the 
output. Optional parameters are filter, [SortFieldList], [Header_List], and [Header_Value_List].  The syntax is identical to the 
SaveData() command with the following exceptions. 

Filetype : There are several options for the filetype 
CSV : save as a normal CSV file without the AUX file syntax. The 

first few lines of the text file will represent the object name 
and field names. 

CSVNOHEADER: save as a normal CSV text file, without the AUX file 
formatting. The object name and field names are NOT 
included. This option is useful when appending data of the 
same object type and field list into a common file. 

CSVCOLHEADER: save as a normal CSV without the AUX syntax and with 
the first row showing column headers you would see in a 
case information display 

Data cannot be saved using AUX or AUXCSV filetypes with this command 
[Header_List] : This allows the specification of user-defined fields that will appear in the output. 

Headers should be specified as a list of comma delimited strings. A string should 
be enclosed in double quotes if the string contains a comma. Header strings 
cannot be blank. 

[Header_Value_List] : Allows the specification of the values that should be assigned to the user-defined 
fields specified by Header_List. Specifying the values is optional. If specified, 
there must be as many values specified as there are headers. If not specified, all 
values are blank. Each object will use the same specified value for the specified 
field. To use different values for different objects and save these in the same file, 
make use of the CSVNOHEADER file format and filtering. Special keywords 
can be entered that will be replaced with their actual values. These include 
@BUILDDATE, @DATETIME, @DATE, @TIME, @VERSION, and 
@CASENAME. 

SaveObjectFields("filename", objecttype, [fieldlist]); 
Use this action to save a list of fields available for the specified objecttype to a CSV file.  Format of the file is variablename, 
field, col header, description. 

"filename"  : The file path and name to save. 
objecttype : The type of object for which fields should be saved. 
[fieldlist] : List of fields for which information will be saved.  See the Specifying Field 

Names in Script Commands topic for more information on specifying this list. 

SelectAll(objecttype, filter); 
Use this to set the selected property of objects of a particular type to true.  A filter may optionally be specified to only set this 
property for objects which meet a filter. 

objecttype  : The objecttype being selected. 
filter : There are three options for the filter: 

SelectAll(objecttype); – No filter means to select all objects of this type.   
SelectAll(objecttype, "filtername"); – See the Using Filters in Script 

Commands section for more information on 
specifying the filtername. 

SelectAll(objecttype, AREAZONE); – means select those meeting the 
area/zone filters 
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SendtoExcel(objecttype, [fieldlist], filter, UseColumnHeaders, "workbookname", "worksheetname"); 
Use this action to mimic the behavior of the Send to Excel option found within a case information display. 

objecttype : The type of object for which fields should be saved. 
[fieldlist] : List of fields for which information will be saved.  See the Specifying Field 

Names in Script Commands topic for more information on specifying this list. 
filter : There are four options for the filter: 

SendToExcel(…);– No filter specified means to save all objects of this type. 
SendToExcel (…, "filtername"); – See the Using Filters in Script 

Commands section for more information on 
specifying the filtername. 

SendToExcel (…, AREAZONE); – AREAZONE means save those that meet 
the area/zone/owner filters. 

SendToExcel (…, SELECTED); – SELECTED means save those that are 
selected. 

UseColumnHeaders : Set to YES or NO.  YES signifies that the first row shows the Column Header, 
NO signifies that variable names are used. 

"workbookname" : Path and name of the workbook to save or modify.  If no path is specified, the 
workbook will be saved or opened from the current directory.  If the workbook 
already exists, it will be modified with a new worksheet, or if the worksheet is 
specified and already exists, the worksheet will be overwritten.  If using Excel 
2007 or later *.xlsm filetypes can be specified.     

"worksheetname" : Optional parameter to specify the worksheet name to save.  If blank, a new 
worksheet will be created, if a value is specified it will overwrite the data in any 
existing worksheet of that name. 

SetCurrentDirectory("filedirectory", CreateIfNotFound); 
Use this action to set the current work directory. 

"filedirectory" : The path of the work directory. 
CreateIfNotFound : Set to YES or NO.  YES means that if the directory 

path cannot be found, the directory will be created.  
If this parameter is not specified, NO is assumed. 

SetData(objecttype, [fieldlist], [valuelist], filter); 
Use this action to set fields for particular objects.  If a filter is specified, then it will set the respective fields for all objects 
which meet this filter.  Otherwise, if no filter is specified, then the keyfields must be included in the field list so that the 
object can be found.   

objecttype  : The objecttype being set. 
[fieldlist] : A list of fields that you want to save. 
[valuelist] : A list of values to set the respective fields to . 
filter : There are four options for the filter: 

SetData(…);– No filter specified sets data only for the object described by the 
[fieldlist] and [valuelist] parameters. 

SetData(…, ALL);  – sets data for all objects. 
SetData(…, "filtername"); – See the Using Filters in Script Commands 

section for more information on specifying the 
filtername. 

SetData(…, AREAZONE); – sets data for all objects that meet the area/zone 
filters. 

SetData(…, SELECTED); – sets data for all objects with Selected? = YES 

StopAuxFile; 
Use this action to treat the remainder of the file after the command as a big comment.  This includes any script commands 
inside the present SCRIPT block, as well as all remaining SCRIPT or DATA blocks. 

UnSelectAll(objecttype, filter); 
Same as SelectAll, but this action sets the selectected properties to false. 
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WriteTextToFile("filename", "text…"); 
Use this action to write text to a file.  If the specified file already exists, the text will be appended to the file.  Otherwise, it 
creates the file and writes the text to the file. 

"filename" : The file path and name to save.  
"text…" : The text to be written to the file. Special keywords can be entered that will be 

replaced with their actual values. These include @BUILDDATE, 
@DATETIME, @DATE, @TIME, @VERSION, and @CASENAME. 
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Case Related Actions 
Available to you regardless of the mode 

AutoInsertTieLineTransactions; 
CalculateRXBGFromLengthConfigCondType(filter); 
 unspecified 
 "filtername" 
 SELECTED 
 AREAZONE 
CaseDescriptionClear; 
CaseDescriptionSet ("text...", Append); 
    YES or NO 
ChangeSystemMVABase (NewBase); 
ConditionVoltagePockets (VoltageTreshold, AngleThreshold, filter); 
DetermineBranchesThatCreateIslands(Filter, StoreBuses,"filename", SetSelectedOnLines, FileType); 
   ALL  YES/NO    YES/NO  AUX 
   SELECTED       CSV 
   AREAZONE 
   "FilterName" 
DeterminePathDistance ([start],               BranchDistMease, BranchFilter, BusField); 
 [AREA num]              X                ALL           variableName 
 [ZONE num]              Z                Selected 
 [SUPERAREA "name"]      Length           Closed 
 [INJECTIONGROUP "name"] Nodes            "Filtername" 
 [BUS num]               "Variablename" 
DetermineShortestPath ([start],              [end],  BranchDistMeas,BranchFilter,Filename); 
 [AREA num]              same   X              ALL            
 [ZONE num]              as     Z              Selected       
 [SUPERAREA "name"]      for    Length         Closed 
 [INJECTIONGROUP "name"] start  Nodes          "Filtername" 
DoFacilityAnalysis ("filename"); 
DirectionsAutoInsert (Source, Sink, DeleteExisting, UseDisplayFilters, Start, Increment); 
 AREA     AREA  YES             YES                value  value 
 ZONE     ZONE  NO              NO 
 INJECTIONGROUP 
          SLACK 
EnterMode  (mode); 
  EDIT  
  RUN  
ExitProgram; 
GenForceLDC_RCC (filter); 
 unspecified 
 "filtername" 
 SELECTED 
 AREAZONE 
InitializeGenMvarLimits; 
InjectionGroupsAutoInsert; 
LogAdd ("string..."); 
LogAddDateTime ("label", includedate, includetime, includemilliseconds); 
LogClear; 
LogSave ("filename", AppendFile); 
      YES or NO 
NewCase; 
OpenCase ("filename"); // assumes to open as PWB 
OpenCase ("filename", openfiletype ); 
  PWB, GE, PTI, CF 
OpenCase ("filename", openfiletype, [LoadTransactions, StarBus]); 
  PTI       YES, NO, DEFAULT  NEAR, MAX, number 
OpenCase ("filename", openfiletype, [MSLine, VarLimDead, PostCTGAGC]); 
  GE      MAINTAIN    number     YES 
        EQUIVALENCE        NO 
RenameInjectionGroup ("OldName", "NewName"); 
SaveCase ("filename"); // assumes save as PWB 
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SaveCase ("filename", savefiletype,  
  PWB,PWB5,PWB6,PWB7,PWB8,PWB9,PWB10,PWB11,PWB12 
  PWB13,PWB14,PWB15,PWB16,PWB17,PWB18 
  PTI,PTI23,PTI24,PTI25,PTI26,PTI27,PTI28,PTI29,PTI30 
  PTI31,PTI32,PTI33 
  GE,GE14,GE15,GE17,GE18,CF 
 [PostCTGAGC, UseAreaZone]); 
   YES/NO  YES/NO 
SaveGenLimitStatusAction ("filename"); 
SaveJacobian ("JacFileName", "JIDFileName", FileType, JacForm) 
   M or TXT R or P 
   EXPM R 
SaveYbusInMatlabFormat ("filename", IncludeVoltages); 
Scale (scaletype, basedon, [parameters], ScaleMarker); 
  LOAD MW  [P, Q] BUS 
  GEN FACTOR [P] means constant pf AREA 
  INJECTIONGROUP   ZONE 
SetGenPMaxFromReactiveCapabilityCurve(filter); 
   Selected 
   AREAZONE 
   FilterName 
    OWNER 
SetParticipationFactors (Method, ConstantValue, Object); 
 MAXMWRAT [Area num] 
 RESERVE [Zone num] 
 CONSTANT SYSTEM 
  AREAZONE or DISPLAYFILTERS 
 
 [BUS num]                      "Variablename" 
SetScheduledVoltageForABus([bus identifier], voltage); 

AutoInsertTieLineTransactions; 
Use this action todelete all existing MW transactions and set the unspecified MW interchange for each area to zero.  It then 
automatically creates a MW transaction between each pair of connected areas with a MW transaction exactly equal to the 
sum of the tie-line flows. 

CalculateRXBGFromLengthConfigCondType(filter); 
Use this action the go through branches in the power system and automatically recalculate the per unit R, X, G, and B values 
using the TransLineCalc tool. The branches Conductor Type, Tower Configuration, and Line Length will be passed to the 
TransLineCalc tool and new R, X, G and B values will be calculated. This is only available if you have installed the 
TransLineCalc tool. 

filter : This parameter is used to specify which branches are checked. 
ALL : means all branches will be checked 
SELECTED : means only branches whose Selected field = YES will be 

checked 
AREAZONE : means only branches that meet the area/zone/owner filters 

will be checked 
"FilterName" : means only branches that meet the specified filter will be 

checked.  See the Using Filters in Script Commands 
section for more information on specifying the filtername. 

CaseDescriptionClear; 
Use this action clear the case description of the presently open case. 

CaseDescriptionSet("text…", Append); 
Use this action to set or append text to the case description. 

"text…" : Specify the text to set/append to the case description. 
Append : YES – will append the text specified to the existing case description. NO – will replace 

the case description. 

ChangeSystemMVABase(NewBase); 
Use this action to change the system MVA base to the specified value and update all internal data structures to store values 
on the new base. 

NewBase : New power system base in MVA. 
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ConditionVoltagePockets(VoltageThreshold, AngleThreshold, filter); 
The goal of this script command is to find pockets of buses that may have bad initial voltage estimates and to get a better 
voltage estimate of these buses based on assuming that the voltages on buses outside these pockets are good. It will identify 
pockets of buses bounded by branches that meet the condition that the absolute value of the voltage difference across the 
branch is greater than VoltageThreshold or the absolute value of the angle difference across the branch is greater than 
AngleThreshold and the branch meets the specified filter. 

VoltageThreshold : Per-unit voltage difference (absolute value) that determines if a branch can be considered 
when determining groups of radial buses. 

AngleThreshold : Angle difference in degrees (absolute value) that determines if a branch can be 
considered when determining groups of radial buses. 

filter : This is an optional parameter is used to specify which branches are checked.  If omitted 
all branches are considered. 

ALL : All branches will be checked 
SELECTED : Only branches whose Selected field = YES will be checked 
AREAZONE : Only branches that meet the area/zone/owner filters will be 

checked 
"FilterName" : Only branches that meet the specified filter will be checked.  

See Using Filters in Script Commands section for more 
information on specifying the filtername. 

DetermineBranchesThatCreateIslands(Filter, StoreBuses, "filename", SetSelectedOnLines, FileType); 
Use this action to determine the branches whose outage results in island formation.  Note that setting the Selected field will 
overwrite the Selected fields. 

Filter : This parameter is used to specify which branches are checked. 
ALL : means all branches will be checked 
SELECTED : means only branches whose Selected field = YES will be 

checked 
AREAZONE : means only branches that meet the area/zone/owner filters 

will be checked 
"FilterName" : means only branches that meet the specified filter will be 

checked.  See the Using Filters in Script Commands 
section for more information on specifying the filtername. 

StoreBuses : YES to store the buses in the island to the output file 
"filename" : file to which the results will be written.  The format of the file is based on the auxiliary 

file format.  Each branch that was checked will be followed by the list of buses that are 
islanded.  The branch and bus information will be written in appropriate auxiliary file 
DATA format.  If this is left blank, SetSelectedOnLines will be assumed to be YES. 

SetSelectedOnLines : YES to set the SELECTED field to YES for branches that create islands 
FileType : Optional parameter used to specify the format of the file.  This is AUX by default. 

AUX : The saved file is based on an auxiliary file data format.  
Each branch that causes an island appears in the file in the 
auxiliary file data format followed by a auxiliary file bus 
data section containing all of the buses that are islanded by 
the preceeding branch.   

CSV : The saved file is a comma-delimited text file.  Each unique 
bus/branch pair appears on a single line.  A unique 
bus/branch pair is determined by a bus that is islanded and a 
particular branch that causes it to be islanded.  A header 
appears in the file specifying the fields used to identify the 
branch and bus in each record.   

  



 13 

DeterminePathDistance([start], BranchDistMeas, BranchFilter, BusField); 
Use this action to calculate a distance measure at each bus in the entire model. The distance measure will represent how far 
each bus is from the starting group specified. The distance measure can be related to impedance, geographical distance, or 
simply the number of nodes. 

[start] : is an the starting place which is enclosed in brackets. The starting place may be either an 
Area, Zone, SuperArea, Substation, Injection Group, or Bus. Format of string is 

[Area Num], [Area "Name"], or [Area "label"] 
[Zone Num], [Zone "Name"], or [Zone "label"] 
[SuperArea "Name"] or [SuperArea "label"] 
[Substation Num] or [Substation "label"] 
[InjectionGroup "Name"] or [InjectionGroup "label"] 

BranchDistMeas : is either X, Z, Length, Nodes, or a variable name for a branch.  
X : means use the series reactance,  
Z : means use sqrt(X^2 + R^2), 
Length : means us the Length field, and 
Nodes : means treat each branch as a length of one.  
"Variablename" : Otherwise use any Branch object variable name.  

BranchFilter : is either All, Selected, Closed or the name of a branch Advanced Filter. This parameter is 
used to specify which branch can be traversed at all.  

All : means all branches can be traversed 
Selected : means only branches whose Selected field = YES can be 

traversed 
Closed : means only branches that are CLOSED can be traversed.  
"FilterName" : See the Using Filters in Script Commands section for 

more information on specifying the filtername. 
BusField : is the variablename of a Bus field. This field is populated with the minimum distance 

from the Start Place to that bus. All buses in the start group will have a distance measure 
of zero. Buses which cannot be reached from the start group will have a distance measure 
of -1.  

DetermineShortestPath([start], [end], BranchDistanceMeasure, BranchFilter, Filename); 
Use this action to calculate the shortest path between a starting group and an ending group. The results will be written to a 
textfile specified by filename. In the text file, the first bus listed will be in the end grouping and the last bus listed will be the 
start grouping. The result text file will have a line for each bus passed. Each line will contain three entries delimited by a 
space: "Number DistanceMeasure Name".  

[start] : same as the starting place for the DeterminePathDistance script command 
[end] : same as the starting place for the DeterminePathDistance script command 
BranchDistanceMeasure : same as for DeterminePathDistance script command 
BranchFilter : same as for DeterminePathDistance script command 
Filename : is a filename (may need to be enclosed in quotes) to which the results will be written. 

DoFacilityAnalysis ("Filename"); 
 Do Facility Analysis (Minimum Cut) is used to determine the branches that would isolate the Facility from the External 

region as specified in the Select Bus Dialog in the Simulator Tool dialog. It is assumed that the user will set the options 
before using the script command. The script will be used to identify the minimum number of branches that need to be opened 
or removed from the system in order to isolate the Facility (power system device) from an External region. 

Filename : is a filename (may need to be enclosed in quotes) to which the results will be written. The 
file will be an auxiliary file and it will contain the. The results will show the buses of the 
different paths in a data section consisting of the buses that form the respective path. Also 
it will show the branches of the minimum cut. 

DirectionsAutoInsert(Source, Sink, DeleteExisting, UseAreaZoneFilters, Start, Increment); 
Use this action to auto-insert directions to the case 

Source : AREA, ZONE, or INJECTION GROUP – specifies what to use as source 
Sink : AREA, ZONE, INJECTION GROUP, or SLACK – specifies what to use as sink. 
DeleteExisting : YES – to delete existing direction; NO to not do that. 
UseAreaZoneFilters : YES – to filter Area/Zones by filter. 
Start : The starting number for the new directions added. 
Incremement :  The increment for subsequent directions. 
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EnterMode(mode); 
This action will change the mode in which Simulator is operating.  This is especially necessary when creating new case 
objects for which you are required to be in EDIT mode.  Simulator will automatically change the mode to RUN for script 
actions that require that mode.   

Mode  : The mode to enter, either RUN or EDIT.   

ExitProgram; 
Immediately exits the program with no prompts. 

GenForceLDC_RCC(filter); 
Use this action to force generators in the case onto line drop / reactive current compensation.  The present voltage at the point 
at which the generator is controlling based on the line drop/reactive current compensation impedance is calculated, and the 
setpoint of the generator is set to this value.  If the absolute value of the line drop/reactive current compensation impedance is 
less than or equal to 2*10-6*MVA Base, the generator will regulate its terminal bus and the setpoint voltage is set to the 
present value of the terminal bus voltage.  For a typical case with an MVA Base of 100 MVA, this value is 0.0002. 

filter : There are four options for the filter: 
GenForceLDC_RCC; – No filter specified means to set all generators. 
GenForceLDC_RCC("filtername"); – See the Using Filters in Script 

Commands section for more information on 
specifying the filtername. 

GenForceLDC_RCC(AREAZONE); – AREAZONE means to set generators 
that meet the area/zone filters. 

GenForceLDC_RCC(SELECTED); – means set generators if Selected?=YES 

InitializeGenMvarLimits; 
Use this action to initialize all generators in the case so that they are appropriately marked as being at Mvar limits or not. This 
could be useful if manually setting the Mvar output of generators or changing their limits. 

InjectionGroupsAutoInsert; 
Use this action to automatically insert injection groups according to the options specified in the "IG_AutoInsert_Options" 
object.  The settings available with this object represent what is seen on the Auto Insert Injection Groups Dialog. 

LogAdd("string…"); 
Use this action to add a personal message to the MessageLog. 

"string…" : The string that will appear as a message in the log. 

LogAddDateTime("label", includedate, includetime, includemilliseconds); 
Use this action to add the date and time to the message log 

"label" : A string which will appear at the start of the line containing the date/time. 
includedate : YES – Include  the data or NO to not include. 
includetime : YES – Include  the time or NO to not include. 
includemilliseconds : YES – Include  the milliseconds or NO to not include. 

LogClear; 
Use this action to clear the Message Log. 

LogSave("filename", AppendFile); 
This action saves the contents of the Message Log to "filename". 

"filename" : The file name to save the information to. 
AppendFile : Set to YES or NO. YES means that the contents of the log will be appended to 

"filename". NO means that "filename" will be overwritten. 

NewCase; 
This action clears out the existing case and open a new case from scratch. 
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OpenCase("filename", OpenFileType,[LoadTransactions,StarBus,MSLine,VarLimDead,PostCTGAGC]); 
This action will open a case stored in "filename" of the type OpenFileType.  Different sets of optional parameters apply for 
the PTI and GE file formats.  The LoadTransactions and Star bus parameters are available for writing to RAW files.  
MSLine, VarLimDead, and PostCTGAGC are for writing EPC files. 

"filename"  : The file to be opened.   
OpenFileType : An optional parameter saying what the format of the file being opened is.  If 

none is specified, then PWB will be assumed.  It may be one of the following 
strings 
PWB, PTI, PTI23, PTI24, PTI25, PTI26, PTI27, PTI28, PTI29, PTI30, PTI31, 
PTI32, PTI33 
GE (means GE18), GE14, GE15, GE17, GE18, CF 
AUX, UCTE, AREVAHDB 

LoadTransactions : valid for PTI RAW format only 
  YES -- load transactions when opening case. 
  NO -- do not load transactions when opening case. 
  DEFAULT – follow default behavior. 
StarBus : valid for PTI RAW format only 
  NEAR -- star buses are numbered starting after the near bus number 
  MAX -- star buses are numbered starting with the maximum bus number 
  VALUE -- star bus numbering will start at value 
MSLine : valid for GE EPC format only 
  MAINTAIN – maintain multi-section lines 
  EQUIVALENCE – equivalence mult-section lines 
VarLimDead : valid for GE EPC format only 
  Number -- set the GE var limit deadband 
PostCTGACG : valid for GE EPC format only 
  set to YES to populate the generator field Post-CTG Prevent Response based on 

the EPC file’s generator base load flag.    

RenameInjectionGroup("OldName", "NewName"); 
This action will change the name of an existing injection group. 

"OldName" : Name of the existing injection group. 
"NewName" : New name of the existing injection group. 

SaveCase("filename", SaveFileType, [PostCTGAGC, UseAreaZone]); 
This action will save the case to "filename" in the format SaveFileType. 

"filename"  : The file name in which to save the information.   
SaveFileType : An optional parameter saying the format of the file to be saved.  If none is 

specified, then PWB will be assumed.  It may be one of the following strings 
PWB (means PWB18), PWB5, PWB6, PWB7, PWB8, PWB9, PWB10, 
PWB11, PWB12, PWB13, PWB14, PWB15, PWB16, PWB17, PWB18 
PTI (means PTI33), PTI23, PTI24, PTI25, PTI26, PTI27, PTI28, PTI29, PTI30, 
PTI31, PTI32, PTI33 
GE (means GE18), GE14, GE15, GE17, GE18, CF 
AUX, AUXSECOND, AUXLABEL, UCTE 

PostCTGAGC : An optional parameter, only valid for GE EPC format.  YES sets the base load 
flag in the EPC file based on the Post-Contingency Prevent AGC Response 
setting  If preventing post-contingency AGC, the base load flag is set to 1.  If not 
preventing post-contingency AGC or this option is set to NO, the base load flag 
is set to 0. 

UseAreaZone : An optional parameter, only valid for GE EPC format.  YES limits the entries in 
the EPC file based on the area/zone/owner filter (NO by default) 

SaveGenLimitStatusAction("filename"); 
Use this action to save Mvar information about generators in a text file.  The information saved includes the generator bus 
number, generator ID, Mvar, Max Mvar, Min Mvar, AVRable flag (user specified), and internal AVRable flag (set by 
Simulator).  This information is useful for debugging.  

"filename" : Name of the text file in which to save the generator information. 
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SaveJacobian("JacFileName", "JIDFileName", FileType, JacForm); 
Use this action to save the Jacobian Matrix to a text file or a file formatted for use with Matlab 

"JacFileName" : File in which to save the Jacobian. 
"JIDFileName" : File to save a description of what each row and column of the Jacobian represents. 
FileType : M – Matlab form. 
  TXT – Text file. 
  EXPM – Save Jacobian in Exponential form (ex. 1.2E-2) in Matlab form. 
JacForm : R – Rectangular coordinates Jacobian. 
  P – Polar coordinates Jacobian. 

SaveYbusInMatlabFormat("filename", IncludeVoltages); 
Use this action to save the YBus to a file formatted for use with Matlab 

"filename" : File in which to save the YBus. 
IncludeVoltages : YES – Includes the per unit bus voltages in the file; NO does not include. 

Scale(scaletype, basedon, [parameters], scalemarker); 
Use this action to scale the load and generation in the system.  This script command should be used in conjunction with the 
SCALE_OPTIONS object that specifies additional options necessary for the scaling that are not set through the script 
command.    

scaletype  : The objecttype begin scaled.  Must be either LOAD, GEN, 
INJECTIONGROUP, or BUSSHUNT. 

basedon : MW – parameters are given in MW, MVAR units. 
FACTOR – parameters a factor to multiple the present values by. 

[parameters] : These parameters have different meanings depending on ScaleType.   
 LOAD  : [MW, MVAR] or [MW].  If you want to scale load 

using constant power factor, then do not specifying a 
MVAR value.  

 GEN  : [MW] 
 INJECTIONGROUP  : [MW, MVAR] or [MW] .  If you want to scale load 

using constant power factor, then do not specifying a 
MVAR value. 

 BUSSHUNT  : [GMW, BCAPMVAR, BREAMVAR].  The first 
values scales G shunt values, the second value scales 
positive (capacitive) B shunt values, and the third 
value scales negative (reactive) B shunt values 

 The Scale script command also allows using the [parameters] input to specify the new 
value or scale factor through a field with the object type to scale. To use this option, the 
[parameters] input should contain variable names instead of numeric values. When using 
a field rather than value, the scaling will be done by individual object rather than the 
aggregation of all objects selected for scaling. 

scalemarker : This value specifies whether to look at an element’s bus, area or zone to 
determine whether it should be scaled. 
 BUS  : Means that elements will be scaled according to the 

Scale property of the element’s terminal bus.  
 AREA  : Means that elements will be scaled according to the 

Scale property of the element’s Area.  Note that it is 
possible for the area of a load, generator, or switched 
shunt to be different than the terminal bus’s area. 

 ZONE  : Means that elements will be scaled according to the 
Scale property of the element’s Zone.  Note that it is 
possible for the zone of a load, generator, or switched 
shunt to be different than the terminal bus’s zone. 

 OWNER : Means that elements will be scaled according to the 
Scale property of the element’s Owner.  Note that it 
is possible for the Owner of a load, generator, or 
switched shunt to be different than the terminal bus’s 
Owner. 
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SetGenPMaxFromReactiveCapabilityCurve(filter); 
Use this action to change the Maximum MW output of generators which use a capability curve, equal to the second-to-last 
MW point in the capability curve if the last Max Mvar point on the capability curve is smaller than 0.001 Mvar.  If the 
present MW output is higher than this new Max MW value, then Max MW is set to the present MW output.. 

filter : optional parameter which is either Selected, Closed or the name of a branch Advanced 
Filter. This parameter is used to specify which generators are processed.  If blank, all 
generators are processed.  

Selected : means only generators whose Selected field = YES can be 
processed 

AREAZONE : means process those generators that meet the 
area/zone/owner filters.  

"FilterName" : See the Using Filters in Script Commands section for 
more information on specifying the filtername. 

SetParticipationFactors(Method,  ConstantValue, Object);   
Use this action to modify the generator participation factors in the case 

Method : The formula used to calculate the participation factors for each generator.  It may be one 
of the following strings: 

  MAXMWRAT – base factors on the maximum MW ratings. 
  RESERVE – base factors on the (Max MW rating – Present MW). 
  CONSTANT – set factors to a constant value. 
ConstantValue : The value used if CONSTANT method is specified.  If CONSTANT method is not 

specified, enter 0 (zero). 
Object : Specify which generators to set the participation factor for. 

[Area Num], [Area "name"], [Area "label"] 
[Zone Num], [Zone "name"], [Zone "label"] 
SYSTEM 
AREAZONE or DISPLAYFILTERS 

SetScheduledVoltageForABus([bus identifier], voltage); 
Use this action to set the stored scheduled voltage, vsched, for a bus according to how this is defined in the EPC format.  This 
value is not used by Simulator but is stored for purposes of writing out to an EPC file.  The setpoint voltages for generators 
and switched shunts regulating the specified bus are also set to the new voltage.  The regulation range for switched shunts is 
modified for the new setpoint voltage according to how this is defined in the EPC format: vband = (VHigh-VLow)/2 with 
newVHigh = voltage+vband and new VLow = voltage-vband. 

[bus identifier] : specifies bus 
voltage : the new voltage 



 18 

Oneline Actions 
Available to you regardless of the mode 

CloseOneline ("OnelineName");  
ExportOnelineAsShapeFile 
         ("filename", "OnelineName", "shapefileExportDescriptionName",UseLonLat, PointLocation); 
                                  NO or YES 
LoadAXD ("filename", "OnelineName", CreateIfNotFound); 
OpenOneline ("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, 

Height); 
SaveOneline ("filename", "OnelineName", SaveFileType); 

CloseOneline("OnelineName"); 
Use this action to close an open oneline diagram without saving it.  If the name is omitted, the last focused oneline diagram 
will be closed.   

" OnelineName" : The name of the oneline diagram to close. 

ExportOnelineAsShapeFile("filename", "OnelineName", "ShapeFileExportDescriptionName", UseLonLat, 
PointLocation) 

Use this action to save an open oneline diagram to a shapefile. 
"filename" : The file name of the shapefile to save. 
" OnelineName" : The name of the oneline diagram to save to a shapefile. The oneline diagram 

must be open. Use the OpenOneline script command if necessary to open the 
appropriate oneline. 

"ShapeFileExportDescriptionName" : Name of the ShapeFile Export Description to use when saving the 
shapefile. 

UseLonLat : Set to YES or NO. YES means that the coordinates of objects on the oneline 
diagram will be saved using longitude,latitude. This will only be true if a valid 
map projection is in use with the oneline diagram. Otherwise, the coordinates 
will be saved in x,y. If this parameter is set to NO, the coordinates will be saved 
in x,y. If this parameter is not specified, YES is assumed. 

PointLocation : Determines where points are specified – object centers, or the upper left corner. 
Specify “center” to define points as the shape centers, or “ul” to define them as 
the upper left corner of the shapes. If not specified, upper left is assumed. 

LoadAXD("filename", "OnelineName", CreateIfNotFound) 
Use this action to apply a display auxiliary file to an open oneline diagram.   

"filename" : The file name of the display auxiliary file to load. 
"OnelineName" : The name of the oneline diagram to which to apply the display auxiliary file.  If 

the oneline is not already open and SimAuto or Retriever is being used, the 
OpenOneline script command can be used to open the appropriate oneline.  If 
the specified oneline is not open, a new one will be created with the given name 
if using SimAuto or Retriever.  If using Simulator, the oneline must already be 
open or this script command will not work. 

CreateIfNotFound : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections from filename.  If this parameter is not 
specified, NO is assumed. 
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OpenOneline("filename", "view", FullScreen, ShowFull, LinkMethod, Left, Top, Width, Height); 
Use this action to open a oneline diagram.  This can only be used in SimAuto or Retriever.  When using SimAuto, this action 
cannot be used to actually view a oneline.  This script can be used in SimAuto to associate onelines with a PWB file.  Any 
oneline that is opened using the script command and while the case is saved will opened in the GUI once the case is 
reopened. 

"filename"  : The file name of the oneline diagram to open. 
"view"  : The view name that should be opened.  Pass an empty string to denote no 

specific view. 
FullScreen  : Set to YES or NO.  YES means that the oneline diagram will be open in full 

screen mode.  If this parameter is not specified, then NO is assumed. 
ShowFull : Optional parameter.  Set to YES to open the oneline and apply the Show Full 

option.  Set to NO to open the oneline and leave the oneline as sis.  Default is 
NO if not specified. 

LinkMethod : Optional Parameter that controls oneline linking. LABELS, NAMENOMKV, 
and NUMBER will link using the respective key fields. 

Left : Optional with default of 0.  Value between 0 and 100 that indicates the location 
of the left edge of the oneline as a percentage of the Simulator/Retriever window 
width. 

Top : Optional with default of 0.  Value between 0 and 100 that indicates the top edge 
of the oneline as a percentage of the Simulator/Retriever window height. 

Width : Optional with default of 0.  Value between 0 and 100 that indicates the width of 
the oneline as a percentage of the Simulator/Retriever window width. 

Height : Optional with default of 0.  Value between 0 and 100 that indicates the height of 
the oneline as a percentage of the Simulator/Retriever window height. 

SaveOneline("filename", "OnelineName", SaveFileType); 
Use this action to save an open oneline diagram to file 

"filename"  : The path and file name of the file to save.  If a full path is not specified, then the 
file is saved to the current directory. 

"OnelineName"  : Name of the open oneline to save. 
SaveFileType  : Type of file to save.  Valid options are AXD, PWB, PWB5, PWB6, PWB7, 

PWB8, PWB9, PWB10, PWB11, PWB12, PWB13, PWB14, PWB15, PWB16, 
PWB17, and PWB18.  If omitted, PWB, which is the most recent version, will 
be assumed.  Note the use of "PWB" instead of "PWD" is not a typo.  The 
version of the PWD file corresponding to the PWB version will be used. 
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Edit Mode Actions 

Case Related Actions 
The following script commands are available during Edit mode 

AppendCase ("filename",  OpenFileType);  
 PWB, GE, PTI, or IEEECF 
AppendCase ("filename",  OpenFileType, [StarBus, EstimateVoltages]); 
  PTI        number      YES 
        NO 
AppendCase ("filename",  OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]);  
  GE       MAINTAIN     number     YES   YES 
        EQUIVALENCE NO   NO 
Combine ([elementA], [elementB]); 
 [GEN numA idA] [GEN numB idB] 
 [LOAD numA idA] [LOAD numB idB] // NOT AVAILABLE YET 
 [BRANCH numA1 numA2 cktA] [BRANCH numB1 numB2 cktB] // NOT AVAILABLE YET 
DeleteExternalSystem; 
Equivalence; 
InterfacesAutoInsert (Type, DeleteExisting, UseFilters, Prefix, Limits); 
  AREA YES YES "pre" ZEROS 
  ZONE NO NO  AUTO 
     [value1, ..., value8] 
MergeBuses ([element], Filter); 
 [BUS num] unspecified 
  "filtername" 
  SELECTED 
  AREAZONE 
MergeLineTerminals (Filter); 
    "filtername" 
     SELECTED 
MergeMSLineSections (Filter); 
     "filtername" 
      SELECTED 
Move ([elementA], [destination parameter], HowMuch); 
  [GEN numA idA] [numB idB] 
  [LOAD numA idA] [numB idB]  
  [BRANCH numA1 numA2 cktA] [numB1 numB2 cktB] 
  [SHUNT numA idA] [numB idB] 
  [MULTISECTIONLINE numA1 numA2 cktA] [numB1 numB2 cktB] 
  [3WXFORMER numA1 numA2 numA3 cktA] [numB1 numB2 numB3 cktB] 
ReassignIDs(objecttype, field, filter, UseRight); 
Remove3WXformerContainer(filter); 
Renumber3WXFormerStarBuses("filename"); 
RenumberAreas(NumCI); 
RenumberBuses(NumCI); 
RenumberMSLineDummyBuses("filename"); 
RenumberSubs(NumCI); 
RenumberZones(NumCI); 
SaveExternalSystem ("filename", Savefiletype, withties); 
SplitBus ([element], NewBusNumber, InsertBusTieLine, LineOpen); 
 [BUS num] num YES YES 
   NO NO 
TapTransmissionLine 
 ([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine); 
 [BRANCH numA1 numA2 cktA] value in % num LINESHUNTS YES 
    CAPACITANCE NO 

AppendCase("filename", OpenFileType); 

AppendCase("filename", OpenFileType, [StarBus, EstimateVoltages]); 
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AppendCase("filename", OpenFileType, [MSLine, VarLimDead, PostCTGAGC, EstimateVoltages]); 
Use this action to append a case to the currently open case. The optional parameters depend on the type of file being 
appended.     

"Filename"  : File name of the case to be appended 
OpenFileType : PWB – case file is a PowerWorld Binary file 
  GE – case file is a GE .epc file.  GExx where xx is the appropriate EPC file 

version number can also be used. 
     PTI – case file is a PTI .raw file.  PTIxx where xx is the appropriate RAW file 

version number can also be used. 
  IEEECF – case file is an IEEE common data format file 
StarBus  : Only used for PTI RAW format, with the following options: 
     NEAR – star buses are numbered starting after the near bus number 
  MAX – star buses are numbered starting with the maximum bus number 
   Value – star bus numbering will start at value 
MSLine : Only used for the GE EPC format, with the following options: 
  MAINTAIN – maintain multisection lines 
  EQUIVALENCE – equivalence multisection lines 
VarLimDead : Only used for the GE EPC format 
  NUMBER – set the GE var limit deadband 
PostCTGACG :  Only used for the GE EPC format. Set to YES to populate the generator field 

Post-CTG Prevent Response based on the EPC file’s generator base load flag. 
EstimateVoltages :  Used with either GE EPC or PTI RAW format with the following options: 
  YES – voltages and angles are estimated for new buses that are created when 

appending data to a case.  Angle smoothing is done across new lines that are 
created when appending data to a case.  These operations might be necessary if 
appending data that contains voltages that are not consistent to the case into 
which it is being appended or contains no voltages at all. This is the default. 

  NO – no voltage and angle estimates are done and no angle smoothing is done.  
This might be necessary when appending large sections of a case, i.e. such as a 
new island, or providing voltages that are already good estimates in the 
appended data. 

Combine([elementA], [elementB]); 
NOTE:  THIS ACTION IS ONLY AVAILABLE FOR GENERATORS  
Use this action to combine two generators, two loads, or two transmission line.  Note that elementA and elementB must be of 
the same object type.  You cannot combine a BRANCH and a LOAD. 

[elementA]  : The object that should be moved.  See the format for [elementA] in the Move() 
script command for information on the formatting of this string. 

 [elementB]  : The object that element A should be combined with.  Same format as for 
elementA. 

DeleteExternalSystem; 
This action will delete part of the power system.  It will delete those buses whose property Equiv must is set true. 

Equivalence; 
This action will equivalence a power system.  All options regarding equivalencing are handled by the Equiv_Options 
objecttype.  Use the SetData() action, or a DATA section to set these options prior to using the Equivalence() action.  Also, 
remember that the property Equiv must be set true for each bus that you want to equivalence. 

InterfacesAutoInsert(Type, DeleteExisting, UseFilters, "Prefix",  Limits); 
Use this action to auto-insert interfaces 

Type  : AREA – insert area-to-area tieline interfaces. 
  ZONE – insert zone-to-zone tieline interfaces. 
DeleteExsiting : YES – to delete existing interfaces; NO – to leave existing interfaces alone. 
UseFilters : YES – to user Area/Zone Filters; NO – to insert for entire case. 
"Prefix" : Enter a string which will be a prefix on the interface names. 
Limits : ZEROS – to make all limits zero. 
  AUTO – limits  will be set to the sum of the branch limits. 

[lima, limb, limc, limd, …] – Enter 8 limits enclosed in brackets, separated by commas.  
This will set the limits as specified. 
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MergeBuses([element], Filter); 
Use this action to merge buses 

Element  : Enter the description of the bus that the other buses will be merged into. 
Filter : Enter the number of the new bus to be created. 

MergeBuses([element]); – No filter means to merge all buses into one. 
MergeBuses([element], "filtername"); – See the Using Filters in Script 

Commands section for more information on 
specifying the filtername. 

MergeBuses([element], AREAZONE); – AREAZONE means to merge those 
that meet area/zone filters. 

MergeBuses([element], SELECTED); – means merge those if Selected?=YES 

MergeLineTerminals(Filter); 
Use this action to merge line terminals.  This action can be used to remove a line by merging the terminal buses of that line 
into a single bus.  The only parameter of the script command is a filter parameter, which must be populated with either the 
name of an advanced filter (with the name in quotation marks) or the text SELECTED (with no quotation marks). If an 
advanced filter is given, then Simulator will find all branches that meet the advanced filter definition and will individually 
merge the line terminals of each line one at a time. 

Filter : Any multi-section lines meeting this filter will be merged.  
"filtername" – See the Using Filters in Script Commands section for more 

information on specifying the filtername. 
SELECTED – select objects that have the selected property set to true 

MergeMSLineSections(Filter); 
Use this action to eliminate multi-section line records.  If possible, the individual sections will be merged into a single line 
record between the from and to bus and the multi-section line record will be removed.  If a multi-section line contains series 
capacitors or transformers, the multi-section line record will be retained.   

Filter : Any multi-section lines meeting this filter will be merged. 
"filtername" – See the Using Filters in Script Commands section for more 

information on specifying the filtername. 
SELECTED – select objects that have the selected property set to true 

Move([elementA], [destination parameters], HowMuch); 
Use this action to move a generator, load, transmission line, or switched shunt.   

[elementA]  : The object that should be moved.  Must be one of the following formats: 
[GEN busnum id], [GEN "name_nomkv" id],  
[GEN "label"] 
[LOAD busnum id] , [LOAD "name_nomkv" id],  
[LOAD "label"], 
[BRANCH busnum1 busnum2 ckt],  
[BRANCH "name_kv1" "name_kv2" ckt], 
[BRANCH "label"] 
[SHUNT busnum id], [SHUNT "name_nomkv" id],  
[SHUNT "label"], 
[MULTISECTIONLINE busnum1 busnum2 ckt],  
[MULTISECTIONLINE "name_kv1" "name_kv2" ckt], 
[MULTISECTIONLINE "label"], 
[3WXFORMER busnum1 busnum2 busnum3 ckt], 
[3WXFORMER "name_kv1" "name_kv2" "name_kv3" ckt] 
[3WXFORMER "label"] 

[destination parameters] : These parameters have different meanings depending on object type of the 
element.  Must use bus numbers here: 

GEN : [busnum  id] 
LOAD  : [busnum  id]   
BRANCH : [busnum1  busnum2  ckt] 
SHUNT :   [busnum id] 
MULTISECTIONLINE : [busnum1 busnum2 ckt] 
3WXFORMER : [busnum1 busnum2 busnum3 ckt] 

HowMuch : The amount of the element to move.  A value of 100 indicates that 100% should 
be moved.  This parameter is only valid for generators and loads.  It is ignored 
for lines and switched shunts. 
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ReassignIDs(objecttype, field, filter, UseRight); 
Use this action to set the IDs of specified objects to the first two characters of a specified field. 

objecttype : The type of object for which to assign IDs.  BRANCH, GEN, LOAD, and 
SHUNT are allowed. 

field : The field that contains the IDs that will be assigned.  Only the first two characters 
of the field will be assigned.  Field is specified in format 
variablename:location. 

Filter : (optional) Any objects meeting this filter will have their IDs reassigned.  Blank is 
the default value: 

Blank : means all objects will be modified  
ALL : means all objects will be modified 
SELECTED : means only branches whose Selected field = YES will be 

modified 
AREAZONE : means only branches that meet the area/zone/owner filters 

will be modified 
"FilterName" : means only objects that meet the specified filter will be 

modified.  See the Using Filters in Script Commands 
section for more information on specifying the filtername. 

UseRight : (optional) Set to YES or NO.  Default is NO.  If set to YES, the last two 
characters of the specified filed will be assigned. 

Remove3WXformerContainer(filter); 
Use this action to delete the three-winding transformers matching the specified filter while leaving the internal two-winding 
transformers intact.   

Filter : (optinal) Any three-winding transformers meeting this filter will be deleted.  
Default is blank: 

Blank : means all three-winding transformers will be deleted 
ALL : means all three-winding transformers will be deleted 
SELECTED : means only three-winding transformers whose Selected field 

= YES will be deleted 
AREAZONE : means only three-winding transformers that meet the 

area/zone/owner filters will be deleted 
"FilterName" : means only three-winding transformers that meet the 

specified filter will be deleted.  See the Using Filters in 
Script Commands section for more information on 
specifying the filtername. 

Renumber3WXFormerStarBuses("filename"); 
Use this action to renumber star buses based on user-specified values.     

"filename"            : The name of the file containing the renumbering    
 
The file may be comma or space delimited.  The contents of the file should be formatted using the format below. 
 
Primary bus, secondary bus, tertiary bus, circuit, new starbus number, nuew starbus name  
or 
pribusname_nomkV, secbusname_nomkV, terbusname_nomkV, circuit ID, newstarbusnum, newstarbusname 
 
Either the bus number or the name_nominalkV identifier may be used to identify the buses.  Each bus may be identified using                   
either method even for the same transformer.  Lines starting with two slashses (//) will be ignored. The next two lines are 
sample file contents using different methods to identify buses. 
 
11037, 11038, 11199, "1", 11202, "Ki star" 
"WESTWING_500.00" "WESTWNGW_230.00" "WESTWG 4_34.50" "2" 99823 "KI STAR 3" 

RenumberAreas(NumCI); 
Renumber Areas using the new number for the Area located in the Custom Integer field of the area. 

NumCI : Custom Integer field containing the new numbers. 

RenumberBuses(NumCI); 
Renumber Buses using the new number for the bus located in the Custom Integer field of the bus. 

NumCI : Custom Integer field containing the new numbers. 
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RenumberMSLineDummyBuses("filename"); 
Use this action to renumber dummy buses or a multisection line based on user-specified values. 

"filename"            : The name of the file containing the renumbering    
 
The file may be comma or space delimited.  Buses may be identified using bus numbers or using the BusName_NominalkV 
combination.  The file format is below: 
from bus, to bus, circuit   //identifiy multi-section line 
dummybusnumber1, dummybusname1 
dummybusnumber2,dummybusname2 

  
where the dummy bus numbers and names give the numbers and names that will be assigned for the dummy buses of a multi-
section line.  An example of the file contents is below: 
40039 , 40141, 1       // ALFALFA   230 N BONNVL  230 #1 
  49997, "ALFN B11"       
40062 , 40699, 2     // ASHE R1   500 MARION    500 #2        
  49990, ASHMAR21 
  49989, ASHMAR22 
  49988, ASHMAR23 

RenumberSubs(NumCI); 
Renumber Substations using the new number for the substation located in the Custom Integer field of the substation. 

NumCI : Custom Integer field containing the new numbers. 

RenumberZones(NumCI); 
Renumber Zones using the new number for the Zone located in the Custom Integer field of the zone. 

NumCI : Custom Integer field containing the new numbers. 

SaveExternalSystem("Filename", SaveFileType, WithTies); 
This action will save part of the power system to a "filename".  It will save only those buses whose property Equiv must is set 
true.   

filename  : The file name to save the information to. 
SaveFileType : An optional parameter saying the format of the file to be saved.  If none is 

specified, then PWB will be assumed.  May be one of the following strings 
PWB, PWB5, PWB6, PWB7, PWB8, PWB9, PWB10, PWB11, PWB12, 
PWB13, PWB14, PWB15, PWB16, PWB17, PWB18 
PTI (means PTI32), PTI23, PTI24, PTI25, PTI26, PTI27, PTI28, PTI29, PTI30, 
PTI31, PTI32, PTI33 
GE (means GE18), GE14, GE15, GE17, GE18, CF, AUX 

WithTies : An optional parameter.  The user must specify the file type explicitly in order to 
use the WithTies parameter. Allows saving a transmission line that ties a bus 
marked with Equiv as false and one marked true.  This must be a string which 
starts with the letter Y, otherwise NO will be assumed. 

SplitBus([element], NewBusNumber, InsertBusTieLine, LineOpen); 
Use this action to split buses  

Element  : Enter the description of which bus to split by enclosing in brackets the word bus 
and an identifier.  The format looks as follows. 

[BUS num] 
[BUS "name_nomkv"] 
[BUS "buslabel"]  

NewBusNumber : enter the number of the new bus to be created 
InsertBusTieLine : YES – insert a low impedance tie line between the buses; NO – to not do that. 
LineOpen : YES – to make the inserted bus tie open; NO – to make the tie closed. 
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TapTransmissionLine([element], PosAlongLine, NewBusNumber, ShuntModel, TreatAsMSLine); 
Use this action to tap a transmission line by adding in a new bus and splitting the line in two. 

Element  : A description of the branch being tapped.  Enclose description in brackets 
[BRANCH busnum1 busnum2 ckt] 
[BRANCH "name_kv1" "name_kv2" ckt] 
[BRANCH "buslabel1" "buslabel2" ckt] 
[BRANCH "label"] 

PosAlongLine : The percent distance along the branch at which the line will be tapped. 
NewBusNumber : The number of the new bus created at the tap point. 
ShuntModel : How should the shunt charging capacitance values be handled for the split lines. 
  LINESHUNTS – Line shunts will be created (keeps exact power flow model). 
  CAPACITANCE – Convert shunt values capacitance in the PI model. 
TreatAsMSLine : YES – the two new lines created will be made part of a multi-section line or. 

NO – the two lines will not be made multi-section lines. 
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Run Mode Actions 
The following script commands are available during Run Mode. 

Animate (DoAnimate); 
CalculatePTDF ([transactor seller], [transactor buyer], LinearMethod); 
  [AREA num] [AREA num] AC 
  [ZONE num] [ZONE num] DC 
  [SUPERAREA "name"] [SUPERAREA name] DCPS 
  [INJECTIONGROUP "name"] [INJECTIONGROUP name] 
  [BUS num] [BUS num] 
  [SLACK] [SLACK] 
CalculatePTDFMultipleDirections (StoreValuesForBranches,StoreValuesForInterfaces,LinearMethod); 
  YES YES      AC 
  NO NO      DC 
        DCPS   
CalculateLODF  ([BRANCH nearbusnum farbusnum ckt], LinearMethod); 
CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines, 
UseLODFThreshold, LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, DoSaveFile, 
FileLocation, CustomFieldHighLODF, CustomFieldHighLODFLine, CustomFieldHighOverload, 
CustomFieldHighOverloadLine); 
CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed,LinearMethod); 
  OUTAGES ALL ALL YES DC 
  CLOSURES SELECTED SELECTED NO DCPS 
   AREAZONE AREAZONE 
   "filtername" "filtername" 
    SAME 
CalculateTLR  ([flowelement], direction, [transactor], LinearMethod); 
  [INTERFACE "name"] BUYER  same as above for PTDFs 
  [BRANCH nearbusnum farbusnum ckt] SELLER 
CalculateTLRMultipleElement( TypeElement, WhichElement, direction, [transactor],LinearMethod); 
 BRANCH SELECTED BUYER same as above for PTDFs 
 INTERFACE OVERLOAD SELLER  
 BOTH CTGOVERLOAD 
CalculateVoltSense  ([BUS num]); 
CalculateFlowSense ([flowelement],   FlowType); 
  [INTERFACE "name"]   MW 
  [BRANCH busnum1 busnum2 ckt] MVAR 
    MVA 
CalculateLossSense (FunctionType); 
  NONE 
  ISLAND 
  AREA 
  AREASA 
  SELECTED 
CalculateVoltToTransferSense 
  ([transactor seller], [transactor buyer], TransferType, TurnOffAVR); 
        same as above for PTDFs [P, Q or PQ] YES 
   NO 
CalculateVoltSelfSense (filter); 
  unspecified 
  "filtername" 
  SELECTED 
  AREAZONE 
SetInterfaceLimitToMonitoredElementLimitSum(filter); 
SetSensitivitiesAtOutOfServiceToClosest; 
ZeroOutMismatches; 
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Animate(DoAnimate); 
Use this action to animate all the open oneline diagrams. 

DoAnimate  : Set to YES or NO.  YES means to start the animation of the open oneline 
diagrams, while NO means that the animation will be paused. 

CalculatePTDF([transactor seller], [transactor buyer], LinearMethod); 
Use this action to calculate the PTDF values between a seller and a buyer.  You may optionally specify the linear calculation 
method.  Note that the buyer and seller must not be same thing.  If no Linear Method is specified, Lossless DC will be used. 

[transactor seller]  : The seller (or source) of power.  There are six possible settings: 
[AREA num], [AREA "name"], [AREA "label"] 
[ZONE num], [ZONE "name"], [ZONE "label"] 
[SUPERAREA "name"], [SUPERAREA "label"] 
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"] 
[BUS num], [BUS "name_nomkv"], [BUS "label"] 
[SLACK] 

[transactor buyer]  : The buyer (or sink) of power.  There are six possible settings which are the same 
as for the seller. 

LinearMethod  : The linear method to be used for the PTDF calculation.  The options are: 
AC – for calculation including losses 
DC – for lossless DC 
DCPC – for lossless DC that takes into account phase shifter operation 

CalculatePTDFMultipleDirections(StoreForBranches, StoreForInterfaces, LinearMethod); 
Use this action to calculate the PTDF values between all the directions specified in the case.  You may optionally specify the 
linear calculation method.  If no Linear Method is specified, Lossless DC will be used. 

StoreForBranches  : Specify YES to store the values calculated for each branch. 
StoreForInterfaces : Specify YES to store the values calculated for each interface. 
LinearMethod  : the linear method to be used for the PTDF calculation.  The options are:  

AC – for calculation including losses. 
DC – for lossless DC. 
DCPC – for lossless DC that takes into account phase shifter operation. 

CalculateLODF([BRANCH nearbusnum farbusnum ckt], LinearMethod); 
Use this action to calculate the Line Outage Distribution Factors (or the Line Closure Distribution Factors) for a particular 
branch.  If the branch is presently closed, then the LODF values will be calculated, otherwise the LCDF values will be 
calculated.  You may optionally specify the linear calculation method as well. If no Linear Method is specified, Lossless DC 
will be used. 

[BRANCH nearbusnum farbusnum ckt]: the branch whose status is being changed.  Can also use strings 
[BRANCH "nearbusname_kv" "farbusname_kv" ckt] 
[BRANCH "nearbuslabel" "farbuslabel" ckt] 
[BRANCH "label"] 

LinearMethod  : The linear method to be used for the LODF calculation.  The options are: 
DC – for lossless DC. 
DCPC – for lossless DC that takes into account phase shifter operation. 
Note: AC is NOT an option for the LODF calculation. 
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CalculateLODFMatrix(WhichOnes, filterProcess, filterMonitor, MonitorOnlyClosed, LinearMethod); 
Use this action to calculate the Line Outage Distribution Factors (or the Line Closure Distribution Factors) for a particular 
branch.  If the branch is presently closed, then the LODF values will be calculated, otherwise the LCDF values will be 
calculated.  You may optionally specify the linear calculation method as well. If no Linear Method is specified, Lossless DC 
will be used. 

WhichOnes :  Specify the type of sensitivities to be calculated. 
OUTAGES – Outage sensitivities will be calculated for those branches meeting 
the filterProcess. 

  CLOSURES – Closure sensitivities will be calculated for those branches 
meeting the filterProcess. 

filterProcess :  Specify a filter for the branches for which the outages or closures will be 
implemented. 

  ALL – All AC transmission lines. 
  SELECTED – Only those branches whose Selected field is YES. 
  AREAZONE – Only those branches meeting the area/zone filter. 
  "filtername" – See the Using Filters in Script Commands section for more 

information on specifying the filtername. 
filterMonitor :  Specify a filter for the branches for which the impact of the outages or closures 

will be determined. 
  ALL – All AC transmission lines. 
  SELECTED – Only those branches whose Selected field is YES. 
  AREAZONE – Only those branches meeting the area/zone filter. 
  "filtername" – See the Using Filters in Script Commands section for more 

information on specifying the filtername. 
  SAME – Same as set of branches to process as specified by filterProcess. 
MonitorOnlyClosed :  Set to YES to monitor only those branches that are closed.  Set to NO to monitor 

branches regardless of their status. 
LinearMethod  : The linear method to be used for the LODF calculation.   

DC – for lossless DC. 
DCPC – for lossless DC that takes into account phase shifter operation. 
Note: AC is NOT an option for the LODF calculation. 

CalculateLODFScreening(filterProcess, filterMonitor, IncludePhaseShifters, IncludeOpenLines, 
UseLODFThreshold, LODFThreshold, UseOverloadThreshold, OverloadLow, OverloadHigh, 
DoSaveFile, FileLocation, CustomFieldHighLODF, CustomFieldHighLODFLine, 
CustomFieldHighOverload, CustomFieldHighOverloadLine); 

Use this action to do the LODF Screening calculation.  This calculation uses LODF/LCDF factors to determine how 
significant a branch open/close action will be on monitored lines.  The significance of the action can be determined by 
LODF/LCDF magnitude or line loading on monitored lines.  Significant single contingency actions can then be combined to 
form pairs of contingency actions that will be used to create new contingencies that can be saved to an auxiliary file. 

filterProcess :  Specify a filter for the branches for which the outage or closure impact will be 
determined. 

ALL : All AC transmission lines. 
AREAZONE : Only those branches meeting the area/zone filter. 
CTG : Only those branches included in any currently defined 

contingency. 
LIMITMONITOR : Only those branches meeting the Limit Monitoring 

Settings. 
SELECTED : Only those branches whose Selected field is YES. 
"filtername" : See the Using Filters in Script Commands section for 

more information on specifying the filtername. 
filterMonitor :  Specify a filter for the branches on which the impact of the outages or closures 

will be determined. 
ALL : All AC transmission lines. 
AREAZONE : Only those branches meeting the area/zone filter. 
LIMITMONITOR : Only those branches meeting the Limit Monitoring 

Settings. 
SAME : Same as branches to process specified by filterProcess. 
SELECTED : Only those branches whose Selected field is YES. 
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"filtername" : See the Using Filters in Script Commands section for 
more information on specifying the filtername. 

IncludePhaseShifters :  Set to YES to calculate the LODF/LCDF values assuming that phase shifters are 
allowed to operate and will see no impact due to an outage or closure.  Set to 
NO to not enforce the flow on phase shifters. 

IncludeOpenLines :  Set to NO to monitor only those branches that are closed.  Set to YES to monitor 
branches regardless of their status. 

UseLODFThreshold  : Set to YES to screen outages/closures by LODF/LCDF magnitude.  Set to NO to 
not screen by LODF/LCDF magnitudes. 

LODFThreshold  : Threshold above which LODF/LCDF magnitudes are considered significant. 
UseOverloadThreshold  : Set to YES to screen outages/closures by monitored branch loading.  Set to NO 

to not screen by branch loading. 
OverloadLow  : Threshold above which a monitored branch loading is considered significant.  

This value should be entered as a percent. 
OverloadHigh  : Threshold below which a monitored branch loading is considered significant.  

This value should be entered as a percent. 
DoSaveFile : Set to YES to save an auxiliary file of new contingencies created by joining 

pairs of significant single outage/closure actions.  Set to NO to not save the file. 
FileLocation  : Specify a directory path where the auxiliary file containing new contingencies 

will be saved.  The filename will be determined by Simulator. 
CustomFieldHighLODF  :  Optional parameter that is 0 by default.  Integer indicating which 

Custom Floating Point field for a processed branch will store the 
highest magnitude LODF/LCDF determined for any monitored branch. 

CustomFieldHighLODFLine : Optional parameter that is 0 by default.  Integer indicating which 
Custom String field for a processed branch will store the identifier for 
the monitored branch that has the highest magnitude LODF/LCDF. 

CustomFieldHighOverload  : Optional parameter that is 0 by default.  Integer indicating which 
Custom Floating Point field for a processed branch will store the 
highest overload determined for any monitored branch. 

CustomFieldHighOverloadLine  : Optional parameter that is 0 by default.  Integer indicating which 
Custom String field for a processed branch will store the identifier for 
the monitored branch that has the highest overload. 

CalculateTLR([flow element], direction, [transactor], LinearMethod); 
Use this action to calculate the TLR values a particular flow element (transmission line or interface).  You also specify one 
end of the potential transfer direction.  You may optionally specify the linear calculation method.  If no Linear Method is 
specified, Lossless DC will be used. 

[flow element]  : This is the flow element we are interested in.  Choices are: 
[INTERFACE "name"] 
[INTERFACE "label"] 
[BRANCH nearbusnum farbusnum ckt] 
[BRANCH "nearbusname_kv" "farbusname_kv" ckt] 
[BRANCH "nearbuslabel" "farbuslabel" ckt] 
[BRANCH "label"] 

direction  : The type of the transactor. Either BUYER or SELLER. 
 [transactor buyer]  : The transactor of power.  There are six possible settings: 

AREA num], [AREA "name"], [AREA "label"] 
[ZONE num], [ZONE "name"], [ZONE "label"] 
[SUPERAREA "name"], [SUPERAREA "label"] 
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"] 
[BUS num], [BUS "name_nomkv"], [BUS "label"] 
[SLACK] 

LinearMethod  : The linear method to be used for the calculation.  The options are: 
AC – for calculation including losses 
DC – for lossless DC 
DCPC – for lossless DC that takes into account phase shifter operation 
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CalculateTLRMultipleElement(TypeElement,WhichElement,direction,[transactor],LinearMethod); 
Use this action to calculate the TLR values a multiple elements similar to as is done on the TLR multiple elements dialog. 
You also specify one end of the potential transfer direction. You may optionally specify the linear calculation method. If no 
Linear Method is specified, Lossless DC will be used. 

TypeElement : May be either INTERFACE, BRANCH, or BOTH 
WhichElement : There are three choices which represent which elements of the TypeElement 

specified will have TLR calculations performed. 
SELECTED : Only branches or interfaces with their Selected Field = 

YES will be used. 
OVERLOAD : Only branches that are presently overloaded using their 

normal ratings will be used 
CTGOVERLOAD : You must have first run the contingency analysis. A 

branch or interface is included in the calculation if it 
has been overloaded during at least one contingency. 

Direction :  the type of the transactor. Either BUYER or SELLER. 
[transactor buyer] :  the transactor of power. There are six possible settings. 

[AREA num], [AREA "name"], [AREA "label"] 
[ZONE num], [ZONE "name"], [ZONE "label"] 
[SUPERAREA "name"], [SUPERAREA "label"] 
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"] 
[BUS num], [BUS "name_nomkv"], [BUS "label"] 
[SLACK] 

LinearMethod:  The linear method to be used for the calculation. The options are:  
AC: for calculation including losses. 
DC: for lossless DC. 
DCPC: for lossless DC that takes into account phase shifter operation. 

CalculateVoltSense([BUS num]); 
This calculates the sensitivity of a particular buses voltage to real and reactive power injections at all buses in the system. 
(Note: this assumes that the power is injected at a given bus and taken out at the slack bus). 

[BUS num]  : the bus to calculate sensitivities for. 

CalculateFlowSense([flow element], FlowType); 
This calculates the sensitivity of the MW, MVAR, or MVA flow of a line or interface to an real and reactive power injections 
at all buses in the system. (Note: this assumes that the power is injected at a given bus and taken out at the slack bus). 

[flow element]  : This is the flow element we are interested in.  Choices are: 
[INTERFACE "name"] 
[INTERFACE "label"] 
[BRANCH busnum1bus num2 ckt] 
[BRANCH "name_kv1" "name_kv2" ckt] 
[BRANCH "buslabel1" "buslabel2" ckt] 
[BRANCH "label"] 

FlowType  : The type of flow to calculate this for.  Either MW, MVAR, or MVA. 

CalculateLossSense(FunctionType); 
This calculates the loss sensitivity at each bus for an injection of power at the bus.  The parameter FunctionType determines 
which losses are referenced. 

FunctionType  : This is the losses for which sensitivities are calculated. 
 NONE  : all loss sensitivities will be set to zero 
 ISLAND  : all loss sensitivities are referenced to the total loss in the island 
 AREA : For each bus it calculates how the losses in the bus’ area will 

change (Note: this means that sensitivities at buses in two 
different areas cannot be directly compared because they are 
referenced to different losses) 

 AREASA : same as Each Area, but if a Super Area exists it will use this 
instead (Note: this means that sensitivities at buses in two 
different areas cannot be directly compared because they are 
referenced to different losses) 

 SELECTED : Calculates how the losses in the areas selected on the Loss 
Sensitivity Form will change 
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CalculateVoltToTransferSense([transactor seller], [transactor buyer], TransferType, TurnOffAVR); 
This calculates the sensitivity of bus voltage to a real or reactive power transfer between a seller and a buyer.  The sensitivity 
is calculated for all buses in the system. 

[transactor seller]  : This is the seller (or source) of power.  There are six possible settings: 
[AREA num], [AREA "name"], [AREA "label"] 
[ZONE num], [ZONE "name"], [ZONE "label"] 
[SUPERAREA "name"], [SUPERAREA "label"] 
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"] 
[BUS num], [BUS "name_nomkv"], [BUS "label"] 
[SLACK] 

[transactor buyer]  : This is the buyer (or sink) of power.  There are six possible settings, which are 
the same as for the seller. 

TransferType  : The type of power transfer.  The options are: 
P : real power transfer 
Q : reactive power transfer 
PQ : both real and reactive power transfer.  (Note: Real and reactive power 

transfers are calculated independently, but both are calculated.) 
TurnOffAVR  : Set to YES or NO.  Set to YES to turn off AVR control for generators 

participating in the transfer.  Set to NO to leave the AVR control unchanged for 
generators participating in the transfer. 

CalculateVoltSelfSense(filter); 
This calculates the sensitivity of a particular bus’ voltage to real and reactive power injections at the same bus.  (Note: This 
assumes that the power is injected at a given bus and taken out at the slack bus.) 

filter : There are four options for the filter: 
CalculateVoltSelfSense; – No filter specified means that sensitivities will be 

calculated for all buses in the system. 
CalculateVoltSelfSense("filtername"); – See the Using Filters in Script 

Commands section for more information on 
specifying the filtername. 

CalculateVoltSelfSense(AREAZONE); – AREAZONE means to set 
generators that meet the area/zone filters. 

CalculateVoltSelfSense(SELECTED); – means to set gens if Selected=YES 

SetInterfaceLimitToMonitoredElementLimitSum(filter); 
This sets the limits of the interface to the sum of the limits of all branches within the interface.  This only includes branches 
that are monitored and excludes any contingency branches.  All limits A through H will be set.   

Filter : This parameter is used to specify which interfaces have their limits set. 
ALL : all interfaces will be set 
SELECTED : only interfaces whose Selected field = YES will be set 
AREAZONE : only interfaces that meet the area/zone/owner filters will be 

set 
"FilterName" : only interfaces that meet the specified filter will be set.  See 

the Using Filters in Script Commands section for more 
information on specifying the filtername. 

SetSensitivitiesAtOutOfServiceToClosest; 
This will take the P Sensitivity and Q Sensitivity values calculated using CalculateTLR, CalculateFlowSense, or 
CalculateVoltSense actions and then populate the respective values at out-of-service buses so that they are equal to the value 
at the closest in service bus.  The "distance" to the in-service buses will be measured by the number of nodes.  If an out-of-
service bus is equally close to a set of buses, then the average of that set of buses will be used. 

ZeroOutMismatches; 
With this script command, the bus shunts are changed at each bus that has a mismatch greater than the MVA convergence 
tolerance so that the mismatch at that bus is forced to zero. 
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Power Flow Related Actions 
DiffFlowClearBase; 
DiffFlowKeyType (KeyType); 
  PRIMARY 
  SECONDARY 
  LABEL 
DiffFlowMode (diffmode); 
  PRESENT 
  BASE 
  DIFFERENCE 
 
DiffFlowSetAsBase; 
DiffFlowRefresh; 
DoCTGAction ([contingency action]); 
ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle); 
  TRUE                YES          YES           YES 
  FALSE               NO           NO            NO  
SolvePowerFlow (SolMethod,  "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
  RECTNEWTON  "file.aux"   "file.aux"   YES                YES 
  POLARNEWTON STOP         STOP         NO                 NO 
  GAUSSSEIDEL 
  FASTDECOUPLED 
  DC 
  ROBUST 

DiffFlowClearBase; 
Call this action to clear the base case for the difference flows abilities of Simulator. 

DiffFlowKeyType(KeyType); 
Use this action to change the key type that should be used when comparing fields when using the difference flows abilities of 
Simulator. 

KeyType  : String that starts with ‘P’ changes key field type to PRIMARY. 
String that starts with ‘S’ changes key field type to SECONDARY. 
String that starts with ‘L’ changes key field type to LABEL. 

DiffFlowMode(diffmode); 
Call this action to change the mode for the difference flows abilities of Simulator.   

diffmode  : String that starts with ‘P’ changes it to PRESENT. 
String that starts with ‘B’ changes it to BASE. 
String that starts with ‘D’ changes it to DIFFERENCE. 

DiffFlowSetAsBase; 
Call this action to set the present case as the base case for the difference flows abilities of Simulator. 

DiffFlowRefresh; 
Call this action to refresh the linking between the base case and the present case.  This should be used before saving data that 
identifies objects as being added or removed, especially if any topological differences have been made that affect the 
comparison. 

DoCTGAction([contingency action]); 
Call this action to use the formats seen in the CTGElement subdata record for Contingency Data.  Note that all actions are 
supported, except COMPENSATION sections are not allowed. 
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ResetToFlatStart (FlatVoltagesAngles, ShuntsToMax, LTCsToMiddle, PSAnglesToMiddle); 
Use this action to initialize the Power Flow Solution to a "flat start."  The parameters are all optional and specify a 
conditional response depending on whether the solution is successfully found.  If parameters are not passed then default 
values will be used. 

FlatVoltagesAngles  : Set to YES or NO.  YES means setting all the voltage magnitudes and generator 
setpoint voltages to 1.0 per unit and all the voltage angles to zero.   Default 
Value = YES. 

ShuntsToMax : Set to YES or NO.  YES means to increase Switched Shunts Mvar half way to 
maximum.   Default Value = NO. 

LTCsToMiddle : Set to YES or NO.  YES means setting the LTC Transformer Taps to middle of 
range.   Default Value = NO. 

PSAnglesToMiddle :  Set to YES or NO.  YES means setting Phase Shifter angles to middle of range.   
Default Value = NO. 

SolvePowerFlow (SolMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
Call this action to perform a single power flow solution.  The parameters are all optional and specify a conditional response 
depending on whether the solution is successfully found.  If parameters are not passed then default values will be used. 

SolMethod  : The solution method to be used for the Power Flow calculation.  The options 
are: 

 RECTNEWT : for Rectangular Newton-Raphson. 
 POLARNEWTON : for Polar Newton-Raphson. 
 GAUSSSEIDEL : for Gauss-Seidel. 
 FASTDEC : for Fast Decoupled. 
 DC : for DC power flow calculation 

  Default Value = RECTNEWT. 
"filename1"  : The filename of the auxiliary file to be loaded if there is a successful solution.  

You may also specify STOP, which means that all AUX file execution should 
stop under the condition.  Default Value = "". 

"filename2"  : The filename of the auxiliary file to be loaded if there is a NOT successful 
solution.  You may also specify STOP, which means that all AUX file execution 
should stop under the condition.  Default Value = "". 

CreateIfNotFound1 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename1.   Default Value = NO. 

CreateIfNotFound2 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename2.   Default Value = NO. 
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Contingency Related Actions 
CTGSolveAll (DoDistributed); 
CTGSolve ("ContingencyName"); 
CTGSetAsReference; 
CTGRestoreReference; 
CTGWriteResultsAndOptions ("filename"); 
CTGProduceReport ("filename"); 
CTGAutoInsert; 
CTGConvertAllToDeviceCTG (KeepOriginalIfEmpty); 
CTGCalculateOTDF ([transactor seller],    [transactor buyer],   LinearMethod); 
  [AREA num]       [AREA num]     AC 
  [ZONE num]       [ZONE num]     AC 
  [SUPERAREA "name"]      [AUPERAREA "name"]   DCPS 
  [INJECTIONGROUP "name"] [INJECTIONGROUP "name"] AC 
  [BUS num]       [BUS num]     AC 
  [SLACK]       [SLACK] 
CTGWriteFilePTI ("filename", BusFormat, TruncateCTGLabels); 
CTGCompareTwoListsofContingencyResults (PRESENT or "ControllingFilename",PRESENT or      
           "ComparisonFilename"); 
CTGCreateStuckBreakerCTGs ("filtername", AllowDuplicates, "PrefixName", IncludeCTGLabel, 
  BranchFieldName, "SuffixName", "PrefixComment",  
  BranchFieldComment, "SuffixComment"); 
CTGCreateExpandedBreakerCTGs; 
CTGJoinActiveCTGs (InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename"); 
    YES                   YES             YES            filename.aux 
    NO                    NO              NO               
CTGRelinkUnlinkedElements; 

CTGSolveAll(DoDistributed); 
Call this action to solve all the contingencies which are not marked skip.  The DoDistributed is a YES/NO field that can be 
used if the distributed contingency analysis add-on is installed.  If the DoDistributed flag is set to YES, then the distributed 
methods will be used to solve the contingency analyais.  Note that the distributed analysis requires the proper configuration 
and security settings to work. 

CTGSolve("ContingencyName"); 
Call this action solve a particular contingency.  The contingency is denoted by the "Contingency Name". 

CTGSetAsReference; 
Call this action to set the present system state as the reference for contingency analysis. 

CTGRestoreReference; 
Call this action to reset the system state to the reference state for contingency analysis. 

CTGWriteResultsAndOptions("filename", [opt1, opt2, opt3, …, opt9], KeyField, UseDATASection); 
Writes out all information related to contingency analysis as an auxiliary file.  This includes Contingency Definitions, Limit 
Monitoring Settings, Contingency Results, Solution Options,  CTG Options as well as any Model Criteria that are used by the 
Contingency Definitions. 
 
Each entry in the Option Settings parameter, [opt1, opt2, …, opt9], is either a YES or NO entry corresponding to the 
following options. If not specified or blank, the default entry given for each will be used. 
Opt1 – Save unlinked contingency actions, default = NO 
Opt2 – Save Contingency Options, default = YES 
Opt3 – Save Limit Monitoring Settings, default = NO 
Opt4 – Save General Power Flow Solution Options, default = YES 
Opt5 – Save List Display Settings, default = NO 
Opt6 – Save Contingency Results, default = YES 
Opt7 – Save Inactive Violations, default = YES 
Opt8 – Save Interface Definitions, default = NO 
Opt9 – Save Injection Group Definitions, default = NO 
Opt10 – Suppress Gen and Load options when writing out Options, default = NO 
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KeyField indicates the identifier that should be used for the data. Valid entries are PRIMARY, SECONDARY, or LABEL. 
The default setting is PRIMARY. PRIMARY will save using bus numbers and other primary key fields. SECONDARY will 
save using bus name and nominal kV and other secondary fields. LABEL will save using device labels. If no labels are 
specified then the primary key field will be used. 
 
UseDATASection – set this to YES or NO. If YES, data that by default is specified using SUBDATA sections will instead be 
specified using DATA sections. For example, the actions that define a contingency by default are specified using a 
SUBDATA section. If choosing to use the DATA section instead, each action will be specified in a DATA record belonging 
to the ContingencyElement objecttype. 

CTGProduceReport("filename"); 
Produces a text-based contingency analysis report using the settings defined in CTG_Options. 

CTGAutoInsert; 
This action will auto insert contingencies for you case.  Prior to calling this action, all options for this action must be 
specified in the Ctg_AutoInsert_Options object using SetData() or DATA sections.  

CTGConvertAllToDeviceCTG(KeepOriginalIfEmpty); 
This command is intended for use with full topology models, where breakers and disconnects are defined in addition to 
generators, loads, transmission lines, and so on. This function would have no affect on a traditional planning model 
representation, which has no breakers or disconnects explicitly defined. 

 
The purpose of the function is to allow the user to take a contingency set that is defined with outages of breakers and 
disconnects in a full topology model and convert them to outages of the traditional planning model elements, such as 
generators, loads, transmission lines, etc. This would be used in conjunction with the ability to save a full topology model as 
a consolidated model. A consolidated model reduces the full model down to a traditional planning model by examining the 
breaker and disconnect statuses, and reducing the system down by consolidating breakers and disconnects that are in service. 
The resulting model is a smaller model with the traditional planning elements represented, but breakers and disconnects have 
been removed and nodes aggregated into bus representations. This function will also take the breaker and disconnect statuses 
and convert contingencies defined with the breakers and disconnects and convert them into contingencies of the planning 
model devices affected by opening the original breakers and disconnects. Thus you could create a contingency set that is 
defined for the consolidated model, and can be run on the consolidated model with the same results as if the original 
contingency set is run on the full topology model. 
 
The parameter KeepOriginalIfEmpty is a YES or NO option to retain or not the original contingency definitions for any 
contingencies that do not end up isolating any devices.  This is an optional parameter that is NO by default if it is not 
specified. 
 
Note that the contingency set generated depends on the statuses of the breakers and disconnects, and that the contingencies 
created will be different for different statuses of breakers and disconnects in the full topology model. 

CTGCalculateOTDF([transactor seller], [transactor buyer], LinearMethod); 
This action first performs the same action as done by the CalculatePTDF([transactor seller], [transactor buyer], 
LinearMethod) call.  It then goes through all the violations found by the contingency analysis tool and determines the OTDF 
values for the various contingency/violation pairs. 

CTGWriteFilePTI("filename", BusFormat, TruncateCTGLabels); 
 Write contingencies to a PTI format file. 

"filename"   : The name of the text file to write out. 
BusFormat  : Number – Identify buses using numbers 

Name8 -- Identify buses using BusName_NomkV strings truncated to 8 
characters 
Name12 – Identify buses using BusName_NomkV strings truncated to 12 
characters 

TruncateCTGLabels  : Set toYES or NO.  YES means that the contingency labels will be truncated   
    after  12 characters. 
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CTGCompareTwoListsofContingencyResults (PRESENT or "ControllingFilename",PRESENT or 
"ComparisonFilename"); 

This command compares two different contingency result lists. The first parameter is to set the Controlling List. The second 
parameter is to set the Comparison List. 

PRESENT or "ControllingFilename": PRESENT wil set the present contingency analysis results as the Controlling 
List. If the results are in a file then you can set the path to the list as the 
“ControlingFilename”. 

PRESENT or "ComparisonFilename": PRESENT wil set the present contingency analysis results as the Comparison 
List. If the results are in a file then you can set the path to the list as the 
“ComparisonFilename”. 

 The file types allowed are: Simulator Contingency File (*.aux), Simulator (Ver 5,6,7) Contingency Files (*.ctg), PTI 
Contingency Files (*.con), PTI Load Throw Over Files (*.thr;*.dat), and GE Contingency Files (*.otg).  

CTGCreateStuckBreakerCTGs("filtername", AllowDuplicates, "PrefixName", IncludeCTGLabel, 
BranchFieldName, "SuffixName", "PrefixComment", BranchFieldComment, "SuffixComment"); 

This command creates new contingencies from contingencies that have explicit breaker outages defined.  New contingencies 
will be created by treating each breaker as stuck in turn.  The new contingencies will be comprised of all existing elements, 
minus the stuck breaker outage, plus open actions for breakers that are identified to isolate the stuck breakers.  Only branches 
with Branch Device Type of Breaker will be considered in determining the stuck breakers.     
All of the following parameters are optional.  If not specified, the defaults will be used. 

"filtername"  : only contingencies that meet the specified filter will be set.  See the Using 
Filters in Script Commands section for more information on specifying the 
filtername.  Default is to process all contingencies. 

AllowDuplicates :  Set to YES or NO.  YES means that contingencies with the same actions as 
existing or newly created contingencies will be allowed.  Default is NO. 

 
"PrefixName", IncludeCTGLabel, BranchFieldName, and "SuffixName" are used to name the new contingencies in the 
format: PrefixName_Contingency Label_BranchFieldName_SuffixName. 
 

"PrefixName" :  string that is used as the prefix of the new contingency name.  Default is blank.  
IncludeCTGLabel :  Set to YES or NO.  YES means that the name of the existing contingency will 

be used as part of the new contingency.  Default is YES. 
BranchFieldName :  variablename of the Branch field whose value will be used in the naming of the 

new contingency in the format variablename:location:digits:rod. The Branch 
used to evaluate the variablename is the stuck breaker.  Default is blank. 

"SuffixName" :  string that is used as the suffix of the new contingency name.  Default is "STK". 
 

"PrefixComment", BranchFieldComment, and "SuffixComment" are used to create a comment for new contingency actions 
in the format: PrefixComment_BranchFieldComment_SuffixComment. 
 

"PrefixComment" :  string that is used as the prefix of the new contingency action comment.  Default 
is blank.  

BranchFieldComment :  variablename of the Branch field whose value will be used in the naming of the 
new contingency action comment in the format variablename:location:digits:rod. 
The Branch used to evaluate the variablename is the breaker in the new 
contingency action.  Default is blank. 

"SuffixComment" :  string that is used as the suffix of the new contingency action comment.  Default 
is blank. 

CTGCreateExpandedBreakerCTGs; 
This will convert any “Open with Breakers” or “Close with Breakers” contingency actions into OPEN or CLOSE actions on 
explicit breakers.  This will permanently modify the contingency definitions. 
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CTGJoinActiveCTGs(InsertSolvePowerFlow, DeleteExisting, JoinWithSelf, "filename"); 
This command creates new contingencies that are a join of the current contingency list and a list read in from an auxiliary file 
or the current list itself.  Contingencies with their Skip field set to YES will not be included in the join.  

InsertSolvePowerFlow  : Set to YES or NO.  YES means to insert the solve power flow solution action 
between the joined contingency actions. 

DeleteExisting :  Set to YES or NO.  YES means to delete the existing contingencies and only 
keep the joined contingencies. 

JoinWithSelf :  Set to YES or NO.  YES means that the current contingency list will be joined 
with itself instead of contingencies specified in a file.  If set to YES, the 
"filename" parameter does not have to be specified. 

"filename" :  Name of auxiliary file containing contingencies to join with the current 
contingency list.  This does not have to be specified if JoinWithSelf = YES. 

CTGRelinkUnlinkedElements; 
This will attempt to relink unlinked elements in the contingency records. 
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Fault Related Actions 
Fault ([BUS num],  faulttype,  R, X); 
Fault ([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype,  R, X); 
   SLG 
   LL 
   3PB 
   DLG 

Fault([Bus num, faulttype, R, X]); 

Fault([BRANCH nearbusnum farbusnum ckt], faultlocation, faulttype, R, X]); 
Call this function to calculate the fault currents for a fault.  If the fault element is a bus then do not specify the fault location 
parameter.  If the fault element is a branch, then the fault location is required. 

[Bus num]  : This specifies the bus at which the fault occurs. You may also specify the bus 
using secondary keys or labels. 

[BUS "name_nomkv"] 
[BUS "label"] 

[BRANCH nearbusnum farbusnum ckt]  
 : This specifies the branch on which the fault occurs.  You may also specify the 

branch using secondary keys or labels. 
[BRANCH "name_kv1" "name_kv2" ckt] 
[BRANCH "buslabel1" "buslabel2" ckt] 
[BRANCH "label"] 

Faultlocation :  This specifies the percentage distance along the branch where the fault occurs.  
This percent varies from 0 (meaning at the nearbus) to 100 (meaning at the far 
bus) 

Faulttype : This specified the type of fault which occurs.  There are four options: 
SLG : Single Line To Ground fault 
LL : Line to Line Fault 
3PB : Three Phase Balanced Fault 
DLG : Double Line to Group Fault. 

R, X  : These parameters are optional and specify the fault impedance.  If none are 
specified, then a fault impedance of zero is assumed. 
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ATC (Available Transfer Capability) Related Actions 
ATCDetermine  ([transactor seller], [transactor buyer],  DoDistrubuted); 
  [AREA num]   [AREA num]   YES 
  [ZONE num]   [ZONE num]    NO 
  [SUPERAREA "name"]  [SUPERAREA name] 
  [INJECTIONGROUP "name"] [INJECTIONGROUP name] 
  [BUS num]   [BUS num] 
  [SLACK]   [SLACK] 
ATCRestoreInitialState; 
ATCIncreaseTransferBy  (amount); 
ATCTakeMeToScenario  (RL, G, I); 
ATCDetermineATCFor  (RL, G, I, ApplyTransfer); 
    YES 
    NO 
ATCWriteResultsAndOptions  ("filename", AppendFile); 
ATCWriteToExcel ("worksheetname"); 
ATCWriteToText ("filename", filetype); 
ATCSetAsReference; 

ATCDetermine([transactor seller], [transactor buyer], ApplyTransfer, DoDistributed); 
Use this action to calculate the Available Transfer Capability (ATC) between a seller and a buyer.  Note that the buyer and 
seller must not be same thing.  Other options regarding ATC calculations should be set using a DATA section via the 
ATC_Options object type. If the distributed ATC add-on is installed then the optional DoDistributed flag may bet set to 
indicate that the ATC should be solved using the distributed methods. 

[transactor seller]  : The seller (or source) of power.  There are six possible settings: 
[AREA num], [AREA "name"], [AREA "label"] 
[ZONE num], [ZONE "name"], [ZONE "label"] 
[SUPERAREA "name"], [SUPERAREA "label"] 
[INJECTIONGROUP "name"], [INJECTIONGROUP "label"] 
[BUS num], [BUS "name_nomkv"], [BUS "label"] 
[SLACK] 

 [transactor buyer]  : The buyer (or sink) of power.  There are six possible settings which are the same 
as for the seller. 

DoDistributed :   Set to yes to use the distributed ATC solution method. 

ATCRestoreInitialState; 
Call this action to restore the initial state for the ATC tool. 

ATCIncreaseTransferBy(amount); 
Call this action to increase the transfer between the buyer and seller . 

ATCTakeMeToScenario(RL, G, I); 
Call this action to set the present case according to Scenario RL, G, I. 

ATCDetermineATCFor(RL, G, I, ApplyTransfer); 
Call this action to determine the ATC for Scenario RL, G, I. 

ApplyTransfer : Set this value to YES to leave the system state at the transfer level that was 
determined. When using the Iterated Linear then Full Contingency solution 
method, the system state will retain the transfer level but the contingency will 
not be applied. 

ATCWriteResultsAndOptions("filename", AppendFile); 
Writes out all information related to ATC analysis as an auxiliary file.  This includes Contingency Definitions, Limit 
Monitoring Settings, Solution Options, ATC Options, ATC results, as well as any Model Criteria that are used by the 
Contingency Definitions. 

"filename" : Name of auxiliary file. 
AppendFile : Optional parameter.  YES means to append results to existing "filename."  NO 

means to overwrite "filename" with the results.  Default setting is YES. 

ATCWriteToExcel("worksheetname"); 
Sends ATC analysis results to an Excel spreadsheet.  This script command is available only for Multiple Scenarios ATC 
analysis. 

"worksheetname"  : The name of the Excel sheet where the results will be sent to. 
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ATCWriteToText("filename", filetype); 
This is used with Multiple Scenario ATC analysis.  Multiple files are created with "filename" as the primary identifier and the 
Interface scenario label appended to the end of the filename.  Separate files are created for each of the Interface scenarios.  
Results inside the files are separated into sections based on the number of Rating/Load scenarios. 

"filename"  : Primary identifier for the name of the file in which to save the results.  
"filename" gets appended with the Interface scenario label to complete the 
filename. 

filetype : Either TAB or CSV.  This indicates the delimiter to use when writing out the 
file(s).  This is an optional parameter with TAB being the default if omitted. 

ATCSetAsReference; 
Call this action to set the present system state to the reference state for ATC analysis. 
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GIC (Geomagnetically Induced Current) Related Actions 
GICCalculate  (MaxField, Direction, SolvePF); 
GICClear;   
GICLoadAERData   ("CoarseGridFileName", "FineGridPointsFileName",  
   "FineGridEastVectorFileName",  
   "FineGridNorthVectorFileName"); 
GICTimeVaryingCalculate (TheTime, SolvePF); 
GICTimeVaryingAddTime (NewTime); 
GICTimeVaryingDeleteAllTimes;  
GICTimeVaryingEFieldCalculate (TheTime, SolvePF);  
GICWriteOptions  ("FileName", KeyField); 

GICCalculate(MaxField, Direction, SolvePF); 
Calculates the "Single Snapshot" using GICSolution Options 

MaxField : Maximum Electric Field in Volts/km 
Direction : Storm Direction, Degrees from 0 to 360 
SolvePF : Select YES or NO to include GIC in the Power Flow 

GICClear; 
Clear GIC Values 

GICLoadAERData(CoarseFile, FineFilePoints, FineFileEast, FineFileNorth); 
Allows loading of time varying electric field inputs. 

"CoarseGridFileName" : contains an origin point (latitude and longitude), grid spacing in units 
of degrees longitude, and data points for e-field strength and 
orientation 

"FineGridPointsFileName" : a list of latitude and longitude coordinates for which fine grid data is 
provided. The fine grid has a higher resolution than the coarse grid. 

"FineGridEastVectorFileName" : a list of the eastward rectangular component for the e-field at each 
point listed in the "FineGridPointsFileName" 

"FineGridNorthVectorFileName" : a list of the northward rectangular component for the e-field at each 
point listed in the "FineGridPointsFileName" 

GICTimeVaryingCalculate(TheTime,SolvePF); 
Calculates "Time Varying Input" GIC at specified time 

TheTime : Specified Time Point 
SolvePF : Select YES or NO to include GIC in the Power Flow 

GICTimeVaryingAddTime(NewTime); 
Adds a new input values at specified time 

NewTime : New Time for new input values 

GICTimeVaryingDeleteAllTimes; 
Delete All Input Time values 

GICTimeVaryingEFieldCalculate(TheTime,SolvePF); 
Run the GIC solution using the time varying non-uniform AER data. 

TheTime : Specified Time Point 
SolvePF : Select YES or NO to include GIC in the Power Flow 

GICWriteOptions(“FileName”, KeyField); 
Calculates the "Single Snapshot" using GICSolution Options 

FileName : Name of Aux file name to write out the options 
KeyField : KeyField indicates the identifier that should be used for the data. Valid entries 

are PRIMARY, SECONDARY, or LABEL. The default setting is PRIMARY. 
PRIMARY will save using bus numbers and other primary key fields. 
SECONDARY will save using bus name and nominal kV and other secondary 
fields. LABEL will save using device labels. If no labels are specified then the 
primary key field will be used. 



 42 

ITP (Integraged Topology Processing) Related Actions 
CloseWithBreakers (objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects, 

[SwitchingDeviceTypes]); 
OpenWithBreakers (objecttype, filter or [object identifier], [SwitchingDeviceTypes]); 
SaveConsolidatedCase ("filename", filetype, [BusFormat, TruncateCtgLabels, 

AddCommentsForObjectLabels]);   

CloseWithBreakers(objecttype, filter or [object identifier], OnlyEnergizeSpecifiedObjects, 
[SwitchingDeviceTypes]); 

This action is used to specify which objects are to be energized by closing breakers and to actually close those breakers.  The 
status of an object will be set to closed if necessary in addition to closing the breakers.  If only the status of an object needs to 
be changed to close an object, that will occur without requiring any breakers to be closed. 

objecttype : Objects that are valid to be energize.  Only allowed for Buses, Generators, 
Loads, Transmission Lines, Switched Shunts, DC Lines, Injection Groups, and 
Interfaces. 

Filter : The second parameter can either be a filter specification or an object identifier.  When 
specifying a filter, the following options are available: 

SELECTED : only objects whose Selected field = YES will be energized 
AREAZONE : only objects that meet the area/zone/owner filters will be 

energized 
"FilterName" : only objects that meet the specified filter will be energized.  

See the Using Filters in Script Commands section for 
more information on specifying the filtername. 

 [object identifier] : The second parameter can either be a filter specification or an object identifier.  
When using an object identifier, the objecttype is applicable and no further 
specification of the type needs to be included with the object identifier as is done 
with some other script commands.  The following describe the possible 
objecttypes and identifier options: 

  BUS:    [busnum] 
     ["name_nomkv"] 
     ["label"] 
  GEN:    [busnum id] 
     ["name_nomkv" id] 
     ["buslabel" id] 
     ["label"] 
  LOAD:    [busnum id] 
     ["name_nomkv" id] 
     ["buslabel"] 
     ["label"] 
  BRANCH:   [busnum1 busnum2 ckt] 
     ["name_kv1" "name_kv2" ckt] 
     ["buslabel1" "buslabel2" ckt] 
     ["label"] 
  SHUNT:  [busnum id] 
     ["name_nomkv" id] 
     ["buslabel" id] 
     ["label"] 
  INJECTIONGROUP:  ["name"] 
  INTERFACE:   ["name"] 
  DCLINE:   [num rectnum invnum] 
     [num "rectnam_nomkv" "invname_nomkv"] 
     [num "rectlabel" "invlabel"] 
     ["label"] 
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OnlyEnergizeSpecifiedObjects :  optional parameter, default is NO. 
   YES – No extra objects in addition to those specified in the filter can 

be energized.  Each object will be evaluated individually. 
  NO – Extra objects could be energized in addition to those specified if 

a group of breakers required to energize a specified object also causes 
other objects to be energized.  All objects will be evaluated collectively 
for determining which objects can be energized, i.e. breakers that cause 
one object to be energized might also be needed for another object to be 
energized. 

[SwitchingDeviceTypes] : optional parameter, default is "Breaker".  This is a comma-separated list 
naming the Branch Device Types for switching devices that should be included 
when determining which devices to close to energize objects.  Options include 
"Breaker" and "Load Break Disconnect". 

OpenWithBreakers(objecttype, filter or [object identifier], [SwitchingDeviceTypes]); 
This action is used to specify which objects are to be disconnected by opening breakers and to actually open those breakers.   

objecttype : Objects that are valid to be disconnected.  Only allowed for Buses, Generators, 
Loads, Transmission Lines, Switched Shunts, DC Lines, Injection Groups, and 
Interfaces. 

Filter : The second parameter can either be a filter specification or an object identifier.  When 
specifying a filter, the following options are available: 

SELECTED : only objects whose Selected field = YES will be energized 
AREAZONE : only objects that meet the area/zone/owner filters will be 

energized 
"FilterName" : only objects that meet the specified filter will be energized.  

See the Using Filters in Script Commands section for 
more information on specifying the filtername. 

 [object identifier] : The second parameter can either be a filter specification or an object identifier.  
When using an object identifier, the objecttype is applicable and no further 
specification of the type needs to be included with the object identifier as is done 
with some other script commands.  The following describe the possible 
objecttypes and identifier options: 

  BUS:    [busnum] 
     ["name_nomkv"] 

     ["label"] 
  GEN:    [busnum id] 
     ["name_nomkv" id] 
     ["buslabel" id] 
     ["label"] 
  LOAD:    [busnum id] 
     ["name_nomkv" id] 
     ["buslabel"] 
     ["label"] 
  BRANCH:   [busnum1 busnum2 ckt] 
     ["name_kv1" "name_kv2" ckt] 
     ["buslabel1" "buslabel2" ckt] 
     ["label"] 
  SHUNT:  [busnum id] 
     ["name_nomkv" id] 
     ["buslabel" id] 
     ["label"] 
  INJECTIONGROUP:  ["name"] 
  INTERFACE:   ["name"] 
  DCLINE:   [num rectnum invnum] 
     [num "rectnam_nomkv" "invname_nomkv"] 
     [num "rectlabel" "invlabel"] 
     ["label"] 
[SwitchingDeviceTypes] : optional parameter, default is "Breaker".  This is a comma-separated list 

naming the Branch Device Types for switching devices that should be included 
when determining which devices to open to disconnect objects.  Options include 
"Breaker" and "Load Break Disconnect". 
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SaveConsolidatedCase("filename", filetype, [BusFormat, TruncateCtgLabels, 
AddCommentsForObjectLabels]); 

 This action saves the full topology model into a consolidated case. 
"filename" : The name of the consolidated case file to be saved. 
Filetype :  Optional parameter to specifiy the type of the file to be saved.  If omitted, the 

latest version of the PWB will be used. 
  PWB – save a pwb file with the most recent version 
  PWBX – save a pwb with version X 
     PTI – save file with most recent PTI file format.  When contingencies are 

present, they are saved to a .CON file. 
  PTIXX – save the file with PTI version XX, where XX is between 23 and 33 
BusFormat :  optional parameter used to specifiy the bus identifier format in the .CON file 

used to store contingencies when saving a PTI file 
  Number – identify buses using number 
    Name8 – identify buses using the Name_kV identifier truncated to 8 characters 
  Name12 – identify buses usingthe Name_kV identifier truncated to 12 

characters 
TruncateCTGLabels :  optional parameter used to specify if the contingency labels should be truncated 

to 12 characters when saving the contingencies in PTI format 
  YES – truncate the contingency labels to 12 characters 
  NO – do not truncate the contingency labels 
AddCommentsForObjectLabels  : (optional) YES adds object labels to the end of data records when 

saving a RAW file.  (default NO)  
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OPF (Optimal Power Flow) and SCOPF Related Actions 
SolvePrimalLP 
 ("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
  "file.aux"   "file.aux"   YES                YES 
  STOP         STOP         NO                 NO 
InitializePrimalLP 
 ("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
  "file.aux"   "file.aux"   YES                YES 
  STOP         STOP         NO                 NO 
SolveSinglePrimalLPOuterLoop 
  ("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
  "file.aux"   "file.aux"   YES                YES 
  STOP         STOP         NO                 NO 
SolveFullSCOPF 
 (BCMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
  POWERFLOW "file.aux"   "file.aux"   YES                YES 
  OPF       STOP         STOP         NO                 NO 
OPFWriteResultsAndOptions ("filename"); 

SolvePrimalLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
Call this action to perform a primal LP OPF solution.  The parameters are all optional and specify a conditional response 
depending on whether the solution is successfully found.  If parameters are not passed then default values will be used. 

"filename1"  : The filename of the auxiliary file to be loaded if there is a successful solution.  
You may also specify STOP, which means that all AUX file execution should 
stop under the condition.  Default Value = "". 

"filename2"  : The filename of the auxiliary file to be loaded if there is a NOT successful 
solution.  You may also specify STOP, which means that all AUX file execution 
should stop under the condition.  Default Value = "". 

CreateIfNotFound1 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename1.   Default Value = NO. 

CreateIfNotFound2 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename2.   Default Value = NO. 

InitializeLP("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
This commands clears all the structures and results of previous primal LP OPF solutions.  The parameters are all optional and 
specify a conditional response depending on whether the solution is successfully found.  If parameters are not passed then 
default values will be used. 

"filename1"  : The filename of the auxiliary file to be loaded if there is a successful solution.  
You may also specify STOP, which means that all AUX file execution should 
stop under the condition.  Default Value = "". 

"filename2"  : The filename of the auxiliary file to be loaded if there is a NOT successful 
solution.  You may also specify STOP, which means that all AUX file execution 
should stop under the condition.  Default Value = "". 

CreateIfNotFound1 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename1.   Default Value = NO. 

CreateIfNotFound2 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename2.   Default Value = NO. 

SolveSinglePrimalLPOuterLoop("filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
This action is basically identical to the SolvePrimalLP action, except that this will only perform a single optimization.  The 
SolvePrimalLP will iterate between solving the power flow and an optimization until this iteration converges.  This action 
will only solve the optimization routine once, then resolve the power flow once and then stop. 
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SolveFullSCOPF (BCMethod, "filename1", "filename2", CreateIfNotFound1, CreateIfNotFound2); 
Call this action to perform a full Security Constrained OPF solution.  The parameters are all optional and specify a 
conditional response depending on whether the solution is successfully found.  If parameters are not passed then default 
values will be used. 

BCMethod  : The solution method to be used for solving the base case.  The options are: 
POWERFLOW – for single power flow algorithm. 
OPF – for the optimal power flow algorithm. 

  Default Value = POWERFLOW. 
"filename1"  : The filename of the auxiliary file to be loaded if there is a successful solution.  

You may also specify STOP, which means that all AUX file execution should 
stop under the condition.  Default Value = "". 

"filename2"  : The filename of the auxiliary file to be loaded if there is a NOT successful 
solution.  You may also specify STOP, which means that all AUX file execution 
should stop under the condition.  Default Value = "". 

CreateIfNotFound1 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename1.   Default Value = NO. 

CreateIfNotFound2 : Set to YES or NO.  YES means that objects which cannot be found will be 
created while reading in DATA sections of filename2.   Default Value = NO. 

OPFWriteResultsAndOptions("filename"); 
Writes out all information related to OPF analysis as an auxiliary file.  This includes Limit Monitoring 

Settings, options for Areas, Buses, Branches, Interfaces, Generators, 
SuperAreas, OPF Solution Options. 
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PV Related Actions 
PVSetSourceAndSink ([elementSource], [elementSink]); 
 [INJECTIONGROUP "name"] [INJECTIONGROUP "name"] 
 
PVRun;  
PVRun ([elementSource],  [elementSink]); 
  [INJECTIONGROUP "name"] [INJECTIONGROUP "name"] 
PVClear;  
PVStartOver;  
PVDestroy;  
 
PVWriteResultsAndOptions ("filename",  AppendFile); 
 
RefineModel (objecttype, filter, Action, Tolerance); 
 AREA unspecified TRANSFORMERTAPS value 
 ZONE "filtername" SHUNTS 
   OFFAVR 
PVQVTrackSingleBusPerSuperBus; 
PVWriteInadequateVoltages("filename", AppendFile); 

Changes were made with Simulator version 14 to eliminate the need for a PV study name.  To maintain functionality with any 
existing processes that users might have in place using older script definitions, scripts from older versions of Simulator will still 
be supported if the name is specified.  However, the name will just be ignored.  The script formats given here reflect the changes 
for versions 14 and later. 
 
The PVCreate script required in previous versions is no longer necessary starting with Simulator version 14.  Versions starting 
with 14 will still recognize this action if is included and will simply set the source and sink for the study.  This does the same 
thing as PVSetSourceAndSink. 
 
It is highly recommended that for any new processes the new script formats specified here be used. 

PVSetSourceAndSink([elementSource], [elementSink]); 
Call the function to specify the source and sink elements to perform the PV study. 

 [elementSource]  : The source of power for the PV study.  There is only one possible setting: 
[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"] 

[elementSink]  : The sink of power for the PV study.  There is only one possible setting, which is 
the same as for the source. 

PVRun; 
Call the function to start the PV study. 

PVRun([elementSource], [elementSink]); 
Call the function to specify the source and sink elements and start the PV study. 

[elementSource]  : The source of power for the PV study.  There is only one possible setting: 
[INJECTIONGROUP "name"] or [INJECTIONGROUP "label"] 

[elementSink]  : The sink of power for the PV study.  There is only one possible setting, which is 
the same as for the source. 

PVClear; 
Call the function to clear all the results of the PV study. 

PVStartOver; 
Call the function to start over the PV study.  This includes clear the activity log, clear results, restore the initial state, set the 
current state as initial state, and initialize the step size. 

PVDestroy; 
Call the function to destroy the PV study.  This will remove all results and prevent any restoration of the initial state that is 
stored with the PV study. 

PVWriteResultsAndOptions("filename", AppendFile); 
Call this action to save all the PV results and options in the auxiliary file "filename". See the Specifying Field Names in 
Script Commands topic for more information on specifying the name using the special keys. 

[AppendFile]: YES/NO optional parameter. Specifying NO will cause it to overwrite the existing file. Specifying 
YES will cause it to append to the file. If not specified, then YES is assumed. 
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RefineModel(objecttype, filter, Action, Tolerance); 
Call this function to refine the system model to fix modeling idiosyncrasies that cause premature loss of convergence during 
PV and QV studies. 

Objecttype : The objecttype being selected. 
  AREA 
  ZONE 
Filter : There are two options for the filter: 
  RefineModel(…, "", …); 
   No filter specified means to select all objects of this type.   
  RefineModel(…, "filtername", …); 

  See the Using Filters in Script Commands section for more 
information on specifying the filtername. 

Action : The way the model will be refined.  Choices are: 
 TRANSFORMERTAPS : Fix all transformer taps at their present values if 

their Vmax – Vmin is less than or equal to the 
user specified tolerance. 

 SHUNTS : Fix all shunts at their present values if their 
Vmax – Vmin is less than or equal to the user 
specified tolerance. 

 OFFAVR : Remove units from AVR control, thus locking 
their MVAR output at its present value if their 
Qmax – Qmin is less or equal to the user 
specified tolerance. 

Tolerance : Tolerance value. 

PVQVTrackSingleBusPerSuperBus; 
If the topology processing add-on is installed, then this script command can be used to reduce the number of monitored 
buses.  The script action examines each monitored value for each bus and determines if that bus is part of a super bus and 
selects monitored buses so that only the pnode is monitored. 

PVWriteInadequateVoltages("filename", AppendFile); 
Call this action to save all the PV inadequate voltages results in the CSV "filename". See the Specifying Field 
Names in Script Commands topic for more information on specifying the name using the special keys. 

[AppendFile]: YES/NO optional parameter. Specifying NO will cause it to overwrite the existing file. Specifying 
YES will cause it to append to the file. If not specified, then YES is assumed. 
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QV Related Actions 
QVRun ("filename", InErrorMakeBaseSolvable); 
  YES 
  NO 
 NOTE: The QV study is always performed on selected buses. 
 
QVWriteResultsAndOptions ("filename"); 
 
RefineModel (objecttype, filter, Action, Tolerance); 
 AREA unspecified TRANSFORMERTAPS value 
 ZONE "filtername" SHUNTS 
   OFFAVR 
QVSelectSingleBusPerSuperBus; 

QVRun("filename", InErrorMakeBaseSolvable); 
Call the function to start a QV study for the list of buses whose SELECTED? field is set to YES. 

"filename" : This specifies the file to which to save a comma-delimited version of the 
results.  

InErrorMakeBaseSolvable : This specifies whether to perform a solvability analysis of the base case if the 
pre-contingency base case cannot be solved.  If not specified, then YES is 
assumed. 

QVWriteResultsAndOptions("filename"); 
Call this action to save all the QV results and options in the auxiliary file "filename". 

RefineModel(objecttype, filter, Action, Tolerance); 
Call this function to refine the system model to fix modeling idiosyncrasies that cause premature loss of 
convergence during PV and QV studies. 

Objecttype : The objecttype being selected. 
  AREA 
  ZONE 
Filter : There are three options for the filter: 

RefineModel(…, "", …); – No filter specified means to select all objects of 
this type. 

RefineModel(…, "filtername", …); – See the Using Filters in Script 
Commands section for more information on 
specifying the filtername. 

Action : The way the model will be refined.  Choices are: 
 TRANSFORMERTAPS : Fix all transformer taps at their present values if 

their Vmax – Vmin is less than or equal to the 
user specified tolerance. 

 SHUNTS : Fix all shunts at their present values if their Vmax 
– Vmin is less than or equal to the user specified 
tolerance. 

 OFFAVR : Remove units from AVR control, thus locking 
their MVAR output at its present value if their 
Qmax – Qmin is less or equal to the user specified 
tolerance. 

Tolerance : Tolerance value. 

QVSelectSingleBusPerSuperBus; 
If the QV tool is being used on a full topology model, this action can be used to modifiy the monitored buses.  This 
action examines the monitored buses and sets the monitored status so that only one bus is monitored for each pnode. 

 



 50 

TS (Transient Stability) Related Actions 
TSAutoCorrect; 
TSCalculateSMIBEigenValues; 
TSGetVCurveData  ("FileName", filter); 
TSGetResults  ("FileName", Single/Separate, [contingencies], [plots], StartTime, 

EndTime); 
TSLoadBPA  ("FileName"); 
TSLoadGE  ("FileName", GENCCYN, EnableOutOfOrderModels); 
TSLoadPTI  ("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename", 

"BASEGENfilename"); 
TSResultStorageSetAll (objecttype, YES/NO); 
TSRunUntilSpecifiedTime ("ContingencyName", [StopTime, StepSize, StepsInCycles, 

ResetStartTime, NumberofTimeStepstoDo]); 
TSSaveTwoBusEquivalent ("AuxFileName",[BUS]); 
TSSolve  ("ContingencyName", [StartTime, StopTime, StepSize]); 
TSSolveAll  (DoDistributed); 
TSWriteOptions  ("FileName",[SaveDynamicModel, SaveStabilityOptions, 

SaveStabilityEvents, SaveResultsSettings, SavePlotDefinitions], KeyField); 

TSAutoCorrect; 
Runs the auto correction of parameters for a transient stability run.  If there are still validation errors after running 
this script that would prevent the stability simulation from running, then the remainder of a script will be aborted. 

TSCalculateSMIBEigenValues; 
Calculate single machine infinite bus eigenvalues.  Initialization to the start time is always done before calculating 
eigenvalues. 

TSGetVCurveData("FileName", filter); 
For a synchronous generator a curve of points for field current and field voltage is created from a fixed terminal 
voltage and MW (P) power output and varying Mvar (Q) output. 

FileName : Name of file to create.  If no file extension is specified this defaults to CSV. 
filter : Specifies for which generators to create curves. 

SELECTED : only generators whose Selected field = YES will be 
included 

AREAZONE : only generators that meet the area/zone/owner filters will be 
included 

"FilterName" : only generators that meet the specified filter will be 
included.  See the Using Filters in Script Commands 
section for more information on specifying the filtername. 

TSGetResults("FileName", SINGLE/SEPARATE/JSIS, [Contingencies], [Plots, ObjectFields], StartTime, 
EndTime]); 

Use this to save out results for specific variables from plots, subplots, and object/field pairs after a transient stability 
simulation has been run.   If StartTime and StopTime are not specified, results for the entire simulation time are 
obtained. 

FileName : Name of the CSV result file to write out 
SINGLE/SEPARATE 
/JSIS : Determines  whether the results are all saved in one file (SINGLE) with name 

“filename” or whether results for each transient contingency is saved in a 
separate file (SEPARATE) with name “filename_ctgname.csv.”   A separate 
header file is also saved out, with a name of “filename_Header.csv”.  If using 
the JSIS format, a single file with the name “filename” is written in the WECC 
JSIS format.   

Contingencies : A list of contingency names for which to save out results 
Plots, ObjectFields  : A list of plots and object/field pairs to save out for the specified contingencies 
StartTime  : Start of the window of simulation time from which the results are to be retrieved 
EndTime  : End of the window of simulation time from which the results are to be retrieved 

TSLoadBPA("FileName"); 
Loads transient stability data stored in the BPA format. 

FileName : Name of the BPA file to load 
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TSLoadGE("FileName", GENCCYN, EnableOutOfOrderModels); 
Loads transient stability data stored in the GE DYD format. 

FileName : Name of the DYD file to load 
GENCCYN : YES to split combined cycle units, NO to leave them alone 
EnableOutOfOrderModels : (optional) Default is YES.  If set to YES, models that are specified out of order 

in the file will be enabled.  If set to NO, out of order models will be disabled. 

TSLoadPTI("FileName", "MCREfilename", "MTRLOfilename", "GNETfilename", "BASEGENfilename"); 
Loads transient stability data in the PTI format. 

FileName :  Name of the DYR file to load 
MCREfilename : (optional) If not loading a MCRE file, specify "" 
MTRLOfilename : (optional) If not loading a MTRLO file, specify "" 
GNETfilename : (optional) If not loading a GNET file, specify "" 
BASEGENfilename : (optional) If not loading a BASEGEN file, specify "" 

TSResultStorageSetAll(objecttype, YES/NO); 
This command will allow setting which object types are stored in memory during a transient stability run.  This will 
affect all fields and states for the specified objecttype.      

objecttype : Specifies which objects to set.  The objecttype is the object name of supported 
objects such as GEN, BUS, BRANCH, etc. ALL can be used to set all supported 
object types. 

YES/NO : Using this command will toggle all the “Save All” fields to YES/NO. It will also 
toggle all the “state” fields (such as exciter, machine, governor, etc.) to 
YES/NO. 

TSRunUntilSpecifiedTime("ContingencyName", [StopTime, StepSize, StepsInCycles, ResetStartTime, 
NumberOfTimeStepsToDo]); 

This command allows manual control of the transient stability run.  The simulation can be run until a specified time 
or number of times steps and then paused for further evaluation.       

ContingencyName : The name of the contingency to solve. 
StopTime : (optional) This is the time to which the simulation will be run.  This should be 

entered in seconds.  If NumberOfTimeStepsToDo > 0, this field will be ignored.  
If not specified, the stop time specified with the contingency will be used. 

StepSize : (optional) Simulation step size in either seconds or cycles.  If StepsInCycles = 
YES this should be specified in cycles.  If not specified, the step size specified 
with the contingency will be used. 

StepsInCycles :  (optional) Set to YES to specify StepSize in cycles.  If not specified, the units of the step 
size specified with the contingency will be used. 

ResetStartTime : (optional) Set to YES to reset the simulation start time.  Default value is NO. 
NumberOfTimeStepsToDo: (optional) Number of time steps to run.  If NumberOfTimeStepsToDo > 0, 

StopTime is ignored.  Default value is 0.  

TSSaveTwoBusEquivalent ("AuxFileName", [BUS]); 
Save the two bus equivalent model of a specified bus to a PWB file.  Initialization to the start time is always done 
before saving the two bus equivalent. 

AuxFileName : Name and path for the output AUX file 
BUS : Bus can be specified in three ways: 
 Number   : [BUS busnum] 
 Name/NomkV : [BUS "busname_nominalKV"] 

 Label  : [BUS "buslabel"] 

TSSolve("ContingencyName", [StartTime, StopTime, StepSize]); 
Solves only the specified contingency. 

ContingencyName : The name of the contingency to solve 
StartTime : (optional) Start time in seconds 
StopTime : (optional) Stop time in seconds 
StepSize : (optional) Step size in seconds 

TSSolveAll(DoDistributed); 
 Solves all defined transient contingencies that are not set to skip. 

DoDistributed : (optional) Set to YES to use Distributed Computing with the transient analysis.  Default 
is NO. 
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TSWriteOptions("FileName",[SaveDynamicModel, SaveStabilityOptions, SaveStabilityEvents, 
SaveResultsEvents, SavePlotDefinitions], KeyField); 

Save the transient stability option settings to an auxiliary file. 
FileName : Name and path of the file to save 
SaveDynamicModel : (optional) NO doesn’t save dynamic model (default YES) 
SaveStabilityOptions : (optional) NO doesn’t save stability options (default YES) 
SaveStabilityEvents : (optional) NO doesn’t save stability events (default YES) 
SaveResultsSettings : (optional) NO doesn’t save results settings (default YES) 
SavePlotDefinitions : (optional) NO doesn’t save plot definitions (default YES) 
KeyField : (optional) Specifies key: can be Primary, Secondary, or Label (default Primary) 
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DATA Section 
DATA DataName(object_type, [list_of_fields], file_type_specifier, create_if_not_found) 
{ 
data_list_1 
   . 
   . 
   . 
data_list_n 
} 

Immediately following the DATA keyword, you may optionally include a DataName.  By including the DataName, you can make use 
of the script command LoadData("filename", DataName) to call this particular data section from another auxiliary file.  Following the 
optional DataName is the argument list. 

DATA Argument List 
The DATA argument list identifies what the information section contains.  A left and right parenthesis "(  )" mark the beginning and 
end of the argument list.   
 
The file_type_specifier parameter distinguishes the information section as containing custom auxiliary data (as opposed to 
Simulator’s native auxiliary formats), and indicates the format of the data.  Currently, the parser recognizes two values for 
file_type_specifier: 

(blank)or AUXDEF or DEF Data fields are space delimited 
AUXCSV or CSV or CSVAUX Data fields are comma delimited 

The object_type parameter identifies the type of object or data element the information section describes or models.  For 
example, if object_type equals BUS, then the data describes BUS objects.  
 
There are some special object types that start with the keyword REMOVED.  If these are loaded into Simulator while in Edit mode, the 
corresponding objects will be deleted.  For example REMOVEDBUS will delete BUS objects, REMOVEDBRANCH will delete BRANCH 
objects, etc.  Not all object types have a corresponding REMOVED object type, and simply prepending this keyword to the front of an 
object_type will not allow this functionality.  The objects that exist of this with this functionality are the ones that allow 
comparison of topological changes through the Difference Flows tool.      
 
The list of object types Simulator’s auxiliary file parser can recognize will grow as new applications are developed.   Within 
Simulator, you will always be able to obtain a list of the available object types by going to the main menu and choosing Window, 
Export Case Object Fields, and then exporting the objects to Excel or a text file.   
 
The create_if_not_found field is optional.  This specifies whether or not to create a new object if an existing one is not found.  
If the value is YES, objects will be created.  If the value is NO, objects will not be created.  If omitted, the default behavior of 
prompting the user about whether or not to create a non-existing object will continue.  If loading an auxiliary file using the LoadAux 
script command, the create_if_not_found field for the data section will override the CreateIfNotFound field with the 
script. 
 
The list_of_fields parameter lists the types of values the ensuing records in the data section contain.  The order in which the 
fields are listed in list_of_fields  dictates the order in which the fields will be read from the file.  Simulator currently 
recognizes many different field types, each identified by a specific field name.  Because the available fields for an object may grow as 
new applications are developed for the convenience of our customers, you will always be able to obtain a list of the available object 
types and fields by going to the main menu and choosing Window, Export Object Fields, and then choosing to export to Excel or a 
text file.  Certainly, only a subset of these fields would be found in a typical custom auxiliary file.  In crafting applications to export 
custom auxiliary files, developers need concern themselves only the fields they need to communicate between their applications and 
Simulator.  A few points of interest regarding the list_of_fields are: 

• The list_of_fields may take up several lines of the text file.   
• The list_of_fields should be encompased by braces [  ]. 
• When encountering the PowerWorld comment string ‘//’ in one of these lines of the text file, all text to the right is ignored.   
• Blank lines, or lines whose first characters are ‘//’ will be ignored as comments. 
• Field names must be separated by commas. 
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Example: 
DATA (BUS, [BusNomKV, Bus,  // comment here 
   ABCPhaseAngle:1,  ABCPhaseAngle:2,  ABCPhaseV,  ABCPhaseV:1,  
   // comments allowed here to 
 
   // note that blank rows are ignored 
    AreaNum,  BusAngle,  BusB,  BusCat,  BusEquiv,  BusG,  
    BusGenericSensV,  BusKVVolt,  BusLambda,  BusLoadMVA, // more comment 
    BusLoadMW,  BusLongName]) 

 

Field Naming 
When listing fields, some field names may be augmented with a field location.  These are in the format 
variablename:location. One example of this is the field LineMW.  For a branch, there are two MW flows associated with the 
line: one MW flow at the from bus, and one MW flow at the to bus.  So that the number of fields does not become huge, the same field 
name is used for both of these values.  For the from bus flow, we write LineMW:0, and for the to bus flow, we write LineMW:1.  Note 
that field names using a location of 0, such as LineMW:0, may simply leave off the :0. 
 
There are several fields that can be referred to by the user-defined name for the field rather than using the location number.  These are 
fields that might have their location numbers change when different auxiliary files are merged in the same case.  Referring to these by 
name can eliminate this possible confusion.  These fields can be defined in the format variablename:location_by_name.  
They can also be referred to by location number as well.   
 
Fields that allow referring to the location by name are: 

• Expressions – "CustomExpression:my expression name" 
• String Expressions – "CustomExpressionStr:my string expression name" 
• Custom fields (Floating Point, Integer, and String) – "CustomSingle:my custom single name".  Using this format for 

custom fields requires that Custom Field Descriptions be created for the fields to be used.   
• Calculated Fields – "BGCalcField:my calculated field name" 

Key Fields 
Simulator uses certain fields to identify the specific object being described.  These fields are called key fields.  For example, the key 
field for BUS objects is BusNum, because a bus can be identified uniquely by its number.  The key fields for GEN objects are 
BusNum and GenID.  To properly identify each object, the object’s key fields must be present.  They can appear in any order in the 
list_of_fields (i.e. they need not be the first fields listed in list_of_fields).  As long as the key fields are present, Simulator can 
identify the specific object.  By going to the main menu and choosing Window and then Export Case Object Fields you will obtain a 
list of fields available for each object type in either Excel or text format.  In this output, the key fields will appear with asterisks *. 

Data List 
After the data argument list is completed, the Data list is given. The data section lists the values of the fields for each object in the 
order specified in list_of_fields.  The data section begins with a left curly brace and ends with the a right curly brace.  A few 
points of interest regarding the value_list:   

• The value_list may take up several lines of the text file.   
• Each new data object must start on its own line of text. 
• When encountering the PowerWorld comment string ‘//’ in one of these  lines of the text file, all text to the right of this is 

ignored.   
• Blank lines, or lines whose first characters are ‘//’ will be ignored as comments. 
• Remember that the right curly brace must appear on its own line at the end of the data_list. 
• If the file_type_specifier is CSV, the values should be separated by commas.  Otherwise, separate the field names 

using spaces. 
• Strings can be enclosed in double quotes, but this is not required.  You should however always inclose strings that contain 

spaces (or commas) in quotes.  Otherwise, strings containing commas would cause errors for comma-delimited files, and 
spaces would cause errors for space-delimited formatted files. 
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Special Data List Entries 
A string in the format "&ModelExpressionName:digits:decimals" will be treated as though the value of the named model 
expression is entered in the field, with digits total and decimals digits to the right of the decimal point.  If no digits or decimals 
are specified, 7 decimal places will be used.  Trailing zeros will be removed if no decimals are specified.  This format may be used in 
case information displays, AUX files, and script commands that set values. 
 
A string in the format "&Objecttype 'key fields' variablename:location:digits:decimals" will be treated 
as though the value of the named object and object field is entered in the field, with digits total and decimals digits to the right 
of the decimal point.  If no digits or decimals are specified, 7 decimal places will be used.  Trailing zeros will be removed if no 
decimals are specified.  This format may be used in case information displays, AUX files, and script commands that set values. 
 
A string in the format "@Variablename:location:digits:decimals" will be treated as though the value of the named 
variable is entered in the field, with digits total and decimals digits to the right of the decimal point.  This format may be used in 
case information displays, AUX files, and script commands that set values. 

Using Labels for Identification 
Most data objects (such as buses, generators, loads, switched shunts, transmission lines, areas, zones, and interfaces) may have an 
alternative names assigned to them. These alternative names are called labels. Labels allow you to refer to equipment in the model in a 
way that may be unique to your organization. Labels may thus help clarify which elements are described by a particular set of data, 
especially when the short names employed by the power system model prove cryptic. Furthermore, since labels are likely to change 
less frequently than bus numbers, and since a label must, by definition, identify only one power system component, they may function 
as an immutable key for importing data from auxiliary files into different cases, even when bus numbering schemes change between 
the cases. Labels must be unique for devices of the same type, but the same label can be used for a device of a different type.  
 
Information dialogs corresponding to buses, generators, loads, switched shunts, transmission lines, areas, zones, and interfaces feature 
a button called Labels. If you press this button, the device’s Label Manager Dialog will appear. The Label Manager Dialog lists the 
labels associated with the device. You can delete a label from the list by selecting it and pressing the delete key on the keyboard or 
clicking the Delete button. You may add a label to the device by typing its name in the textbox and pressing the Add New button. You 
will not be allowed to add a Label that already exists for the same type of device. A single power system device may have multiple 
labels, but each label may be associated with only one device of a given type. For example, a bus could have the label Bus North while 
a generator could also have the same label, but there could not be another bus or generator with this same label. 
 
You also may designate a particular label to be the primary label for the device by checking the box Primary before adding the label. 
Alternatively, you can select the device from the list and click the Make Primary button. A device’s primary label is the one that is 
listed first in the Labels (All) field (variablename = LabelsAll) in a Case Information Display. This field lists all labels 
assigned to a device as a comma-delimited string. Any label can be used to import data from auxiliary data files.  
 
Labels can be used to map data from an auxiliary data file to a power system device. Recall that auxiliary data files require you to 
include a device’s key fields in each data record so that data may be mapped to the device. Labels provide an alternative key. Instead 
of supplying the bus number to identify a bus, for example, you can supply one of the bus’s labels. The label will enable Simulator to 
associate the data with the device associated with that label. This mechanism performs most efficiently when the primary label is used, 
but other labels will also provide the mapping mechanism. The Label (for use in input from AUX or Paste) field (variablename = 
Label) is used for importing data using labels and is blank when viewing in a case information display. Keep in mind that all devices 
read via an auxiliary file using the label field should have a non-blank label. Otherwise, information for that device will not be read. 
Even if the primary or secondary key fields are provided with the device, as long as the label field is present, that is the only field that 
will be used to identify the device. New devices cannot be created by simply identifying them by label. Either the primary or 
secondary key fields must be present to create a new device and the label field should not be present. 
Again, it is important to remember this: a single power system device may have multiple labels, but each label may be associated with 
only one device of a particular type. This is the key to enabling data to be imported from an auxiliary file using labels. 

Saving Auxiliary Files Using Labels 
All devices that can be identified by labels will have the Labels (All) and Label (for use in input from AUX or Paste) fields available 
in their case information displays. In order to save auxiliary files that identify devices by label, the two label fields should be added to 
the case information display prior to saving the data in an auxiliary file. Because the Label (for use in input from AUX or Paste) field 
will be blank when saved in the auxiliary file, this field must be populated with one of the labels in the Labels (All) field before 
loading the auxiliary file back in. Keep in mind that devices with blank labels cannot be identified when loading in an auxiliary file, so 
avoid saving auxiliary files by label if all devices do not have labels. Note that when saving out an entire case as an auxiliary file, the 
field "AllLabels" is included for each object type that allows labels and has some labels defined. 
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Many devices require SUBDATA sections. These sections have custom formats specific to the type of information that they contain. 
When saving auxiliary files with devices that require SUBDATA sections, the user can choose to use primary or secondary key fields 
or labels to identify devices in the SUBDATA sections. The user will either be prompted when saving the devices, or there is an 
option to change the key field to use when saving subdata sections on the PowerWorld Simulator Options dialog under the Case 
Information Displays category. When choosing to use labels, if a device has a label, it will be used. If it is a device that can be 
identified by buses and bus labels exist, bus labels will be used. Finally, if the device does not have a label and the buses do not have 
labels, the primary key for the device will be used for identification. 
 
Devices that have SUBDATA sections that contain other devices that can be identified by labels include: contingencies, interfaces, 
injection groups, post power flow solution actions, and owners. 
 
The setting to choose which identifier to use for the SUBDATA sections does not just apply to SUBDATA sections. Often when 
saving groups of options, this setting will apply to everything being saved with those options and not just the SUBDATA sections. 
This includes contingency options, ATC options, limit monitoring settings, and PVQV options. In these cases, there will be a prompt 
asking the user to decide which identifier to use in the auxiliary file. 

Loading Auxiliary Files SUBDATA Sections Using Labels 
The various SUBDATA sections that represent references to other objects can also be read using labels. Examples include 
contingencies, interfaces, injection groups, post power flow solution actions, and owners. When reading a SUBDATA section such as 
this, PowerWorld makes no assumption ahead of time about what identification was used to write this SUBDATA section. Instead, an 
order of precedence for the identification is as follows 
  

 Identification Explanation Example 
1 Key Fields assumes that the strings represent Key Fields BRANCH 8 9 1 
2 Secondary 

Key Fields 
assumes that the strings represent Secondary Key 
Fields 

BRANCH Eight_138 Nine_230 1 

3 Labels for 
component 
objects 

the key/secondary key fields for some objects 
consist of references to other objects. An example 
of this is the BRANCH object that is described by 
the From Bus, To Bus, and Circuit ID. This 
assumes that labels of the component objects are 
used. 

BRANCH Label8 Label9 1 

4 Labels Assumes that the string represents one of the 
Labels of the object 

BRANCH LabelForBranch 

Special Use of Labels in SUBDATA 
There are a few special cases where objects have fields that identify other devices. These devices can be identified by label but not in 
the conventional means because the label field applies to the object that contains the device and a SUBDATA section is not necessary. 
These special cases include: (Note all fields given below are by variable name because the use of labels is most relevant with auxiliary 
files.) 
 

ATC Scenarios: ATC Scenario change records usually contain primary key fields to identify the devices that should be adjusted 
during the scenario. If using labels, these primary key fields will be replaced with a single Label field. The use of this field is 
different because the Label field refers to the device in the change record and not to the change record itself. When labels are used 
with ATC scenarios, device labels only can be used. Bus labels cannot be used to identify devices for which no label exists but a 
bus label does.  
 
ATC Extra Monitors: ATC Extra Monitors identify either branches or interfaces to monitor during the ATC analysis. These 
devices are identified in the WhoAmI field of ATC Extra Monitor records. Usually, the WhoAmI field is a special format that 
contains key field tags. Optionally, this field can use the label of the device for the extra monitor. If the device label is not 
available, the standard format will be used. There is no option to use bus labels if they exist and the device labels do not.  
 
Model Conditions: Devices in Model Conditions are usually identified by the WhoAmI field which is in a special format that 
contains key field tags. Optionally, this field can use the label of the device. If the device label does not exist, the standard format 
will be used. There is no option to use bus labels if they exist and the device labels do not. 
 
Model Expressions: Model Expressions contain Model Fields. Model Fields are identified by the WhoAmI fields in the Model 
Expressions. Usually, the WhoAmI fields are in a special format that contains key field tags. Optionally, these fields can use the 
label of the device associated with the Model Field. If the device does not exist, the standard format will be used. There is no 
option to use bus labels if they exist and the device labels do not. 
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Bus Load Throw Over Records: Bus Load Throw Over Records are used with contingency analysis. These records have an 
option to identify the bus to which the load will be transferred by either number or name_kV combination. If choosing to identify 
objects by label, the BusName_NomVolt:1 field will contain the label of the bus instead of the name_kV combination.  
Bus Load Throw Over Records will be saved in an auxiliary file if choosing to Save settings on the Contingency Analysis dialog. 
 
Injection Group Participation Points: All participation points and the injection groups to which they belong can be listed on the 
Injection Group Display. Load, generator, bus, and shunt devices that can be assigned to a participation point must be identified 
by bus and ID. The bus can be identified by either the number or name. When identifying by name, the BusName_NomVolt field 
is used to provide the name_kV combination for the bus. If choosing to identify devices by label, this field instead will contain the 
label of the device. If the device does not have a label but the bus does, the bus label will be used instead in conjunction with the 
ID of the device. Even if the device does contain a label, the ID field must be included in any auxiliary file that is going to be 
loaded because it is a key field. Injection groups can be included in other injection groups. Injection groups can be identified by 
label, even though this is not a normal thing to do. If any injection groups have labels and these injection groups are included in 
other injection groups, their labels will also appear in the BusName_NomVolt field. If they do not have labels, they will be 
identified by the injection group name that appears in the PPntID field. 
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SubData Sections 
The format described thus far works well for most kinds of data in Simulator.  It does not work as well however for data that stores a 
list of objects.  For example, a contingency stores some information about itself (such as its name), and then a list of contingency 
elements, and possible a list of limit violations as well.  For data such as this, Simulator allows <SubData>, </SubData> tags that 
store lists of information about a particular object.  This formatting looks like the following 
 

DATA (object_type,  [list_of_fields], file_type_specifier, create_if_not_found) 
{ 
value_list_1 
    <SUBDATA subobject_type1> 
      precise format describing an object_type1 
      precise format describing an object_type1 
      . 
      . 
      . 
    </SUBDATA> 
    <SUBDATA subobject_type2> 
      precise format describing an object_type2 
      precise format describing an object_type2 
      . 
      . 
      . 
    </SUBDATA> 
value_list_2 
   . 
   . 
   . 
value_list_n 
} 

 
Note that the information contained inside the <SubData>, </SubData> tags may not be flexibly defined.  It must be written in a 
precisely defined order that will be documented for each SubData type.   The description of each of these SubData formats follows. 



 59 

ATC_Options 
RLScenarioName 

GScenarioName 

IScenarioName 
These three sections contain the pretty names of the RL Scenarios, G Scenarios, and I Scenarios.  Each line consists 
of two values: Scenario Number and a name string enclosed in quotes. 
 

Scenario Number : The scenarios are number 0 through the number of scenarios minus 1. 
Scenario Name : These represent the names of the various scenarios. 

 
Example: 

<SUBDATA RLScenarioName> 
//Index   Name 
   0     "Scenario Name 0" 
   1     "Scenario Name 1" 
</SUBDATA> 

ATCMemo 
This section contains the memo text for the ATC analysis. 
 

Example: 
<SUBDATA ATCMemo> 
//Memo 
"Comments for the ATC analysis" 
</SUBDATA> 

ATCExtraMonitor 
ATCFlowValue 

This subdata section contains a list of a flow values for specified transfer levels.  Each line consists of two values: 
Flow Value (flow on the monitored element) and a Transfer Level (in MW).   
 

Flow Value : Contains a string describing which monitor this belongs to. 
Transfer Level : Contains the value for this extra monitor at the last linear iteration. 

 
Example: 

<SUBDATA ATCFlowValue> 
//MWFlow TransferLevel 
   94.05    55.30 
  105.18    80.58 
  109.02   107.76 
</SUBDATA> 

ATCScenario 
TransferLimiter 

This subdata section contains a list of the TransferLimiters for this scenario.  Each line contains fields relating one 
of the Transferlimiters.  The fields are written out in the following order: 
 

Limiting Element : Contains a description of the limiting element.  The possible values are: 
   "PowerFlow Divergence" 
   "AREA num"  
   "SUPERAREA name"  
   "ZONE num"  
   "BRANCH num1 num2 ckt" 
   "INJECTIONGROUP name" 
   "INTERFACE name"  
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Limiting Contingency : The name of the limiting contingency. If blank, then this means it’s a limitation 
in the base case. 

MaxFlow : The transfer limitation in MW in per unit. 
PTDF : The PTDF on the limiting element in the base case (not in percent). 
OTDF : The OTDF on the limiting element under the limiting contingency. 
LimitUsed : The limit which was used to determine the MaxFlow in per unit. 
PreTransEst : The estimated flow on the line after the contingency but before the transfer in 

per unit. 
MaxFlowAtLastIteration : The total transfer at the last iteration in per unit. 
IterativelyFound : Either YES or NO depending on whether it was iteratively determined. 

 
Example: 

<SUBDATA TransferLimiter > 
  "BRANCH 40767 42103  1" "contin"  2.84 -0.0771 -0.3883 -4.35 -4.35 -0.01 "-55.88" YES 
  "BRANCH 42100 42321  1" "Contin"  4.42  0.1078  0.5466  6.50  5.64  1.57 " 22.59" NO  
  "BRANCH 42168 42174  1" "Contin"  7.45 -0.0131 -0.0651 -1.39 -1.09  4.60 "-33.31" NO  
  "BRANCH 42168 42170  1" "Contin"  8.54  0.0131  0.0651  1.39  1.02  5.69 " 26.10" NO  
  "BRANCH 41004 49963  1" "Contin"  9.17 -0.0500 -0.1940 -4.39 -3.16  6.32 " 68.73" NO  
  "BRANCH 46403 49963  1" "Contin"  9.53  0.0500  0.1940  4.46  3.16  6.68 "-68.68" NO  
  "BRANCH 42163 42170  1" "Contin" 10.14 -0.0131 -0.0651 -1.39 -0.92  7.29 "-15.58" NO  
</SUBDATA> 

ATCExtraMonitor 
This subdata section contains a list of the ATCExtraMonitors for this scenario.  Each line contains three fields 
relating one of the ATCExtraMonitors.  The first field describes the ATCExtraMonitor which this subdata 
corresponds to.  The second and third variables are the initial value and sensitivity for this extra monitor for the 
sceanario.  An optional fourth field may be included if we are using one of the iterated ATC solution options.  This 
field must be the String "ATCFlowValue". 
 

Monitor Description : Contains a string describing which monitor this belongs to. 
InitialValue : Contains the value for this extra monitor at the last linear iteration. 
Sensitivity : Contains the senstivity of this monitor. 
ATCFlowValue : A string which signifies that a block will follow which stores a list of flow 

values for specified transfer levels.  Each line of the block consists of two 
values: Flow Value (flow on the monitored element) and a Transfer Level (in 
MW).  The block is terminated when a line of text that starts with ‘END’ is 
encountered. 

Example: 
<SUBDATA ATCExtraMonitor> 
  "Interface<KEY1>Left-Right</KEY1>"                 40.0735 0.633295 
  "Branch<KEY1>2</KEY1><KEY2>5</KEY2><KEY3>1</KEY3>" 78.7410 0.266589 
</SUBDATA> 

AUXFileExportFormatData 
DataBlockDescription 

This subdata section is used to define the objects that should be included in an auxiliary file along with their fields, 
subdata sections, and any filter used to specify which objects should be included. Each line contains the following: 

ObjectType : Name of the object to include in the auxiliary file. 
[FieldList] : List of fields to include. Must be enclosed in brackets. This list can either be 

space-delimited or comma-delimited. 
[SubdataList] : List of subdata sections to include. This list must be enclosed in brackets and 

can be either space-delimited or comma-delimited. Include empty brackets to 
not include subdata or for objects that do not have any subdata sections.  

"Filter" : Description of the filter to use for determining which objects to include. This 
must be enclosed in double quotes. If no filter is to be used, empty double 
quotes should be included. Valid entries are: "", "filtername", "AREAZONE", 
and "SELECTED".  See the Using Filters in Script Commands section for 
more information on specifying the filtername. 
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Example: 
<SUBDATA DataBlockDescription> 
  // ObjectType [FieldList] [SubdataList] "Filter" 
  Area [AreaName, AreaNum] [] "SELECTED" 
  Gen [BusNum, BusName, GenID] [BidCurve, ReactiveCapability] "" 
</SUBDATA> 

AUXFileExportFormatDisplay 
DataBlockDescription 

Same format as for the AUXFileExportFormatData subdata section.  
 

Example: 
<SUBDATA DataBlockDescription> 
  // ObjectType [FieldList] [SubdataList] "Filter" 
  DisplayArea [AreaName, AreaNum, SOAuxiliaryID] [] "" 
  DisplayTransmissionLine [BusNum, BusNum:1, LineCircuit, SOAuxiliaryID]  
     [Line] "Nominal Voltage > 138 kV" 
</SUBDATA> 

BGCalculatedField 
Condition 

Calculated Fields allow you to define a calculation over most network and aggregation objects along with a few 
other types of objects.  The calculation can then be used to show an aggregation calculation on objects that link to 
these calculation objects in some manner.  Part of the definition is a filter which specifies which objects to operate 
over.  This subdata section is identical to the Condition subdata section of the Filter object type.  

Bus 
MWMarginalCostValues 

MvarMarginalCostValues 

LPOPFMarginalControls 
These three sections contain specific values computed for an OPF solution.  In MWMarginalCostValues or 
MvarMarginalCostValues these specific values are the MW or Mvar marginal prices for each constraint.  In 
LPOPFMarginalControls the values are the sensitivities of the controls with respect to the cost of each bus. 
 
Example: 

<SUBDATA MWMarginalCostValues> 
  //Value 
    16.53 
     0.00 
    21.80 
</SUBDATA> 

BusViewFormOptions 
BusViewBusField 

BusViewFarBusField 

BusViewGenField 

BusViewLineField 

BusViewLoadField 
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BusViewShuntField 
The values represent specific fields on the custom defined bus view onelines.  Each line contains two values: 

 
Location : The various locations on the customized bus view contain slots for fields.  This is the 

slot number. 
FieldDescription : This is a string enclosed in double quotes.  The string itself is delimited by the @ 

character.  The string contains five values: 
Name of Field : The name of the field.  Special fields that appear on dialog by 

default have special names.  Otherwise these are the same as the 
fieldnames of the AUX file format (for the "other fields" feature 
on the dialogs). 

Total Digit : Number of total digits for a numeric field. 
Decimal Points : Number of decimal points for a numeric field. 
Color : This is the color of the field.  It is not presently used. 
Increment Value : This is the "delta per mouse" click for the field. 

 
Example: 

<SUBDATA BusViewLineField> 
  0 "MW Flow@6@1@0@0" 
  1 "MVar Flow@6@1@0@0" 
  2 "MVA Flow@6@1@0@0" 
  3 "BusAngle:1@6@2@0@0" 
</SUBDATA> 

ColorMap 
ColorPoint 

A colorpoint is simply described by a real number (between 0 and 100) indicating the percentage breakpoint, an 
integer describing the color, and a field indicating if the color should be used or the contour should be transparent.  
These three values are written on a single line of text.  Each line contains two values: 
 

cmvalue : Real number between 0 and 100 (minimum to maximum value). 
cmcolor : Integer between 0 and 16,777,216.  Value is determined by taking the red, green and 

blue components of the color and assigning them a value between 0 and 255.  The 
color is then equal to red + 256*green + 256*256*blue. 

cmalpha :   Integer between 0 and 255, where only 0 and 255 are valid values.  A value of  0 
indicates that the color point is transparent, while a value of 255 indicates that the 
color point is opaque.  If the alpha channel is omitted, a default value of 255 (opaque) 
will be assigned. 

 
Example: 

<SUBDATA ColorPoint> 
  // Value Color Alpha 
  100.0000 127 255 
   62.5000 65535 255 
   50.0000 8388479 0 
   12.5000 16711680 0 
    0.0000 8323072 255 
</SUBDATA> 
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Contingency 
CTGElementAppend 

Normally when reading in contingency definitions, the CTGElement SubData section is used to define the list of 
elements.  When reading a CTGElement SubData section, all existing elements of the contingency are deleted are 
replaced with the ones read from the file.  Using the CTGElementAppend as the SubData section will modify this 
behavior so that the elements are appended to the existing ones instead of deleted. 

CTGElement 
A contingency element is described by up to the following entries.  All entries must be on a single line of text: 

"Action"   "ModelCriteria"   Status   //comment  
 

Action : String describing the action associated with this element.  See below for actions 
available. 

ModelCriteria : This is the name of a ModelFilter or ModelCondition under which this action should 
be performed.  This entry is optional.  If it is not specified, then a blank (or no criteria) 
is assumed.  If you want to enter a Status, then use must specify "" as the 
ModelCriteria. 

Status : The following options are available:  
    CHECK – perform action if ModelCriteria is true 
    ALWAYS – perform action regardless of ModelCriteria 
    NEVER – do not perform action 
    TOPOLOGYCHECK – perform action if Model Criteria is true following  

implementation of other actions and before solving the 
power flow 

    POSTCHECK – perform action if Model Criteria is true following implementation  
 of other actions and solving the power flow 

This entry is optional.  If it is not specified, then CHECK is assumed. 
InclusionFilter : This entry is optional and will only exist for elements of RemedialAction or 

GlobalContingencyActions objects.  This is the name of an advanced filter or device 
filter that gets applied to each contingency.  If the contingency meets the filter, that 
contingency will include this element.  Otherwise, the element will be ignored. 

TimeDelay : This entry is optional.  If not specified, 0 is assumed.  This entry will only exist for 
elements of Contingency, RemedialAction, or GlobalContingencyActions objects.  
This is the time delay in seconds to wait before the action takes place.    

Comment : All text to the right of the comment symbol (//) will be saved with the CTGElement as 
a comment. 

 
Possible Actions: 
 
Many actions have a value field that can be specified.  This value can be expressed in three ways: 

1. A numerical value that will be used directly. 
2. The variablename of a field for the object in the action.  This field will be evaluated and that 

value will be used.  Including the keyword REF in the appropriate place in the action string will 
cause the field to be evaluated in the contingency reference case.  Otherwise, the field will be 
evaluated at the moment the action is implemented. 

3. The name of a Model Expression.  Single quotes should enclose the name if the name contains 
spaces.  The model expression will be evaluated and the result will be used as the value.  
Including the keyword REF in the appropriate place in the action string will cause the model 
expression to be evaluated in the contingency reference case.  Otherwise, the model expression 
will be evaluated at the moment the action is implemented. 
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Transmission Line or Transformer outage or insertion 
BRANCH | bus1# bus2# ckt | OPEN 
  | CLOSE 
  | OPENCBS 
  | CLOSECBS 
  | SET_TO | value | LimitMVA | REF 

Takes branch out of service, or puts it in service.  The contingency rating of the branch can also be 
set for the duration of the contingency using the SET_TO action.  Note: bus# values may be 
replaced by a string enclosed in single quotes where the string is the name of the bus followed by 
an underscore character and then the nominal voltage of the bus.  These values may also be 
replaced by a string enclosed in single quotes which represents the label of the bus.  Also, the 
entire sequence [bus1# bus2# ckt] may be replaced by the label of the branch. 

Generator, Load, or Switched Shunt outage or insertion 
GEN | bus# id | OPEN 
LOAD | bus# id | CLOSE 
SHUNT | bus# id | OPENCBS 
INJECTIONGROUP | name | CLOSECBS 

Takes a generator, load, or shunt out of service, or puts it in service. If specifying an injection 
group, the status of all devices in the injection group will be changed.  Note: bus# values may be 
replaced by a string enclosed in single quotes where the string is the name of the bus followed by 
an underscore character and then the nominal voltage of the bus.  These values may also be 
replaced by a string enclosed in single quotes which represents the label of the bus.  Also, the 
sequence [bus1# ckt] or [name] may be replaced by the label of the device. 

Generator, Load or Switched Shunt movement to another bus 
GEN | bus1# | MOVE_PQ_TO | bus2# | value | MW | REF 
LOAD | bus1# id | MOVE_P_TO | | MVAR 
SHUNT | | MOVE_Q_TO | | PERCENT 

Use to move generation, load or shunt at a bus1 over to bus2.  This can be used on a bus or 
specific device basis in specifying what to move.  Note: bus# values may be replaced by a string 
enclosed in single quotes where the string is the name of the bus followed by an underscore 
character and then the nominal voltage of the bus. These values may also be replaced by a string 
enclosed in single quotes which represents the label of the bus.  When identifying specific devices, 
the device label can replace the bus number and device id.   

Generator, Load or Switched Shunt set or change a specific value 
GEN | bus#  | SET_P_TO | value | MW  | REF 
LOAD | bus# id | SET_Q_TO | | MVAR 
SHUNT | | SET_PQ_TO | | PERCENT 
 | | SET_VOLT_TO | 
 | | CHANGE_P_BY | 
 | | CHANGE_Q_BY | 
 | |CHANGE_PQ_BY | 
 | |CHANGE_VOLT_BY|  

Use to set the generation, load, or shunt at a bus to a particular value.  This can also be used on a 
specific device.  This can also be used to change by a specified amount.  The Voltage setpoints 
only apply to SHUNTs and GENs.  Note: bus# values may be replaced by a string enclosed in 
single quotes where the string is the name of the bus followed by an underscore character and then 
the nominal voltage of the bus.  These values may also be replaced by a string enclosed in single 
quotes which represents the label of the bus.  When identifying specific devices, the device label 
can replace the bus number and device id. 

Bus outage causes all lines connected to the bus to be outage 
BUS | bus# | OPEN 
  | OPENCBS 

Takes all branches connected to the bus out of service.  Also outages all generation, load, or shunts 
attached to the bus. Note: bus# values may be replaced by a string enclosed in single quotes where 
the string is the name of the bus followed by an underscore character and then the nominal voltage 
of the bus. These values may also be replaced by a string enclosed in single quotes which 
represents the label of the bus. 
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Interface outage or insertion 
INTERFACE | name | OPEN 
  | CLOSE 
  | OPENCBS 
  | CLOSECBS 

Takes all monitored branches in the interface out of service, or puts them all in service.  Note: the 
[name] may be replaced by the label of the interface. 

Line Shunt outage or insertion 
LINESHUNT | bus1# bus2# bus# ckt | OPEN 
  | CLOSE 

Takes a line shunt out of service, or puts it in service.  bus1# and bus2# identify the line that the 
line shunt is on and bus# identifies the side of the line that the line shunt is on.  bus# values may 
be replaced by a string enclosed in single quotes where the string is the name of the bus followed 
by an underscore character and then the nominal voltage of the bus.  bus# values may also be 
replaced by a string enclosed in single quotes that represents the label of the bus.  The sequence 
[bus1# bus2#] may be replaced by the label of the line to which the line shunt is attached. 

Injection Group outage or insertion 
INJECTIONGROUP | name | OPEN 
  | CLOSE 
  | OPENCBS 
  | CLOSECBS  
  | OPEN | value | REF | PPREF  

 
Takes all devices in the injection group out of service, or puts them all in service.   
The OPEN action will open all devices in the injection group if no value is specified.  If a value is 
specified, only that number of devices will be opened in the order of highest to lowest 
participation factor. 
 
When using an action that requires participation factors, an optional parameter PPREF can be 
specified.  This indicates that the participation factors should be determined in the contingency 
rerference case.  This will only be done for participation points using an AutoCalcMethod that 
indicates the factor should be dynamically determined and the AutoCalc field is set to YES for the 
participation point. 
 
Notes: The [name] may be replaced by the label of the injection group.  Bus participation points 
will be completely ignored in this process. 

Injection Group change specific value 
INJECTIONGROUP | name | CHANGE_P_TO | value | Option | REF | PPREF  
  | SET_P_TO | 

 
The following Option settings are allowed to set or change the MW generation/load in an 
injection group by or to a particular value: 

MW  
Value will be interpreted as the amount of MW injection change or new MW injection.  
Each participation point in the injection group will be changed in proportion to the 
participation factors of the group. 

PERCENT  
Same as MW except that the value will be interpreted as percentage of the existing MW 
injection. 

MWMERITORDER 
Value will be interpreted as the amount of MW injection change or new MW injection.  
Both generator and load points will be modified in the injection group.  Elements will be 
adjusted in order of highest participation factor to lowest before moving to the next 
element.  This process continues until the desired injection is met.  Generators will not be 
opened in this process, which means all online generators will continue to provide Mvar 
support.  Loads that have both their minimum and maximum MW limits set to zero will 
not be allowed to increase.  They can only decrease towards 0. 

PERCENTMERITORDER 
Same as MWMERITORDER except that the value will be interpreted as percentage of the 
existing MW injection. 
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MWMERITORDEROPEN 
Value will be interprested as the amount of MW injection change or new MW injection.  
Both generator and load points can be modified in the injection group.  If the MW 
injection change is negative, the generator in the injection group with the highest 
participation factor will have its status changed to Open, followed by the second 
generator and so on.  This will continue until the amount of MW opened is as close to the 
desired amount as possible without exceeding the desired amount of drop.  If the MW 
injection change is positive, loads will be opened in the same manner.  If an element 
would cause the desired gen drop amount to be exceeded, that element is skipped and the 
next element in merit order is processed.  If the change requested is positive and there are 
no loads in the injection group, generators will be increased toward their maximum MW 
output in the same manner as MWMERITORDER as though the OPEN option was not 
specified.  If the change requested is negative and there are no generators in the injection 
group, loads will be increased toward their maximum MW output in the same manner as 
MWMERITORDER as though the OPEN option was not specified. 

PERCENTMERITORDEROPEN 
Same as MWMERITORDEROPEN except that the value will be interpreted as percentage of 
the existing MW injection. 

MWMERITORDEROPENEXCEED 
Same as MWMERITORDEROPEN except that the amount of MW opened is allowed to 
exceed the desired amount of change.  Generators or loads will be opened in merit order 
until the desired amount is met or exceeded. 

PERCENTMERITORDEROPENEXCEED 
Same as MWMERITORDEROPENEXCEED except that the value will be interpreted as 
percentage of the existing MW injection. 

 
When using an action that requires participation factors, an optional parameter PPREF can be 
specified.  This indicates that the participation factors should be determined in the contingency 
rerference case.  This will only be done for participation points using an AutoCalcMethod that 
indicates the factor should be dynamically determined and the AutoCalc field is set to YES for the 
participation point.     
   
Notes: The [name] may be replaced by the label of the injection group.  Bus participation points 
will be completely ignored in this process. 

Series Capacitor Bypass or Inservice 
SERIESCAP | bus1# bus2# ckt | BYPASS 
  | INSERVICE 

Bypasses a series capacitor, or puts it in service. Note: bus# values may be replaced by a string 
enclosed in single quotes where the string is the name of the bus followed by and underscore 
character and then the nominal voltage of the bus.  Note: bus# values may also be replaced by a 
string enclosed in single quotes which represents the label of the bus.  Also, the entire sequence 
[bus1# bus2# ckt] may be replaced by the label of the branch. 

Series Capacitor set impedance 
SERIESCAP | bus1# bus2# ckt | SET_X_TO | value | PERCENT | REF 
    | PU 

Changes the impedance a series capacitor either specifying a new per unit value or specifying a 
percentage of the value in the contingency reference case.  Note: bus# values may be replaced by a 
string enclosed in single quotes where the string is the name of the bus followed by and 
underscore character and then the nominal voltage of the bus.  Note: bus# values may also be 
replaced by a string enclosed in single quotes which represents the label of the bus.  Also, the 
entire sequence [bus1# bus2# ckt] may be replaced by the label of the branch. 

DC Transmission Line outage 
DCLINE | bus1# bus2# ckt | OPEN 
  | OPENCBS 

Takes DC Line out of service.  Note: bus# values may be replaced by a string enclosed in single 
quotes where the string is the name of the bus followed by an underscore character and then the 
nominal voltage of the bus.  These values may also be replaced by a string enclosed in single 
quotes which represents the label of the bus.  Also, the entire sequence [bus1# bus2# ckt] may be 
replaced by the label of the dc transmission line. 
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DC Line set a specific value or insertion 
DCLINE  | bus1# bus2# ckt | SET_P_TO | value | MW | REF 
  | CHANGE_P_BY | | PERCENT 
  | SET_I_TO | | AMPS 
  | CHANGE_I_BY |  
  | CLOSE | 
  | CLOSECBS | 
  | SET_TO | value | OHMS | REF 

Use to set the DC Line setpoint to a particular value, or puts it in service. Note: bus# values may 
be replaced by a string enclosed in single quotes where the string is the name of the bus followed 
by an underscore character and then the nominal voltage of the bus.  Note: bus# values may also 
be replaced by a string enclosed in single quotes which represents the label of the bus.  Also, the 
entire sequence [bus1# bus2# ckt] may be replaced by the label of the dc transmission line. (Note: 
for the CLOSE and CLOSECBS choice, only the units of MW or AMPS may be used.) 

MTDC Converter outage 
DCCONVERTER | rec# bus#  | OPEN 
  | OPENCBS 

Takes multi-terminal DC converter out of service.  The rec# specifies the multi-terminal DC line 
record, while bus# specifies the AC bus to which the converter is connected.  Note: bus# values 
may be replaced by a string enclosed in single quotes where the string is the name of the bus 
followed by an underscore character and then the nominal voltage of the bus.  These values may 
also be replaced by a string enclosed in single quotes which represents the label of the bus. 

MTDC Converter set a specific value or insertion 
DCCONVERTER | rec# bus# | SET_P_TO | value | MW | REF 
  | CHANGE_P_BY | | PERCENT 
  | SET_I_TO | | AMPS 
  | CHANGE_I_BY | 
  | CLOSE | 
  | CLOSECBS | 

Use to set the multi-terminal DC converter setpoint to a particular value, or puts it in service. The 
rec# specifies the multi-terminal DC line record, while bus# specifies the AC bus to which the 
converter is connected.  Note: bus# values may be replaced by a string enclosed in single quotes 
where the string is the name of the bus followed by an underscore character and then the nominal 
voltage of the bus.  Note: bus# values may also be replaced by a string enclosed in single quotes 
which represents the label of the bus. (Note: for the CLOSE and CLOSECBS choice, only the 
units of MW or AMPS may be used.) 

Phase Shifter set a specific value 
PHASESHIFTER| bus1# bus2# ckt | SET_P_TO | value | MW | REF 
  | CHANGE_P_BY | | PERCENT 

Use to set the phase shift angle to a particular value. Note: bus# values may be replaced by a string 
enclosed in single quotes where the string is the name of the bus followed by an underscore 
character and then the nominal voltage of the bus.  These values may also be replaced by a string 
enclosed in single quotes which represents the label of the bus.  Also, the entire sequence [bus1# 
bus2# ckt] may be replaced by the label of the branch. 

3-Winding Transformer outage or insertion 
3WXFORMER | bus1# bus2# bus3# ckt  | OPEN 
  | CLOSE 
  | OPENCBS 
  | CLOSECBS 

Takes all three windings of a 3-winding transformer out of service, or puts them in service.  Note: 
bus# values may be replaced by a string enclosed in single quotes where the string is the name of 
the bus followed by an underscore character and then the nominal voltage of the bus.  Note: bus# 
values may also be replaced by a string enclosed in single quotes which represents the label of the 
bus.  Also, the entire sequence [bus1# bus2# bus#3 ckt] may be replaced by the label of the three 
winding transformer. 
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Area Control Type Change 
AREA   | area#   | SET_TO | 'OFF' 
    | 'PARTFAC' 
   | 'AREASLACK  bus#' 
   | 'IGSLACK injectiongroup name' 

Specify to change the make-up power for an area so that it is different during a contingency than 
the area control settings used in the reference case. The area may be set to toggle the control 
setting to OFF, PARTFAC, AREASLACK, and IGSLACK. The Area Control topic provides 
more information about these control types. If selecting Area Slack is chosen, then a bus must be 
specified which will act as the area slack during the contingency action. If selecting IG Slack, then 
an injection group must be specified by name. 
Note: bus# values may be replaced by a string where the string is the name of the bus followed by 
an underscore character and then the nominal voltage of the bus.  Note: bus# values may also be 
replaced by a string which represents the label of the bus. 
In order for the Area contingency action to work correctly, there are contingency and power flow 
solution options that must be set correctly. Simulator does not automatically set these options so 
the user must make sure they are set.  

• Area control must be enabled in the contingency base case, i.e. the Power Flow Solution 
Option for Island-Based AGC must be set to Disable (Use the Area and Super Area 
Dispatch settings).  

• The contingency Make-Up Power option must be set to Same as Power Flow case.  
• The option to Disable Automatic Generation Control (AGC) found with the Power Flow 

Solution Options must NOT be selected.  
 
Another suggestion, although not a strict requirement, is that the area should be on area control 
prior to contingency analysis if a control type other than Off AGC is going to be set during a 
contingency. If a large ACE exists in the base case with area control off, switching the area on 
control during the contingency will zero out the ACE in addition to compensating for required 
make-up power. 

Substation outage 
SUBSTATION | sub# | OPEN 
  | OPENCBS 

Takes a substations out of service.  sub# is the number that identifies the substation.  sub# can be 
replaced by a string enclosed in single quotes where the string is the name or label of the 
substation. 

Abort 
ABORT 

Include this action to cause the solution of the contingency to be aborted. 

Execute a Power Flow Solution 
SOLVEPOWERFLOW 

Include this action to cause the solution of the contingency to be split into pieces.  Actions that are 
listed before each SOLVEPOWERFLOW call will be performed as a group. 

Calling of a name ContingencyBlock 
CONTINGENCYBLOCK | name 

Calls a ContingencyBlock and executes each of the actions in that block. 

Make-Up Power Compensation. 

Only valid immediately following a SET, CHANGE, OPEN or CLOSE  action on a 
Generator, Shunt or Load. This describes how the change in MW or MVAR are picked 
up by buses throughout the system. The values specify participation factors.  Note: bus# 
values may be replaced by a string enclosed in single quotes where the string is the name 
of the bus followed by and underscore character and then the nominal voltage of the bus. 

COMPENSATION 
bus#1   value1 
bus#2   value2 
... 
END 
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Example: 
<SUBDATA CTGElement> 
  // just some comments  
  // action                     Model Criteria  Status TimeDelay  comment 
  "BRANCH 40821 40869 1  OPEN" ""               ALWAYS 0 //Raver - Paul 500 kV 
  "GEN 45041 1  OPEN"          ""               ALWAYS 0 //Trip Unit #2 
  "BRANCH 42702 42727 1  OPEN" "Line X Limited" CHECK  0 //Open Fern Hill  
  "GEN 40221 1  OPEN"          "Interface L1"   CHECK  0 //Drop ~600 MW 
  "GEN 40227 1  OPEN"          "Interface L2"   CHECK  0 //Drop ~1200 MW  
  "GEN 40221 1  OPEN"          "Interface L3"   CHECK  0 //Drop ~600 MW  
</SUBDATA> 

Note: ContingencyElement object types can also be directly created inside their own DATA section as well.  One of 
the key fields of the object is then the name of the contingency to which the ContingencyElement belongs.  The 
Action string will remain the same. 

LimitViol 
A LimitViol is used to describe the results of a contingency analysis run.  Each Limit Violation lists nine possible 
values: 

ViolType : One of six values describing the type of violation. 
 BAMP – branch amp limit violation 
 BMVA – branch MVA limit violation 
 VLOW – bus low voltage limit violation 
 VHIGH – bus high voltage limit violation 
 INTER – interface MW limit violation  

   CUSTOM – Custom Monitor value  
ViolElement : This field depends on the ViolType.   

for VLOW, VHIGH – "bus1#"  or "busname_buskv" or "buslabel" 
for INTER  – "interfacename" or "interfacelabel" 
for BAMP, BMVA – "bus1#  bus2# ckt violationbus# MWFlowDirection" 

violationbus# is the bus number for the end of the branch which is violated 
MWFlowDirection is the direction of the MW flow on the line.  Potential values 

are "FROMTO" or "TOFROM". 
Note: each bus# may be replaced with the name underscore nominal kV string 

enclosed in single quotations.  Or bus# values may be replaced by a string 
enclosed in single quotes representing the label of the bus.  Also the entire 
sequence [bus1# bus2# ckt] may be replaced by the label of the branch. 

for CUSTOM – "custommonitorname deviceidentifier" where the deviceidentifier will 
use the key fields or label as specified by the option selected when saving 

Limit : This is the numerical limit which was violated. 
ViolValue : This is the numerical value of the violation. 
PTDF : This field is optional.  It only makes sense for interface or branch violations.  It stores 

a sensitivity of the flow on the violating element during in the base case with respect 
to a transfer direction   This must be calculated using the Contingency Analysis Other 
Actions related to Sensitivities. 

OTDF : Same as for the PTDF. 
InitialValue : This stores a number.  This stores the base case value for the element which is being 

violated.  This is used to compare against when looking at change violations. 
Reason : This will say whether this was a pure violation, or is being reported as a violation 

because the change from the base case is higher than a specified threshold. 
  LIMIT – means this is a violation of a line/interface/bus limit or simply a Custom 

Monitor 
  CHANGE – means this is being reported as a limit because the change from the initial 

value is higher than allowed 
CTG Specified Limit : This specifies if the Limit originated from a contingency action or from the 

rating specified with the line and Limit Monitoring Settings. 
  NO – the Limit originated from the line and Limit Monitoring Settings 
  YES – the Limit originated from a contingency action 
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Example: 
<SUBDATA LimitViol> 
  BAMP "1 3  1 1 FROMTO"  271.94031  398.48096  10.0  15.01  //Note OTDF/PTDF 
  // values can also be specified with name underscore nominal kV string  
  // enclosed inside a single quote as shown next 
  BAMP "'One_138' 'Three_138' 1 1 FROMTO"  271.94031  398.48096  10.0  15.01   
  INTER "Right-Top"   45.00000   85.84451  None   None  56.000  LIMIT NO 
</SUBDATA> 

Note: ViolationCTG object types can also be directly created inside their own DATA section as well.  One of the 
key fields of the object is then the name of the contingency to which the ViolationCTG belongs. 

Sim_Solution_Options 
These describe the power flow solution options which should be used under this particular contingency.   The format 
of the subdata section is two lines of text.  The first line is a list of the fieldtypes for Sim_Solution_Options which 
should be changed.  The second line is a list of the values.  Note that in general, power flow solution options are 
stored at three different locations in contingency analysis.  When implementing a contingency, Simulator gives 
precendence to these three locations in the following order: 

1. Contingency Record Options (stored with the particular contingency). 
2. Contingency Tool Options (stored with CTG_Options). 
3. The global solution options. 

WhatOccurredDuringContingency 
Each line of this subdata section is part of a text description of what actually ended up being implemented for this 
contingency.  This will list which actions were executed and which actions ended up being skipped because of their 
model criteria.  Each line of the subdata section must be enclosed in quotes. 
 

Example: 
<SUBDATA WhatOccurredDuringContingency> 
  "Applied: " 
  "  OPEN Branch Two      (2)  TO  Five     (5) CKT 1 |  | CHECK | | ELEMENT" 
</SUBDATA> 

ContingencyMonitoringException 
Each line of this subdata section contains a string identifying a specially handled monitored element for this 
contingency followed by a string indicating how this monitored element should be handled with this contingency.  
The elements can be identified by their primary or secondary key fields or by label.  The element descriptions 
should be enclosed in quotes because they contain spaces.    
  

Example: 
<SUBDATA ContingencyMonitoringException> 
  "Branch '2' '3' '1'" "Exclude" 
  "Branch 'Three_138.00' 'Four_138.00'" "Include" 
  "Branch 'Line_2_5'" "Default" 
</SUBDATA> 

CTG_Options 
Sim_Solution_Options 

These describe the power flow solution options which should be used under this particular contingency.   The format 
of the subdata section is two lines of text.  The first line is a list of the fieldtypes for Sim_Solution_Options which 
should be changed.  The second line is a list of the values.  Note that in general, power flow solution options are 
stored at three different locations in contingency analysis.  When implementing a contingency, Simulator gives 
precendence to these three locations in the following order: 

1. Contingency Record Options (stored with the particular contingency). 
2. Contingency Tool Options (stored with CTG_Options). 
3. The global solution options. 

CTGElementBlock 
CTGElement 

This format is the same as for the Contingency objecttype, however, you cannot call a ContingencyBlock from 
within a contingencyblock. 
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CTGElementAppend 
When a subdata section is defined as CTGElementAppend rather than CTGElement, the actions of this subdata section will 
be appended to the contingency actions, instead of replacing them.  This format is the same as for the Contingency 
objecttype, however, you cannot call a ContingencyBlock from within a contingencyblock. 
 
Note: CTGElementBlockElement object types can also be directly created inside their own DATA section as well.  
One of the key fields of the object is then the name of the contingency block to which the 
CTGElementBlockElement belongs. 

CustomColors 
CustomColors 

These describe the customized colors used in Simulator, which are specified by the user.  A custom color is an 
integer describing a color.  Each custom color is written on a single line of text and is an integer between 0 and 
16,777,216.  The value is determined by taking the red, green, and blue components of the color and assigning them 
a value between 0 and 255.  The color is then equal to red + 256*green + 256*256*blue.  Each line contains only 
one integer that corresponds to the color specified. 

 
Example: 

<SUBDATA CustomColors> 
  9823301 
  8613240 
</SUBDATA>  

CustomCaseInfo 
ColumnInfo 

Each line of this SUBDATA section can be used for specifying the column width of particular columns of the 
respective Custom Case Information Sheet.  The line contains two values – the column and then a column width.  
This is shown in the following example. 
 
Example: 

<SUBDATA ColumnInfo> 
  "SheetCol"    133 
  "SheetCol:1"  150 
  "SheetCol:2"  50 
</SUBDATA>  

DataGrid 
ColumnInfo 

Contains a description of the columns which are shown in the respective data grid.  Each line of text contains four 
fields: VariableName, ColumnWidth, TotalDigits, DecimalPoints 

Variablename : Contains the variable which is shown in this column. 
ColumnWidth : The column width. 
TotalDigits : The total digits displayed for numerical values. 
DecimalPoints : The decimal points shown for numerical values. 

Example: 
DATA (DataGrid, [DataGridName]) 
{ 
   BUS  
   <SUBDATA COLUMNINFO> 
      BusNomVolt   100   8   2 
      AreaNum       50   8   2 
      ZoneNum       50   8   2 
   </SUBDATA> 
   BRANCHRUN 
   <subdata COLUMNINFO > 
      BusNomVolt:0  100   8   2 
      BusNomVolt:1  100   8   2 
      LineMW:0      100   9   3  
   </SUBDATA> 
} 
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DynamicFormatting 
DynamicFormattingContextObject 

This subdata section contains a list of the display object types which are chosen to be selected.  Each line of the 
section consists of the following: 

DisplayObjectType  (WhichFields)  (ListOfFields) 
DisplayObjectType : The object type of the display object.  These are generally the same as the values 

seen in the subdata section SelectByCriteriaSetType of SelectByCriteriaSet object 
types.  The only exception is the string CaseInfo, which is used for formatting 
applying to the case information displays. 

(WhichFields) : For display objects that can reference different fields, this sets which of those 
fields it should select (e.g. select only Bus Name Fields).  The value may be either 
ALL or SPECIFIED. 

(ListOfFields) : If WhichFields is set to SPECIFIED, then a delimited list of fields follows. 
 

Example: 
<SUBDATA DynamicFormattingContextObject>  
  // Note: CaseInfo applies to case information displays 
  CaseInfo "SPECIFIED" BusName  
  DisplayAreaField "ALL" 
  DisplayBus 
  DisplayBusField "SPECIFIED" BusName BusPUVolt BusNum 
  DisplayCircuitBreaker 
  DisplaySubstation 
  DisplaySubstationField "SPECIFIED" SubName SubNum BusNomVolt BGLoadMVR 
  DisplayTransmissionLine 
  DisplayTransmissionLineField "ALL" 
</SUBDATA> 

LineThicknessLookupMap 

LineColorLookupMap 

FillColorLookupMap 

FontColorLookupMap 

FontSizeLookupMap 

BlinkColorLookupMap 

XoutColorLookupMap 

FlowColorLookupMap 

SecondaryFlowColorLookupMap 
The values of the lookup table for the characteristics that can be modified by the dynamic formatting tool.  The first 
line contains the two following fields: 

 
fieldname : It is the field that the lookup table is going to look for. 
usediscrete : Set to YES or NO.  If set to YES, the characteristic values will be discrete, meaning 

that the characteristic value will correspond exactly to the one specified in the table.  
If set to NO, the characteristic values will be continuous, which means the 
characteristic value will be an interpolation of the high and low closest values 
specified in the table. 

The following lines contain two fields: 
fieldvalue : The value for the field. 
characteristicvalue : The corresponding characteristic value for such field value. 

Example: 
<SUBDATA LineColorLookupMap>  
   // FieldName UseDiscrete 
     BusPUVolt YES 
   // FieldValue Color 
     1.02 16711808 
     1.05 8454143 
     1.1  16744703 
</SUBDATA> 
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Filter 
Condition 

Conditions store the conditions of the filter.  Each condition is described by one line of text which can contain up to 
five fields: 

 
variablename : It is one of the fields for the object_type specified.  It may optionally be followed by a 

colon and a non-negative integer.  If not specified, 0 is assumed. 
  Example: on a LINE, 0 = from bus, 1 = to bus 
           Thus:  sgLineMW:0 = the MW flow leaving the from bus 
                  SgLineMW:1 = the MW flow leaving the to bus 
  Note: this value may also be the string "_UseAnotherfilter" which would then be 

followed by either meets or notmeets and then the name of another Filter. 
Condition : Possible Values Alternate1 Alternate2 Requirements 
  between ><  requires othervalue  
  notbetween ~><  requires othervalue 
  equal = == 
  notequal <> ~= 
  greaterthan > 
  lessthan < 
  greaterthanorequal >= 
  lessthanorequal <= 
  about   requires othervalue 
  notabout   requires othervalue 
  contains 
  notcontains 
  startswith 
  notstartswith 
  inrange 
  notinrange 
  meets 
  notmeets 
  isblank 
  notisblank 
value : The value used for comparison. 
   For fields associated with strings, this must be a string. 
   For fields associated with real numbers, this must be a number. 

   For fields associated with integers, this is normally an integer, except when the 
Condition is "inrange" or "notinrange".  In this case, value is a comma/dash 
separated number string. 

(othervalue) : If required, the other value used for comparison.  For conditions "about" and 
"notabout" this is the tolerance with which the value should be equal or not equal. 

(FieldOpt) : Optional integer value with following meanings. 
  0 - strings are case insensitive, use number fields directly 
      (0 is the default value if not otherwise specified) 
  1 - strings are case sensitive, take ABS of field values 
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Example: 
DATA (FILTER, [objecttype, filtername, filtertype, prefilter]) 
{ 
BUS "a bus filter" "AND" "no" 
   <SUBDATA CONDITION> 
      BusNomVolt  >  100 
      AreaNum   inrange  "1 – 5 , 7 , 90-95" 
      ZoneNum   between 
   </SUBDATA> 
BRANCH "a branch filter" "OR" "no" 
   <subdata CONDITION> 
      BusNomVolt:0  > 100    // Note location 0 means from bus 
      BusNomVolt:1  > 100    // Note location 1 means to bus 
      LineMW:0      > 100 1  // Note, final field 1 denotes absolute value 
      _UseAnotherFilter meets  
   </SUBDATA> 
} 

Gen 
BidCurve 

BidCurve subdata is used to define a piece-wise linear cost curve (or a bid curve).   Each bid point consists of two 
real numbers on a single line of text: a MW output and then the respective bid (or marginal cost). 

Example: 
<SUBDATA BidCurve> 
  // MW   Price[$/MWhr] 
  100.00  10.6 
  200.00  12.4 
  400.00  15.7 
  500.00  16.0 
</SUBDATA> 

ReactiveCapability 
Reactive Capability subdata is used to the reactive capability curve of the generator.   Each line of text consists of 
three real numbers: a MW output, and then the respective Minimum MVAR and Maximum MVAR output. 
 

Example: 
<SUBDATA ReactiveCapability> 
  // MW   MinMVAR   MaxMVAR 
  100.00  -60.00   60.00 
  200.00  -50.00   50.00 
  400.00  -30.00   20.00 
  500.00  - 5.00    2.00 
</SUBDATA> 

Note: ReactiveCapability object types can also be directly created inside their own DATA section as well.  Two of 
the key fields of the object are then the bus number and generator ID of the generator to which the 
ReactiveCapability point belongs. 

GeoDataViewStyle 
TotalAreaValueMap 

This subdata section is used to define the lookup table for determining the total area size of geographic data view 
objects based on the value of a selected field. Two values are entered for each mapping: 

 
FieldValue: Value of the field selected for the Total Area attribute. 
TotalArea: The total area size of the object. 
  

Example: 
<SUBDATA TotalAreaValueMap> 
// FieldValue TotalArea 
1.000 0 
4.000 23 
7.000 46 
</SUBDATA> 
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RotationRateValueMap 
This subdata section is used to define the lookup table for determining the rotation rate of geographic data view 
objects based on the value of a selected field. Two values are entered for each mapping: 

 
FieldValue: Value of the field selected for the Rotation Rate attribute. 
RotationRate: The rotation rate of the object. Entered in Hz. 
  

Example: 
<SUBDATA RotationRateValueMap> 
// FieldValue RotationRate 
1.000 0.00 
4.000 0.10 
7.000 0.20 
</SUBDATA> 

RotationAngleValueMap 
This subdata section is used to define the lookup table for determining the rotation angle of geographic data view 
objects based on the value of a selected field. Two values are entered for each mapping: 

 
FieldValue: Value of the field selected for the Rotation Angle attribute. 
RotationAngle: The rotation angle of the object. Entered in degrees. 
  

Example: 
<SUBDATA RotationAngleValueMap> 
// FieldValue RotationAngle 
1.000 -90.0 
4.000 0.0 
7.000 90.0 
</SUBDATA> 

LineThicknessValueMap 
This subdata section is used to define the lookup table for determining the thickness of the border line around 
geographic data view objects based on the value of a selected field. Two values are entered for each mapping: 

 
FieldValue: Value of the field selected for the Line Thickness attribute. 
LineThickness: The line thickness of the border line around the object. This should be an integer value. 
  

Example: 
<SUBDATA LineThicknessValueMap> 
// FieldValue LineThickness 
1.000 1 
4.000 2 
7.000 3 
</SUBDATA> 

GlobalContingencyActions 
CTGElementAppend 

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed. 

CTGElement 
This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed. 
 
Note: GlobalContingencyActionsElement object types can also be directly created inside their own DATA section as well.  

HintDefValues 
HintObject 

Stores the values for the custom hints.  Each line has one value: 
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FieldDescription : This is a string enclosed in double quotes.  The string itself is delimited by the @ 
character.  The string contains five values: 

Name of Field : The name of the field.  Special fields that appear on dialog by 
default have special names.  Otherwise these are the same as the 
fieldnames of the AUX file format (for the "other fields" feature 
on the dialogs). 

Total Digit : Number of total digits for a numeric field. 
Decimal Points : Number of decimal points for a numeric field. 
Include Suffix : Set to 0 for not including the suffix, and set to 1 to include it. 
Field Preffix : The prefix text. 

 
Example: 

<SUBDATA HintObject> 
     "BusPUVolt@4@1@1@PU Volt =" 
     "BusAngle@4@1@1@Angle =" 
</SUBDATA> 

InjectionGroup 
PartPoint 

A participation point is used to describe the contents of an injection group.  Each participation point lists six values: 
PointType : One of five values describing the type of point. 

 GEN : a generator 
 LOAD : a load 
 SHUNT : a switched shunt 
 BUS : a bus 
 INJECTIONGROUP : another injection group 

PointBusNum : The bus number of the partpoint if the type is a GEN, LOAD, SHUNT, or BUS.  
Value will be blank for an injection group type.  Note: bus# values may be replaced 
by a string enclosed in double quotes where the string is the name of the bus followed 
by an underscore character and then the nominal voltage of the bus.  These values 
may also be replaced by a string enclosed in double quotes that represents the label of 
the bus or a string representing the label of the generator, load, or switched shunt. 

PointID :  For GEN, LOAD, or SHUNT type, this is the id for the partpoint.  For an 
INJECTIONGROUP type, this is the name or label of the injection group.  This is 
blank for a BUS type. 

PointParFac : The participation factor for the point. 
ParFacCalcType : How the participation point is calculated.  There are several options depending on the 

PointType.   
 Generators : SPECIFIED, MAX GEN INC, MAX GEN DEC, or MAX 

GEN MW 
 Loads : SPECIFIED or LOAD MW 
 Shunts : SPECIFIED, MAX SHUNT INC, MAX SHUNT DEC, or 

MAX SHUNT MVAR 
 Bus : SPECIFIED 
 Injection Groups : SPECIFIED 

ParFacNotDynamic: Should the participation factor be recalculated dynamically as the system changes. 
 

Example: 
<SUBDATA PartPoint> 
  "GEN"  1 "1"   1.00 "SPECIFIED"   "NO" 
  "GEN"  4 "1" 104.96 "MAX GEN INC" "NO" 
  "GEN"  6 "1"  50.32 "MAX GEN DEC" "YES" 
  "GEN"  7 "1" 600.00 "MAX GEN MW"  "NO" 
  "LOAD" 2 "1"   5.00 "SPECIFIED"   "NO" 
  "LOAD" 6 "1" 200.00 "LOAD MW"     "YES" 
</SUBDATA> 

 
Note: PartPoint object types can also be directly created inside their own DATA section as well.  One of the key 
fields of the PartPoint object is then the name of the injection group to which the participation point belongs. 
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Interface 
InterfaceElement 

A interfaces’s subdata contains a list of the elements in the interface.  Each line contains a text descriptions of the 
interface element.  Note that this text description must be encompassed by quotation marks.  There are eleven kinds 
of elements allowed in an interface.  Please note that the direction specified in the monitoring elements is important. 
        "BRANCH num1 num2 ckt" : Monitor the MW flow on the branch starting from bus num1 going to 

bus num2 with circuit ckt. (order of bus numbers defines the direction) 
        "AREA num1 num2" : Monitor the sum of the AC branches that connect area1 and area2. 
        "ZONE num1 num2" : Monitor the sum of the AC branches that connect zone1 and zone2. 
        "BRANCHOPEN num1 num2 ckt" : When monitoring the elements in this interface, monitor them under the 

contingency of opening this branch. 
        "BRANCHCLOSE num1 num2 ckt"  : When monitoring the elements in this interface, monitor them under the 

contingency of closing this branch. 
        "DCLINE num1 num2 ckt"  : Monitor the flow on a DC line. 
        "INJECTIONGROUP 'name'"  : Monitor the net injection from an injection group (generation 

contributes as a positive injection, loads as negative). 
        "GEN num1 id"  : Monitor the net injection from a generator (output is positive injection) 
        "LOAD num1 id"  : Monitor the net injection from a load (output is negative injection). 
        "MSLINE num1 num2 ckt"  : Monitor the MW flow on the multi-section line starting from bus num1 

going to bus num2 with circuit ckt. 
        "INTERFACE 'name' "  : Monitor the MW flow on the interface given by name. 
 
Note: bus# values may be replaced by a string enclosed in single quotes where the string is the name of the bus 
followed by an underscore character and then the nominal voltage of the bus.  Labels may also be use as follows. 

• bus# values for all element types may be replaced by a string enclosed in single quotes where the string is 
the label of the bus.   

• for GEN or LOAD elements, the section num1 id may be replaced by the device’s label. 
• For MSLINE, DCLINE, or BRANCH elements, the num1 num2 ckt section may be replaced by the 

device’s label. 
 
For the interface element type "BRANCH num1 num2 ckt" and "DCLINE num1 num2 ckt", an optional field can 
also be written specifying whether the flow should be measured at the far end.  This field is either YES or NO. 
 

Example: 
<SUBDATA InterfaceElement 
  "BRANCH  8   9 1" NO  // monitor the flow from bus 8 to bus 9 on this branch 
 
  "BRANCH 12  33 1" YES // monitor the flow from bus 12 to bus 33 on branch 
                        // measurefarend is set to true, therefore, we are  
                        // monitoring the MW flow that arrives at bus 33 
  // the following demonstrates the format when bus names and 
  // nominal voltages are used.  
  "BRANCH 'Twelve_230' 'name33_230' 1" YES 
   
  "AREA    2   1"       // monitor tie line flow from area 2 to area 1 
  "ZONE   66  53"       // monitor tie lines flows from zone 66 to zone 53 
  "BRANCHOPEN  5  6 1"  // doe monitoring after branch opens 
  "BRANCHCLOSE 7 10 1"  // doe monitoring after branch closes 
</SUBDATA> 

 
Note: InterfaceElement object types can also be directly created inside their own DATA section as well.  One of the 
key fields of the InterfaceElement object is then the name of the interface to which the interface element belongs. 

KMLExportFormat 
DataBlockDescription 

This subdata section is used to describe the objects and fields that should be saved to a KML file.  Same format as 
for the AUXFileExportFormatData subdata section.  
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LimitSet 
LimitCost 

LimitCost records describe the piece-wise unenforceable constraint cost records for use by unenforceable 
line/interface limits in the OPF or SCOPF.  Each row contains two values 

 
PercentLimit : Percent of the transmission line limit. 
Cost : Cost used at this line loading percentage value. 
 

Example: 
<SUBDATA LimitCost> 
  //Percent  Cost [$/MWhr] 
    100.00    50.00 
    105.00   100.00 
    110.00   500.00 
</SUBDATA> 

Load 
BidCurve 

BidCurve subdata is used to define a piece-wise linear benefit curve (or a bid curve).   Each bid point consists of two 
real numbers on a single line of text: a MW output and then the respective bid (or marginal cost).  These costs must 
be increasing for loads. 

Example: 
<SUBDATA BidCurve> 
  // MW   Price[$/MWhr] 
  100.00  16.0 
  200.00  15.7 
  400.00  12.4 
  500.00  10.6 
</SUBDATA> 

LPVariable 
LPVariableCostSegment 

Stores the cost segments for the LP variables.  Each line contains four values: 
Cost (Up) : Cost associated with increasing the LP variable. 
Minimum value : Minimum limit of the LP variable. 
Maximum value : Maximum limit of the LP variable. 
Artificial : Whether the cost segment is artificial or not. 
 

Example: 
<SUBDATA LPVariableCostSegment> 
   //Cost(Up)           Minimum         Maximum Artificial 
  -20000.0000 -10000000000.5801         -0.6000 YES 
      16.2343           -0.6000          0.0000 NO  
      16.5526            0.0000          0.6000 NO  
      16.8708            0.6000          1.2000 NO  
      17.1890            1.2000          1.8000 NO  
      17.5073            1.8000          2.4000 NO  
   20000.0000            2.4000 9999999999.4199 YES 
</SUBDATA> 

ModelCondition 
Condition 

ModelConditions are the combination of an object and a Filter.  They are used to return when the particular object 
meets the filter specified.  As a result, the subdata section here is identical to the Condition subdata section of a 
Filter.  See the description there. 
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ModelExpression 
LookupTable 

LookupTables are used inside Model Expressions sometimes.  These lookup table represent either one or two 
dimensional tables.  If the first string in the SUBDATA section is "x1x2", this signals that it is a two dimensional 
lookup table.  From that point on it will read the first row as "x2" lookup points, and the first column in the 
remainder of the rows as the x1 lookup values.  
 
Example: 

DATA (MODELEXPRESSION, [CustomExpression,ObjectType,CustomExpressionStyle, 
CustomExpressionString,WhoAmI,VariableName,WhoAmI:1,VariableName:1], AUXDEF) 
{ 
// The following demonstrated a one dimensional lookup table 
22.0000, "oneD", "Lookup", "", "Gen<KEY1>1</KEY1><KEY2>1</KEY2>", 
"Gen<KEY1>1</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>", "", ""  
   <SUBDATA LookupTable> 
     // because it does not start with the string x1x2 this will  
     // represent a one dimensional lookup table 
     x1        value 
       0.000000    1.000000 
      11.000000   22.000000 
     111.000000  222.000000 
   </SUBDATA> 
0.0000, "twod", "Lookup", "",  
"Gen<KEY1>1</KEY1><KEY2>1</KEY2>", 
"Gen<KEY1>1</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>", 
"Gen<KEY1>6</KEY1><KEY2>1</KEY2>", 
"Gen<KEY1>6</KEY1><KEY2>1</KEY2><VAR>GenMW</VAR>" 
   <SUBDATA LookupTable> 
     // because this starts with x1x2 this represent a two dimensional 
     // lookup table.  The first column represents lookup values for x1. 
     // The first row represents lookup values for x2 
     x1x2          0.100000    0.300000  // these are lookup heading for x2 
       0.000000    1.000000    3.000000 
      11.000000   22.000000   33.000000 
     111.000000  222.000000  333.000000 
   </SUBDATA> 
} 

ModelFilter 
ModelCondition 

A Model Filter’s subdata contains a list of each ModelCondition in the filter.  Because a list of Model Conditions is 
stored within Simulator, this subdata section only requires the name of each ModelCondition on each line and 
whether or not the condition is using the NOT operator as part of the Model Filter. 
 

Example: 
<SUBDATA ModelCondition> 
// ModelConditionName NotCondition 
  "Name of First Model Condition" "NO" 
  "Name of Second Model Condition" "NO"  
  "Name of Third Model Condition" "NO" 
</SUBDATA> 
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MTDCRecord 
An example of the entire multi-terminal DC transmission line record is given at the end of this record description.  Each of the 
SUBDATA sections is discussed first. 

MTDCBus 
For this SUBDTA section, each DC Bus is described on a single line of text with exactly 8 fields specified. 

DCBusNum : The number of the DC Bus.  Note DC bus numbers are independent AC bus numbers. 
DCBusName : The name of the DC bus enclosed in quotes. 
ACTerminalBus : The AC terminal to which this DC bus is connected (via a MTDCConverter).  If the 

DC bus is not connected to any AC buses, then specify as zero.  You may also specify 
this as a string enclosed in double quotes with the bus name followed by an 
underscore character, following by the nominal voltage of the bus. 

DCResistanceToground  :  The resistance of the DC bus to ground.  Not used by Simulator. 
DCBusVoltage : The DC bus voltage in kV. 
DCArea : The area that this DC bus belongs to. 
DCZone : The zone that this DC bus belongs to. 
DCOwner : The owner that this DC bus belongs to. 

Note: MTDCBus object types can also be directly created inside their own DATA section as well.  One of the key 
fields of the object is then the number of the MTDCRecord to which the MTDCBus belongs. 

MTDCConverter 
For this SUBDTA section, each AC/DC Converter is described by exactly 24 field which may be spread across several lines 
of text.  Simulator will keep reading lines of text until it finds 24 fields.  All text to the right of the 24th field (on the same line 
of text) will be ignored.  The 24 fields are listed in the following order: 

BusNum : AC terminal bus number. 
MTDCNBridges : Number of bridges for the converter. 
MTDCConvEBas : Converter AC base voltage. 
MTDCConvAngMxMn : Converter firing angle. 
MTDCConvAngMxMn:1 : Converter firing angle max. 
MTDCConvAngMxMn:2 : Converter firing angle min. 
MTDCConvComm     : Converter commutating resistance. 
MTDCConvComm:1 : Converter commutating reactance. 
MTDCConvXFRat     : Converter transformer ratio. 
MTDCFixedACTap   : Fixed AC tap. 
MTDCConvTapVals  : Converter tap. 
MTDCConvTapVals:1 : Converter tap max. 
MTDCConvTapVals:2 : Converter tap min. 
MTDCConvTapVals:3 : Converter tap step size. 
MTDCConvSetVL : Converter setpoint value (current or power). 
MTDCConvDCPF : Converter DC participation factor. 
MTDCConvMarg : Converter margin (power or current). 
MTDCConvType : Converter type. 
MTDCMaxConvCurrent : Converter Current Rating. 
MTDCConvStatus : Converter Status. 
MTDCConvSchedVolt :  Converter scheduled DC voltage. 
MTDCConvIDC : Converter DC current. 
MTDCConvPQ : Converter real power. 
MTDCConvPQ:1 : Converter reactive power. 

Note: MTDCConverter object types can also be directly created inside their own DATA section as well.  One of the 
key fields of the object is then the number of the MTDCRecord to which the MTDCConverter belongs. 
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MTDCTransmissionLine 
For this SUBDTA section, each DC Transmission Line is described on a single line of text with exactly 5 fields 
specified: 

DCFromBusNum   : From DC Bus Number. 
DCToBusNum    : To DC Bus Number. 
CKTID   : The DC Circuit ID. 
Resistance : Resistance of the DC Line in Ohms. 
Inductance : Inductance of the DC Line in mHenries (Not used by Simulator). 

Example: 
DATA (RECORD, [Num,Mode,ControlBus]) 
{ 
//-------------------------------------------------------------------------- 
// The first Multi-Terminal DC Transmission Line Record 
//-------------------------------------------------------------------------- 
1    "Current"   "SYLMAR3 (26098)" 
   <SUBDATA Bus> 
       //-------------------------------------------------------------------   
       // DC Bus data must appear on a single line of text 
       // The data consists of exactly 8 values 
       // DC Bus Num, DC Bus Name, AC Terminal Bus, DC Resistance to ground,  
       // DC Bus Voltage, DC Bus Area, DC Bus Zone, DC Bus Owner 
         3  "CELILO3P"         0  9999.00   497.92    40   404     1 
         4  "SYLMAR3P"         0  9999.00   439.02    26   404     1 
         7  "DC7"          41311  9999.00   497.93    40   404     1 
         8  "DC8"          41313  9999.00   497.94    40   404     1 
         9  "DC9"          26097  9999.00   439.01    26   404     1 
        10  "DC10"         26098  9999.00   439.00    26   404     1 
   </SUBDATA> 
   <SUBDATA Converter> 
       //-------------------------------------------------------------------   
       // convert subdata keeps reading lines of text until it has found  
  // values specified for 24 fields.  This can span any number of lines 
  // any values to the right of the 24th field found will be ignored 
  // The next converter will continue on the next line. 
       //-------------------------------------------------------------------   
       41311   2   525.00   20.25   24.00    5.00     0.0000    16.3100   
            0.391048  1.050000  1.000000  1.225000  0.950000  0.012500 
            1100.0000  1650.0000   0.0000 "Rect"  1650.0000 "Closed"     
            497.931  1100.0000   547.7241   295.3274 
       41313   4   232.50   15.36   17.50    5.00     0.0000     7.5130   
            0.457634  1.008700  1.030000  1.150000  0.990000  0.010000 
            2000.0000  2160.0000   0.1550 "Rect"  2160.0000 "Closed"     
            497.940  2000.0000   995.8800   561.8186 
       26097   2   230.00   20.90   24.00    5.00     0.0000    16.3100   
            0.892609  1.000000  1.100000  1.225000  0.950000  0.012500 
           -1100.0000  1650.0000 ""       "Inv"   1650.0000 "Closed"     
            439.009  1100.0000  -482.9099   274.5227 
       26098   4   232.00   17.51   20.00    5.00     0.0000     7.5130   
            0.458621  1.008700  1.100000  1.120000  0.960000  0.010000 
            439.0000  2160.0000 ""       "Inv"   2160.0000 "Closed"     
            439.000  1999.9999  -878.0000   544.2775 
   </SUBDATA> 
   <SUBDATA TransmissionLine> 
       //-------------------------------------------------------------------   
       // DC Transmission Segment information appears on a single line of  
       // text.  It consists of exactly 5 value 
       // From DCBus, To DCBus, Circuit ID, Line Resistance, Line Inductance 
       //-------------------------------------------------------------------   
       3      4    "1"        19.0000    1300.0000 
       7      3    "1"         0.0100       0.0000 
       8      3    "1"         0.0100       0.0000 
       9      4    "1"         0.0100       0.0000 
      10      4    "1"         0.0100       0.0000 
   </SUBDATA> 
//-------------------------------------------------------------------------- 
// A second Multi-Terminal DC Transmission Line Record 
//-------------------------------------------------------------------------- 
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2    "Current"   "SYLMAR4 (26100)" 
   <SUBDATA Bus> 
         5  "CELILO4P"         0  9999.00   497.92    40   404     1 
         6  "SYLMAR4P"         0  9999.00   439.02    26   404     1 
        11  "DC11"         41312  9999.00   497.93    40   404     1 
        12  "DC12"         41314  9999.00   497.94    40   404     1 
        13  "DC13"         26099  9999.00   439.01    26   404     1 
        14  "DC14"         26100  9999.00   439.00    26   404     1 
   </SUBDATA> 
   <SUBDATA Converter> 
       41312   2   525.00   20.26   24.00    5.00     0.0000    16.3100   
            0.391048  1.050000  1.000000  1.225000  0.950000  0.012500 
            1100.0000  1650.0000   0.0000 "Rect"  1650.0000 "Closed"     
            497.931  1100.0000   547.7241   295.3969 
       41314   4   232.50   15.45   17.50    5.00     0.0000     7.5130   
            0.457634  1.008700  1.030000  1.150000  0.990000  0.010000 
            2000.0000  2160.0000   0.1550 "Rect"  2160.0000 "Closed"     
            497.940  2000.0000   995.8800   562.9448 
       26099   2   230.00   20.90   24.00    5.00     0.0000    16.3100   
            0.892609  1.000000  1.100000  1.225000  0.950000  0.012500 
           -1100.0000  1650.0000 ""       "Inv"   1650.0000 "Closed"     
            439.009  1100.0000  -482.9099   274.5227 
       26100   4   232.00   17.51   20.00    5.00     0.0000     7.5130   
            0.458621  1.008700  1.100000  1.120000  0.960000  0.010000 
            439.0000  2160.0000 ""       "Inv"   2160.0000 "Closed"     
            439.000  1999.9999  -878.0000   544.2775 
   </SUBDATA> 
   <SUBDATA TransmissionLine> 
       5      6    "1"        19.0000    1300.0000 
      11      5    "1"         0.0100       0.0000 
      12      5    "1"         0.0100       0.0000 
      13      6    "1"         0.0100       0.0000 
      14      6    "1"         0.0100       0.0000 
   </SUBDATA> 
} 

Note: MTDCTransmissionLine object types can also be directly created inside their own DATA section as well.  
One of the key fields of the object is then the number of the MTDCRecord to which the MTDCTransmissionLine 
belongs. 

MultiSectionLine 
Bus 

A multi section line’s subdata contains a list of each dummy bus, starting with the one connected to the From Bus of 
the MultiSectionLine and proceeding in order to the bus connected to the To Bus of the Line. Note: bus# values may 
be replaced by a string enclosed in double quotes where the string is the name of the bus followed by an underscore 
character and then the nominal voltage of the bus, or the string may represent the label of the bus.  
 

Example: 
//------------------------------------------------------------------------ 
//  The following describes a multi-section line that connnects bus  
//    2 - 1 - 5 - 6 - 3 
//------------------------------------------------------------------------ 
DATA (MultiSectionLine, [BusNum, BusName, BusNum:1, BusName:1, 
                         LineCircuit, MSLineNSections, MSLineStatus] ) 
{ 
2 "Two" 3 "Three" "&1" 2 "Closed" 
   <SUBDATA Bus> 
     1 
     5 
     6 
   </SUBDATA> 
} 
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BusRenumber 
This subdata section allows renumbering of the dummy buses.  The entries in the subdata section must be the new 
bus number that should be assigned to each dummy bus followed by the name of the new bus.  The entries can be 
either space or comma delimited.  The bus number must be specified, but the name is optional.  If the name is not 
included and a new bus needs to be created, the name will be the same as the number.  If an incorrect number of 
dummy buses is entered for a multi-section line, none of the dummy buses will be updated for that line.  If a dummy 
bus number is specified that matches an existing bus that is another dummy bus, the other dummy bus will be 
assigned to a new bus number and the current dummy bus will be assigned to the number specified in the data. 
 

Example: 
DATA (MultiSectionLine, [BusNum, BusNum:1, LineCircuit] )  
{ 
1 2 "1" 
   <SUBDATA BusRenumber> 
     3 "Bus 3" 
     4 "Bus 4" 
     5 "Bus 5" 
   </SUBDATA> 
22 33 "1" 
   <SUBDATA BusRenumber> 
     14 "Bus 14" 
     15 "Bus 15" 
   </SUBDATA> 
} 

Nomogram 
InterfaceElementA 

InterfaceElementB 
InterfaceElementA values represent the interface elements for the first interface of the nomogram.  
InterfaceElementB values represent the interface elements for the second interface of the nomogram.  The format of 
these SUBDATA sections is identical to the format of the InterfaceElement SUBDATA section of a normal 
Interface. 

NomogramBreakPoint 
This subdata section contains a list of the vertex points on the nomogram limit curve. 
 

Example: 
<SUBDATA NomogramBreakPoint> 
 //  LimA   LimB 
     -100    -20 
     -100    100 
       80     50 
       60    -10 
</SUBDATA> 

NomogramInterface 
InterfaceElement 

This follows the same convention as the InterfaceElement SUBDATA section described with the Interface 
objecttype. 
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Owner 
Bus 

This subdata section contains a list of the buses which are owned by this owner. Each line of text contains the bus 
number.  As an alternative to specifying the bus number, a string enclosed in double quotes may be used where the 
string represents the name of the bus followed by an underscore character and then the nominal voltage of the bus, 
or the string may represent the label of the bus. 
 

Example: 
<SUBDATA Bus> 
   1 
  35 
  65 
</SUBDATA> 

Load 
This subdata section contains a list of the loads which are owned by this owner.  Each line of text contains the bus 
number followed by the load id. As an alternative to specifying the bus number, a string enclosed in double quotes 
may be used where the string represents the name of the bus followed by an underscore character and then the 
nominal voltage of the bus, or the string may represent the label of the bus.  Also, instead of specifying the bus and 
load id, the label of the load enclosed in double quotes may be used.   
 

Example: 
<SUBDATA Load> 
    5 1  // shows ownership of the load at bus 5 with id of 1 
  423 1 
</SUBDATA> 

Gen 
This subdata section contains a list of the generators which are owned by this owner and the fraction of ownership.  
Each line of text contains the bus number, followed by the gen id, followed by an integer showing the fraction of 
ownership. As an alternative to specifying the bus number, a string enclosed in double quotes may be used where the 
string represents the name of the bus followed by an underscore character and then the nominal voltage of the bus, 
or the string may represent the label of the bus.  Also, instead of specifying the bus and generator id, the label of the 
generator enclosed in double quotes may be used. 
 

Example: 
<SUBDATA Gen> 
  78 1  50  // shows 50% ownership of generator at bus 78 with id of 1 
  23 3  70 
</SUBDATA> 

Branch 
This subdata section contains a list of the branches which are owned by this owner and the fraction of ownership.  
Each line of text contains the from bus number, followed by the to bus number, followed by the circuit id, followed 
by an integer showing the fraction of ownership.  As an alternative to specifying the bus numbers, strings enclosed 
in double quotes may be used where the string represents the name of the bus followed by an underscore character 
and then the nominal voltage of the bus, or the string may represent the label of the bus.  Also instead of specifying 
the two numbers and a circuit id, the label of the branch enclosed in double quotes may be used. 
 

Example: 
<SUBDATA Branch> 
  6  10  1  50  // shows 50% ownership of line from bus 6 to 10, circuit 1 
</SUBDATA> 
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PostPowerFlowActions 
CTGElementAppend 

This format is the same as for the Contingency objecttype except that Abort, ContingencyBlock, and SolvePowerFlow 
actions are not allowed.  

CTGElement 
This format is the same as for the Contingency objecttype except that Abort, ContingencyBlock, and SolvePowerFlow 
actions are not allowed. 
 
Note: PostPowerFlowActionsElement object types can also be directly created inside their own DATA section as well.  

PWCaseInformation 
PWCaseHeader 

This subdata section contains the Case Description in free-formatted text.  Note: as it is read back into Simulator all 
spaces from the start of each line are removed. 

PWFormOptions 
PieSizeColorOptions 

There can actually be several PieSizeColorOptions subdata sections for each PWFormOptions object.  The first line 
of each subdata section, the first line of text consist of exactly four values 

 
ObjectName   : The objectname of the type of object these settings apply to.  Will be either be 

BRANCH or INTERFACE. 
FieldName : The fieldname for the pie charts that these settings apply to. 
UseDiscrete : Set to YES to use a discrete mapping of colors and size scalars instead of interpolating 

for intermediate values. 
UseOtherSettings : Set to YES to default these settings to the BRANCH MVA values for BRANCH 

object.  This allows you to apply the same settings to all pie charts. 
 

After this first line of text, if the UseOtherSettings Value is NO, then another line of text will contain exactly three 
values:  

 
ShowValue  : This is the percentage at which the value should be drawn on the pie chart. 
NormalSize : This is the scalar size multiplier which should be used for pie charts below the lowest 

percentage specified in the lookup table. 
NormalColor : This is the color which should be used for pie charts below the lowest percentage 

specified in the lookup table. 
 

Finally the remainder of the subdata section will contain a lookup table by percentage of scalar and color values.  
This lookup table will consist of consecutive lines of text with exactly three values 

 
Percentage   : This is the percentage at which the follow scalar and color should be applied. 
Scalar : A scalar (multiplier) on the size of the pie charts. 
Color : A color for the pie charts. 

Example: 
<SUBDATA PieSizeColorOptions> 
   // ObjectName FieldName UseDiscrete UseOtherSettings 
   Branch  MVA  YES  NO  
   // ShowValue NormalSize NormalColor 
    80.0000   1.0000 16776960 
   // Percentage Scalar Color 
    80.0000   1.5000 33023 
   100.0000   2.0000 255 
</SUBDATA> 
<SUBDATA PieSizeColorOptions> 
   // ObjectName FieldName UseDiscrete UseOtherSettings 
   Branch  MW  YES  YES 
</SUBDATA> 
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PWLPOPFCTGViol 
OPFControlSense 

OPFBusSenseP 

OPFBusSenseQ 
This stores the control sensitivities for each contingency violation during OPF/SCOPF analysis.  Each line contains 
one value: 
 

Sensitivity : The value of the sensitivity with respect to each control in OPFControlSense or with 
respect to each bus in OPFBusSenseP and OPFBusSenseQ. 

 
Example: 

<SUBDATA OPFControlSense> 
 // Value 
   1.000441679 
   2.447185E-7 
  -1.1109307E-6  
   1.6427327E-7  
   0 
</SUBDATA> 

PWLPTabRow 
LPBasisMatrix 

This subdata section stores the basis matrix associated with the final LP OPF solution.  Each line contains two 
values: 
 

Variable : The basic variable. 
Value : The sensitivity of the constraint to the basic variable. 

 
Example: 

<SUBDATA LPBasisMatrix> 
 // Var  Value 
     1   1.00000 
     2   1.00000 
     5   1.00000 
     6   1.00000 
</SUBDATA> 

PWPVResultListContainer 
PWPVResultObject 

This subdata section contains the results of a particular PV Curve scenario.  The data consists of two general 
sections: the first three rows of text contain the "independent axis" of the PV Curve.  The first row starts with the 
string INDNOM and is followed by a list of numbers representing the nominal shift, the second row starts with 
INDEXP and is followed by the export shift, and the third row starts with INDIMP and is followed by the import 
shift.  Following after these rows is a list of all the tracked quantities.  Each tracked quantity row consists of three 
parts which are separated by the strings ?f= and &v= .  The first part of the string represents a description of the 
power system object being tracked, the second part represents the field name being tracked, and the third contains a 
list of all the values at the various shift levels. 
 

Example: 
<SUBDATA PWPVResultObject> 
  INDNOM                   0.00  500.00 1000.00 1500.00 1750.00 1875.00 1975.00  
  INDEXP                   0.00  500.00 1000.00 1500.00 1750.00 1875.00 1975.00  
  INDIMP                   0.00 -417.23 -701.58 -890.58 -952.60 -975.35 -990.43  
  Bus '3'?f=BusPUVolt&v=  0.993   0.983   0.964   0.939   0.926   0.919   0.914 
  Bus '5'?f=BusPUVolt&v=  1.007   1.000   0.982   0.956   0.940   0.932   0.926 
  Gen '4' '1'?f=GenMVR&v= 19.99  245.27  523.62  831.13  986.84  1060.6  1118.7 
  Gen '6' '1'?f=GenMVR&v= -6.59 -120.84 -131.37  -39.53   48.35   103.8   154.5 
</SUBDATA> 
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LimitViol 
This subdata section contains the limit violations of a particular PV Curve scenario.  This subdata section would 
only exist if using the option to monitor limit violations with the PV tool.  Each row consists of an identifier, either 
VLOW or VHIGH, to indicate the type of limit violation followed by the bus identifier based on the key field 
identifier chosen.  The bus can be identified by number, name and nominal kV combination, or label.  The bus 
identifier is followed by the limit in use to identify a voltage violation and this is followed by the voltage at the bus. 

 
Example: 

<SUBDATA LimitViol> 
  VLOW 3    1.00000    0.99017 
  VLOW 5    1.00000    0.98245 
</SUBDATA> 

PVBusInadequateVoltages 
This subdata section contains a list of buses that are considered to have inadequate voltages at each transfer level for 
a particular PV Curve scenario.  This subdata section would only exist if using the option to store inadequate 
voltages.  The data consists of two general sections: the first row starts with the string INDNOM and is followed by 
a list of numbers representing the nominal shift.  The second and subsequent rows list the buses and inadequate 
voltages for any bus that has an inadequate voltage at any transfer level.  Each row starts with the bus identifier 
followed by the voltages at that bus at the corresponding shift levels.  If a voltage is not inadequate at a particular 
transfer level, a blank entry will appear instead of a voltage value.  The bus identifier is based on the key field 
identifier chosen and can be number, name and nominal kV combination, or label. 

 
Example: 

<SUBDATA PVBusInadequateVoltages> 
    // INDNOM ShiftLevel1 ShiftLevel2 ... 
    // BUS Voltage1 Voltage2 ... 
    INDNOM    0.000  100.000  200.000  300.000  400.000  500.000         
    "Bus '3'"   0.99269   0.99278   0.99282   0.99280   0.99273   0.99262    
    "Bus '4'" ""   1.00000 "" "" ""  
</SUBDATA> 

PWQVResultListContainer 
PWPVResultObject 

This subdata section contains the results of a particular QV Curve scenario.  These results will exist when tracking 
quantities with the QV curve tool.  The data consists of two general sections: the first three rows of text contain the 
"independent axis" of the QV Curve.  The first three rows start with the strings INDNOM, INDEXP, and INDIMP 
and are followed by a list of numbers representing the setpoint voltage representing the V of the QV curve.  
Following after these rows is a list of all the tracked quantities.  Each tracked quantity row consists of three parts 
which are separated by the strings ?f= and &v= .  The first part of the string represents a description of the power 
system object being tracked, the second part represents the field name being tracked, and the third contains a list of 
all the values at the various setpoint voltage levels. 
 

Example: 
<SUBDATA PWPVResultObject> 
    INDNOM    1.100    1.093    1.083    1.073    1.063 
    INDEXP    1.100    1.093    1.083    1.073    1.063 
    INDIMP    1.100    1.093    1.083    1.073    1.063 
    Bus '1'?f=BusPUVolt&v=1.05000 1.05000 1.05000 1.05000 1.05000 
    Bus '1'?f=BusKVVolt&v=144.89999 144.89999 144.89999 144.89999 144.89999 
</SUBDATA> 
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QVCurve 
QVPoints 

This subdata section contains a list of the QV Curve points calculated for the respect QVCurve.  Each line consists 
of exactly six values: 

 
PerUnitVoltage    : The per unit voltage of the bus for a QV point. 
FictitiousMvar  : The amount of Mvar injection from the fictitious generator at this QV point. 
ShuntDeviceMvar  : The Mvar injection from any switched shunts at the bus. 
TotalMvar  : The total Mvar injection from switched shunts and the fictitious generator. 
ReservesMvar   :  Total amount of Mvar reserves available at the bus. 
ReservesTotalMvar : Total Mvar injection from the switched shunts, fictitious generator, and available 

reserves.  
 

Example: 
DATA (QVCURVE, [BusNum,CaseName,qv_VQ0,qv_Q0,qv_Vmax,qv_QVmax,qv_VQmin,qv_Qmin, 
                qv_Vmin,qv_QVmin,Qinj_Vmax,Qinj_0,Qinj_min,Qinj_Vmin]) 
{ 
5 "BASECASE"  0.880   0.000   1.100 312.490    0.480 -221.072   
              0.180 -86.334 191.490 -77.373 -244.075  -89.562 
   <SUBDATA QVPoints> 
     // NOTE: This bus has a constant impedance  
     // switched shunt value of -100 Mvar at it. 
     //V(PU), Q(MVR), Q_shunt(MVR), Q_tot(MVR), Q_res(MVR), Q_tot_res(MVR) 
     1.1000,  312.4898, -121.0000,  191.4898,  0.0000,  191.4898 
     0.9800,  124.6619,  -95.9656,   28.6963,  0.0000,   28.6963 
     0.7800,  -96.6202,  -60.7808, -157.4010,  0.0000, -157.4010 
     0.5800, -206.9895,  -33.5960, -240.5855,  0.0000, -240.5855 
     0.3800, -207.4962,  -14.4113, -221.9075,  0.0000, -221.9075 
   </SUBDATA> 
} 

QVCurve_Options 
Sim_Solution_Options  

This subdata section contains solution options that will be used when running QV Curves.  See explanation under 
the CTG_Options object type for more information. 

RemedialAction 
CTGElementAppend 

This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed. 

CTGElement 
This format is the same as for the Contingency objecttype except that the SolvePowerFlow action is not allowed. 
 
Note: RemedialActionElement object types can also be directly created inside their own DATA section as well.  

SelectByCriteriaSet 
SelectByCriteriaSetType 

This subdata section contains a list of the display object types which are chosen to be selected.  Each line of the 
section consists of the following: 

 
DisplayObjectType : The object type of the display object. 
(FilterName) : This field is optional, but must be given if either of the following fields is given.  

See the Using Filters in Script Commands section for more information on 
specifying the filtername. 

(WhichFields) : For display objects that can reference different fields, this sets which of those 
fields it should select (e.g. select only Bus Name Fields).  The value may be either 
ALL or SPECIFIED. 

(ListOfFields) : If WhichFields is set to SPECIFIED, then a delimited list of fields follows. 
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Example: 
<SUBDATA SelectByCriteriaSetType> 
  DisplayAreaField "" "ALL" 
  DisplayBus "" 
  DisplayBusField "Name of Bus Filter" "SPECIFIED" BusName BusPUVolt BusNum 
  DisplayCircuitBreaker "" 
  DisplaySubstation "" 
  DisplaySubstationField "" "SPECIFIED" SubName SubNum BusNomVolt BGLoadMVR 
  DisplayTransmissionLine "" 
  DisplayTransmissionLineField "" "ALL" 
</SUBDATA> 

Area 
This subdata section contains a list of areas which were chosen to be selected.  Each line of the section consists of 
either the number or the name.  When generated automatically by PowerWorld we also include the other identifier 
as a comment. 
 

Example: 
<SUBDATA Area> 
  18 // NEVADA 
  22 // SANDIEGO 
  30 // PG AND E 
  52 // AQUILA 
</SUBDATA> 

Zone 
This subdata section contains a list of zones which were chosen to be selected.  Each line of the section consists of 
either the number or the name.  When generated automatically by PowerWorld we also include the other identifier 
as a comment. 
 

Example: 
<SUBDATA Zone> 
  680 // ID SOLUT 
  682 // WY NE IN 
</SUBDATA> 

ScreenLayer 
This subdata section contains a list of screen layers which were chosen to be selected.  Each line of the section 
consists of either the name. 
 

Example: 
<SUBDATA ScreenLayer> 
  "Border" 
  "Transmission Line Objects" 
</SUBDATA> 

ShapefileExportDescription 
This object uses the same subdata sections as SelectByCriteriaSet.  The only distinction is that only buses and lines can 
be exported. 

StudyMWTransactions 
ImportExportBidCurve 

This subdata section contains the piecewise linear transactions cost curves for areas involved in a MW transaction.  
Costs are only for areas that are not on OPF control.  Curves must be monotonically increasing.  Each line 
corresponds to a point in the cost curve, and it has two values: 

 
MW : The MW value. Use negative values for imports (purchase) and positive values for exports (sales) 
Price : The price in $/MWh. 

 
Two different cost curves can be entered for each transaction.  One is for the cost curve relative to the Export Area 
specified in the transaction, and the other is for the cost curve relative to the Import Area specified in the transaction.  
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The first curve that is listed in the SUBDATA section is the curve relative to the Export Area.  The curve relative to 
the Import Area is denoted by the keyword REVERSE.  Either or both of the curves can be blank.        
 

Example: 
<SUBDATA ImportExportBidCurve> 
  //MW   Price[$/MWh] 
  -20.00   5.00 
  -10.00  10.00 
    0.00  15.00 
   10.00  20.00  
   20.00  45.00 
   30.00  70.00 
  REVERSE 
  -25.00   7.00 
  -15.00  12.00 
    5.00  17.00 
   15.00  22.00  
   25.00  47.00 
   35.00  72.00 
</SUBDATA> 

SuperArea 
SuperAreaArea 

This subdata section contains a list of areas within each super area.  Each line of text contains two values, the area 
number followed by a participation factor for the area that can be optionally used. 
 

Example: 
<SUBDATA SuperAreaArea> 
   1   48.9 
   5   34.2 
  25   11.2 
</SUBDATA> 

TSSchedule 
SchedPoint 

This section stores the schedule time points used in Time Step Simulation.  Each line contains seven values: 
 

Date : The date of the point. 
Hour : The hour of the point. 
Pointtype : An integer specifying the point type. 
  0 – Numeric 
  1 – Boolean (Yes/No, Closed/Open) 
  2 – Text 
Numeric Value : The numeric value if point type is Numeric. Otherwise it is just zero. 
Boolean Value : The boolean value if point type is Boolean.  Otherwise it is just false. 
Text value : The text value if point type is Text.  Otherwise it is just an empty string. 
Audiofilename :  The audio filename associated to the point.  If none, it is just an empty string. 

 
Example: 

<SUBDATA SchedPoint> 
   //Date   Hour     PointType  NValue  BValue  TValue  AValue 
   5/8/2006              0      1.00    NO 
   5/8/2006 6:00:00 AM   0      1.10    NO 
   5/8/2006 12:00:00 PM  0      1.25    NO 
</SUBDATA> 

UserDefinedDataGrid 
ColumnInfo 

This follows the same convention as the ColumnInfo SUBDATA section described with the DataGrid objecttype. 
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SCRIPT Section for Display Auxiliary File 
SCRIPT ScriptName 
{ 
script_statement_1; 
   . 
script_statement_n; 
} 

Scripts may optionally contain a ScriptName.  This enables you to call a particular SCRIPT by using the LoadScript action (see 
General Actions).  After the optional name, the SCRIPT section begins with a left curly brace and ends with a right curly brace.  
Inside of this, script statements can be given.  In general, a script statement has the following format 
 

Keyword(arg1, arg2, ...); 
• Statement starts with a keyword. 
• The keyword is followed by an argument list which is encompassed in parentheses ( ).   
• The arguments are separated by commas. 
• If a single argument is a list of things, this list is encompassed by braces [ ]. eg. SetData 
• Statements end with a semicolon. 
• Statements may take up several lines of the text file.   
• You may put more than one statement on a single text line. 

 
Those familiar with using Simulator will know that there is a RUN and EDIT mode in Simulator.  Some features in Simulator are only 
available in one mode or the other.  This functionality will be preserved in the script language.  In earlier versions of the software, 
certain functionality was organized by the "submode" feature.  While existing scripts designed to work with submodes will still 
function as before, moving between submodes is no longer necessary. 
 
By default, when a script is initially started, you will be placed in RUN mode.   
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AXD Actions 
The following script commands are available for AXD files 

AutoInsertBorders; 
AutoInsertBuses(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown,  
   "Bus"    "Simple Conic" YES/NO   YES/NO 
   "Substation"   "Mercator"   
   "File"    "x,y" 

"filename", FileCoordinates); 
  "x,y" 
  "lon,lat" 

AutoInsertLoads(MinkV, InsertTextFields, InsertEquivObjects); 
    YES/NO   YES/NO 
AutoInsertGens(MinkV, InsertTextFields); 
    YES/NO  
AutoInsertSwitchedShunts(MinkV, InsertTextFields); 
      YES/NO 
AutoInsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines,  
    YES/NO   YES/NO   YES/NO   YES/NO  
SBRImpedance, NoStubsZBRs, SingleCBZRs); 
      YES/NO      YES/NO  
AutoInsertLineFlowObjects(MinkV, InsertOnlyIfNotAlreadyShown, LineLocation, Size, FieldDigits,  
      YES/NO    0, 1, or 2 
FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, ShowComplex); 
   YES/NO      YES/NO   YES/NO    YES/NO   YES/NO  YES/NO 
AutoInsertSubstations(LocationSource, MapProjection, AutoInsertBranches,  
    "Bus"    "Simple Conic" YES/NO 
    "Substation"   "Mercator"   
    "File"    "x,y" 
InsertIfNotAlreadyShown, "FileName", FileCoordinates); 

YES/NO     "x,y" 
     "lon,lat" 

AutoInsertLineFlowPieCharts(MinkV, InsertOnlyIfNotAlreadyShown, InsertMSLines, Size); 
      YES/NO     YES/NO 
AutoInsertInterfaces(InsertPieCharts, PieChartSize); 
    YES/NO 
ResetStubLocations(ZBRImpedance,NoStubsZBRs); 
       YES/NO 
FixFlowArrowLineEnds("OnelineName", "LayerName"); 

AutoInsertBorders; 
Use this action to automatically insert borders according to the settings in the AutoInsertBordersOptions object 

AutoInsertBuses(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, "filename", 
FileCoordinates); 

Use this action to automatically insert buses based on specified location data. 
LocationSource : "Bus", "Substation" or "File" 
MapProjection : "Simple Conic", "Mercator" or "x,y" 
AutoInsertBranches : YES to insert transmission lines when finished, NO not to 
InsertOnlyIfNotAlreadyShown :  YES if only buses that are not already shown should be inserted, NO to 

insert all buses. 
"filename" : (optional) path to location source file (if LocationSource is "File") 
FileCoordinates : (optional) format of coordinates in file "x,y" or "lon,lat" (if LocationSource is 

"File") 

AutoInsertLoads(MinkV, InsertTextFields); 
Use this action to automatically insert loads. 

MinkV :  Minimum kV level to insert (default=0) 
InsertTextFields : (optional) insert text fields (default=YES) 

AutoInsertSwitchedShunts(MinkV, InsertTextFields); 
Use this action to automatically insert switched shunts. 

MinkV :  Minimum kV level to insert (default=0) 
InsertTextFields : (optional) insert text fields (default=YES) 
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AutoInsertLines(MinkV, InsertTextFields, InsertEquivObjects, InsertZBRPieCharts, InsertMSLines, 
ZBRImpedance, NoStubsZBRs, SingleCBZRs); 

Use this action to automatically insert lines. 
MinkV :  (optional) minimum kV level to insert (default=0) 
InsertTextFields : (optional) insert text fields (default=YES) 
InsertEquivObjects : (optional) insert Equivalenced Objects (default=YES) 
InsertZBRPieCharts : (optional) insert pie charts for lines with no limit and bus ties (default=NO) 
InsertMSLines : (optional) insert MultiSecton Lines (default=YES) 
ZBRImpedance : (optional) maximum PU impedance for bus ties (default =0.0001) 
NoStubsZBRs : (optional) ignore stubs for bus ties (default=YES) 
SingleCBZBRs : (optional) only insert a single circuit breaker (default=YES) 

AutoInsertLineFlowObjects(MinkV, InsertOnlyIfNotAlreadyShown, LineLocation, Size, FieldDigits, 
FieldDecimals, TextPosition, ShowMW, ShowMvar, ShowMVA, ShowUnits, ShowComplex); 

Use this action to automatically insert line flow objects. 
MinkV :  Minimum kV level to insert (default=0) 
InsertOnlyIfNotAlreadyShown: (optional) if existing line flow objects are ignored (default=YES) 
LineLocation : (optional) where to insert flow objects (default=0) 

0 : middle 
1 : 10%/90% 
2 : after stubs 

Size : (optional) size (default=5.0) 
FieldDigits : (optional) total digits in field (default=6) 
FieldDecimals : (optional) digits to the right of the decimal (default=2) 
 
TextPosition : (optional) position of fields relative to flow object (default=YES) 

YES : above 
NO : below 

ShowMW : (optional) show MW field (default=YES) 
ShowMvar : (optional) show Mvar field (default=YES) 
ShowMVA : (optional) show MVA field (default=YES) 
ShowSuffix : (optional) show field units (default=YES) 
ShowComplex : (optional) show complex form (MW+jMvar) (default=NO) 

AutoInsertSubStations(LocationSource, MapProjection, AutoInsertBranches, InsertIfNotAlreadyShown, 
"filename", FileCoordinates); 

Use this action to automatically insert substations based on specified location data. 
LocationSource : "Bus", "Substation" or "File" 
MapProjection : "Simple Conic", "Mercator" or "x,y" 
AutoInsertBranches : YES to insert transmission lines when finished, NO not to 
InsertOnlyIfNotAlreadyShown :  YES if only buses that are not already shown should be inserted, NO to 

insert all buses. 
"filename" : (optional) path to location source file (if LocationSource is "File") 
FileCoordinates : (optional) format of coordinates in file "x,y" or "lon,lat" (if LocationSource is 

"File") 

AutoInsertLineFlowPieCharts(MinkV, InsertOnlyIfNotAlreadyShown, InsertMSLines, Size); 
Use this action to automatically insert line flow pie charts. 

MinkV :  Minimum kV level to insert (default=0) 
InsertOnlyIfNotAlreadyShown: (optional) if existing line flow objects are ignored (default=YES) 
InsertMSLines : (optional) insert pie charts for Multi-Section Lines (default=YES) 
Size : (optional) size (default=5.0) 

AutoInsertInterfaces(InsertPieCharts, PieChartSize); 
Use this action to automatically insert line flow objects. 

InsertPieCharts :  (optional) Insert pie charts as well (default=YES) 
PieChartSize : (optional) default size of interface pie charts (default=50.0) 

ResetStubLocations(ZBRImpedance, NoStubsZBRs); 
Use this action to reset stub locations. 

ZBRImpedance :  (optional) max P.U. impedance for bus ties (default=0.0001) 
NoStubsZBRs : (optional) Ignore stubs for bus ties (default=YES) 
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FixFlowArrowLineEnds("OnelineName",  "LayerName"); 
The unmoving line flow arrow indicators that can be displayed on lines may not always be setup correctly.  This script 
corrects the flow arrows so that they look at the end of the line to which they are the closest to determine the direction of 
flow. 

"OnelineName" :  The name of the oneline to which this action should be applied.  The oneline 
must already be open. 

"LayerName" : Name of the screen layer in which this action should be applied. 
 
 

General Script Commands 
The following script commands defined above in the general SCRIPT section are available for display auxiliary files as well:  

ExitProgram 
LoadScript 
LoadData 
SelectAll 
UnSelectAll 
SetData 
SaveData 
SaveDataWithExtra 
CreateData 
DeleteFile 
RenameFile 
CopyFile 
SetCurrentDirectory 
SaveObjectFields 
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DATA Section for Display Auxiliary File 
DATA DataName(object_type, [list_of_fields], file_type_specifier, create_if_not_found) 
{ 
data_list_1 
   . 
   . 
   . 
data_list_n 
} 

Immediately following the DATA keyword, a DataName may optionally be included.  Currently, this is not used for anything because 
there are no script commands that are supported with the display auxiliary files. 

DATA Argument List 
The DATA argument list identifies what the information section contains.  A left and right parenthesis "(  )" mark the beginning and 
end of the argument list.   
 
The file_type_specifier parameter distinguishes the information section as containing custom auxiliary data (as opposed to 
Simulator’s native auxiliary formats), and indicates the format of the data.  Currently, the parser recognizes two values for 
file_type_specifier: 

(blank)or AUXDEF or DEF Data fields are space delimited 
AUXCSV or CSV or CSVAUX Data fields are comma delimited 

The object_type parameter identifies the type of object or data element the information section describes or models.  For 
example, if object_type equals DISPLAYBUS, then the data describes Display BUS objects.   
 
The list of object types Simulator’s display auxiliary file parser can recognize will grow as new applications are developed.   Within 
Simulator, a list of available object types can be obtained by going to the main menu and choosing Window, Export Display Object 
Fields, and then exporting the objects to Excel or a text file. 
 
The list_of_fields parameter lists the types of values the ensuing records in the data section contain.  The order in which the 
fields are listed in list_of_fields dictates the order in which the fields will be read from the file.  Simulator currently recognizes 
different display field types, each identified by a specific field name.  Because the available fields for an object may grow as new 
applications are developed for the convenience of our customers, you will always be able to obtain a list of the available object types 
and their fields by going to the main menu and choosing Window, Export Display Object Fields, and then choosing to export in either 
Excel or text format.  Certainly, only a subset of these fields would be found in a typical custom auxiliary file.  In crafting applications 
to export custom auxiliary files, developers need concern themselves only the fields they need to communicate between their 
applications and Simulator.  A few points of interest regarding the list_of_fields are: 

• The list_of_fields may take up several lines of the text file.   
• The list_of_fields should be encompased by braces [  ]. 
• When encountering the PowerWorld comment string ‘//’ in one of these lines of the text file, all text to the right is ignored.   
• Blank lines, or lines whose first characters are ‘//’ will be ignored as comments. 
• Field names must be separated by commas. 

 
Example: 
DATA (DISPLAYBUS, [BusNom, SOAuxiliaryID,  // comment here 
   SOX, SOY, SOThickness, SOColor, SOUseFillColor, SOFillColor, 
   // comments allowed here too 
 
   // note that blank rows are ignored 
    SOSize, SOWidth, SOOrientation, SOLevel, SOImmobile, 
    SLName, SOStyle, SODashed, // more comments 
    SOBelongsToGroup]) 

 
One general note regarding the field names is warranted.  Some field names may be augmented with a field location.  One example of 
this is the field BusNum used when identifying branches.  Bus numbers must be used to identify the from and the to end of branches.  
To keep the number of fields from becoming too large, the same field name is used for both of these values.  The from bus number is 
written as BusNum:0 and the to bus number is written as BusNum:1.  Note that the :0 may be left off of field names. 
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The create_if_not_found field is optional.  This specifies whether or not to create a new object if an existing one is not found.  
If the value is YES, objects will be created.  If the value is NO, objects will not be created.  If omitted, the default behavior of 
prompting the user about whether or not to create a non-existing object will continue.  If loading an auxiliary file using the LoadAxd 
script command, the create_if_not_found field for the data section will override the CreateIfNotFound field with the 
script. 

Key Fields 
Simulator uses certain fields to identify the specific object being described.  These fields are called key fields.  For example, the key 
field for DISPLAYBUS objects is BusNum, because a bus can be identified uniquely by its number.  The key fields for 
DISPLAYGEN objects are BusNum and GenID.  To properly identify each object, the object’s key fields must be present.  They can 
appear in any order in the list_of_fields (i.e. they need not be the first fields listed in list_of_fields).  As long as the key fields 
are present, Simulator can identify the specific object. 
 
Display objects have an additional key field used for identification because multiple objects can be present on the same one-line 
diagram that represent the same power system element.  This extra key field is SOAuxiliaryID.  This is a field that is unique for 
each type of display object and other key field combination.  If there are two display buses that represent bus one in the power system, 
the SOAuxiliaryID field will be different for both.  Simulator will automatically create unique identifiers when these objects are 
created graphically.  They can also be user specified but are forced to be unique.  This field does not need to be present when reading 
in a display auxiliary file, but if it is missing, Simulator assumes that the ID is "1".  This field is the only key field identifier for objects 
that do not link to power system elements such as background lines and pictures, and therefore, should always be included when 
reading in these objects or the expected results may not be achieved.  
 
By going to the main menu and choosing Help, Export Display Object Fields you will obtain a list of fields available for each object 
type.  In this output, the key fields will appear with asterisks *. 

Data List 
See the Data List topic in the DATA Section for details. 

Special Data List Entries 
See the Special Data List Entries topic in the DATA Section for details. 

Special Data Sections 
There are several object types that should be noted here because they can impact the reading of an entire display auxiliary file, overall 
look of the resulting one-line diagram, or require special input to properly import/export the object. 

GeographyDisplayOptions 
Most objects supported in the display auxiliary file have coordinates that can be specified in the appropriate data sections.  What these 
coordinates specify can be controlled by the GEOGRAPHYDISPLAYOPTIONS object.  This object has only two fields available: 
MapProjection and ShowLonLat.  There are three possible settings for MapProjection: "x,y", "Simple Conic", and 
"Mercator".  The choice of projection will determine how the x,y values for display objects are interpreted.  ShowLonLat can be 
either "YES" or "NO".  If ShowLonLat is "YES", the setting specified for the MapProjection will be the longitude,latitude projection 
used when reading/writing the object x,y values.  If ShowLonLat is "NO", the x,y values will always be interpreted as x,y regardless 
of the MapProjection setting.  This object should be placed in the display auxiliary file before any other objects containing coordinates 
are read.  If this object is not included in the auxiliary file, the coordinates will be interpreted based on the current settings of map 
projection and whether or not coordinates are showing longitude,latitude. 

Picture 
PICTURE objects represent background images that cannot be stored in a text file format.  To properly include a PICTURE object in a 
display auxiliary file, the file containing the image must be saved and read along with the auxiliary file.  The FileName field 
indicates the name and location of the image file.  If the image file cannot be found when reading in a display auxiliary file and 
attempting to create a new object, no PICTURE object will be created.  If attempting to update an existing object and the image file 
cannot be found, the object will not be updated with a new image, but the FileName field will be updated with the specified file 
name. 
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PWFormOptions 
One-line display options that affect the current display settings can be changed by using the PWFORMOPTIONS object.  Usually, this 
object specifies named sets of options that can be selected and used to change the various one-line display options through the GUI.  
By including a specially named object, the current options can be changed through a display auxiliary file.  PWFORMOPTIONS are 
named using the OOName field.  Setting this field to "THESE_OPTIONS_ARE_APPLIED_TO_THE_CURRENT_DISPLAY" will 
apply the specified set of options to the current one-line when the file is read.  When saving the entire one-line to a display auxiliary 
file, a PWFORMOPTIONS object with this name is added to the file by default. 

View 
Different views can be specified in the display auxiliary file using the VIEW object.  Usually, this object is used to specify named sets 
of options used to select and change the view through the GUI.  By including a specially named object, the current view can be 
changed through a display auxiliary file.  VIEW objects are named using the ViewName field.  Setting this field to 
"THIS_VIEW_IS_APPLIED_TO_THE_CURRENT_DISPLAY" will apply the specified set of view options to the current one-line 
when the file is read.  When saving the entire one-line to a display auxiliary file, a VIEW object with this name is added to the file by 
default. 
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SubData Sections 
The format described thus far works well for most kinds of data in Simulator.  It does not work as well however for data that stores a 
list of objects.  For example, a contingency stores some information about itself (such as its name), and then a list of contingency 
elements, and possible a list of limit violations as well.  For data such as this, Simulator allows <SubData>, </SubData> tags that 
store lists of information about a particular object.  This formatting looks like the following 
 

DATA (object_type,  [list_of_fields], file_type_specifier, create_if_not_found) 
{ 
value_list_1 
    <SUBDATA subobject_type1> 
      precise format describing an object_type1 
      precise format describing an object_type1 
      . 
      . 
      . 
    </SUBDATA> 
    <SUBDATA subobject_type2> 
      precise format describing an object_type2 
      precise format describing an object_type2 
      . 
      . 
      . 
    </SUBDATA> 
value_list_2 
   . 
   . 
   . 
value_list_n 
} 

 
Note that the information contained inside the <SubData>, </SubData> tags may not be flexibly defined.  It must be written in a 
precisely defined order that will be documented for each SubData type.   The description of each of these SubData formats follows. 

ColorMap 
Same format as in data auxiliary files. 

CustomColors 
Same format as in data auxiliary files. 

DisplayDCTramisssionLine 
DisplayInterface 
DisplayMultiSectionLine 
DisplaySeriesCapacitor 
DisplayTransformer 
DisplayTransmissionLine 
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Line 
 

Line 
This is a list of points defining the graphical line used to represent the object.  Each set of coordinates can be 
enclosed in square brackets, [ ], or the brackets can be eliminated.  The brackets will be included when Simulator 
generates an auxiliary file.  The individual coordinates are separated by the specified delimiter, either a space or a 
comma, and if the brackets are included, the same delimiter should be used to separate sets of coordinates.  The list 
of points is in a somewhat free form and sets of coordinates can span multiple lines.  Each point should either be in 
x,y coordinates or longitude,latitude coordinates.  Which coordinates should be used depends on the current option 
settings for map projection and whether or not coordinates should be shown in longitude,latitude.  If the display 
auxiliary file is automatically generated by Simulator, a comment will be included in the subdata section indicating 
the coordinate system in use during file creation. 

 
Example using brackets and a comma delimiter: 

<SUBDATA Line> 
//Coordinates are x,y 
  [14.00000000, 63.00000000], [14.00000000, 60.00000000], 
  [20.00000000, 45.00000000], [20.00000000, 42.00000000] 
</SUBDATA> 

 
Example with no brackets and a space delimiter: 

<SUBDATA Line> 
//Coordinates are x,y 
  14.00000000 63.00000000 14.00000000 60.00000000 
  20.00000000 45.00000000 20.00000000 42.00000000 
</SUBDATA> 

DynamicFormatting 
Same format as in data auxiliary files. 

Filter 
Same format as in data auxiliary files. 

GeoDataViewStyle 
Same format as in data auxiliary files. 

PieChartGaugeStyle 
ColorMap 

This is a lookup table by percentage of scalar and color values.  This lookup table will consist of consecutive lines of 
text with exactly three values: 

 
Percentage : This is the percentage at which the following scalar and color should be applied. 
Scalar : A scalar (multiplier) on the size of the pie chart/gauge. 
Color : A color for the pie chart/gauge. 

 
Example: 

<SUBDATA ColorMap> 
//Percentage  Scalar  Color 
   85.0000    1.5000  33023 
  100.0000    2.0000    255 
</SUBDATA> 

PWFormOptions 
Same format as in data auxiliary files. 

SelectByCriteriaSet 
Same format as in data auxiliary files. 
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UserDefinedDataGrid 
Same format as in data auxiliary files. 

View 
ScreenLayer 

This is a list of screen layer names that are hidden in the current view.  Each screen layer name is on a separate line 
of text. 

 
Example: 

<SUBDATA ScreenLayer> 
//These are hidden screen layers 
  "pie layer" 
</SUBDATA> 
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