

D-FACTS & Smart Wire Technology

Power flow control for the Grid

Copyright 2013 Smart Wire Grid, Inc. All Rights Reserved.

The information and methodologies outlined herein are proprietary, trade secret, and their expression in this document is copyrighted, with all rights reserved to Smart Wire Grid, Inc. Copying or distributing this material without prior written permission from Smart Wire Grid, Inc. is strictly prohibited.

Applications:

overload protection, congestion relief, increase in ATC, participation in RAS/SPS, etc.

Objective:	Control power flow	
Inputs:	Line current or %X change	
Hardware:	Distributed Series Reactor (+L)	in use
	Distributed Series Compensator (+/-L)	in development
	Network Interface Bridge (NIB)	in use
Software:	Control Agent (resides in NIB)	in use
	System Manager (standalone server base	ed) in use for pilot projects
	Flow Director (integrated with EMS)	in development
Results:	Power flow control on EACH phase	in use
Monitor:	Line current, frequency, fault current	in use
	Conductor temperature	in use
	Sag, vibration, ambient temperature	in development

Configuration Example

Power flow control for the Grid

Distributed Series Reactor (DSR)

- Life: 20+ year life; zero maintenance
- Install: de-energized or live line
- Fault current: sense within 5 μ s, then automatic transition from injection to monitoring mode in 5 ms.
- No corona at operating voltage
- Environmental: Resistant to salt fog, Aeolian vibration, ice buildup, thermal cycling
- Conductor impact: No mechanical or thermal conductor degradation
- Lightning Strike: tested to line BIL
- Wind loading: up to 150 mph
- Communications: Module to ground or SCADA link as specified by owner.

50 μ H per module per mile changes typical 138 kV conductor impedance by roughly 2%

DSR Characteristics 750A design

Power flow control for the Grid

- 7 min per module
- de-energized or live line
- Self diagnostics/remote testing

TVA Lineman: "One of the easiest things I have installed..."

PowerWorld Simulator D-FACTS Example

http://www.youtube.com/watch?v=nIPhUiS8rYg&feature=plcp

Power flow control for the Grid

Copyright 2013 Smart Wire Grid, Inc. All Rights Reserved.

DSRs contribution to Remedial Action Scheme (RAS)

Scenario (DSR and ckt count are cumulative)	Generation Not tripped (MW)	Curtailable Load Not tripped (MW)	Total Capacity Preserved (MW)	Non-interrelated overloads (%)
1 – 111 DSRs 1 circuit	671	0	671	<u>1.2</u> Total 1.2
2 – 651 DSRs 3 ckts	671	530	1201	6.4 <u>0.6</u> Total 7.0
3 – 1341 DSRs 5 ckts	671	871	1542	9.9 <u>3.4</u> Total 14.5
4 – 2013 DSRs 9 ckts	671	1039	1710	0.6 11.4 9.9 <u>4.6</u> Total 26.5

Pilot program phase balancing results

Applications – N-1 overload (congestion)

w/o DSRs

Congestion issue: off cost re-dispatch

with DSRs 10% change in X (60 modules per phase)

Copyright 2013 Smart Wire Grid, Inc. All Rights Reserved.

- **Exercise:** 2012 summer peak planning case (not an operational case)
- Focus: East coast RTO area with total of 3000 modules placed on 6 lines
- **OPF Solution: 1.4% reduction in Final Total Cost Value**

6.1% reduction in Average Bus Marginal Cost

TBD: To which extent the Smart Wire Technology can reduce energy cost...

Contact Info:

Andrija Sadikovic

andrija.sadikovic@smartwiregrid.com

+1 510 267 4323

Smart Wire Grid, Inc. 1300 Clay Street, Suite 840 Oakland, CA 94612-1428 United States of America

Power flow control for the Grid