NERC TPL-001: "N-1-1" Contingency Analysis

2010 PowerWorld Client Conference June 24, 2010 Portland Oregon

NERC Standard TPL-001-1

- Part of NERC Project 2006-02
 - Assess Transmission Future Needs and Develop Transmission Plans
 - http://www.nerc.com/filez/standards/Assess-Transmission-Future-Needs.html
- Would require Transmission Planners and Planning Coordinators to prepare an annual Planning Assessment of its portion of the Bulk Electric System
- Would require study and documentation of several classes of contingencies
- March 2010 ballot was not approved and will proceed to recirculation ballot

TPL-001-1 Event Categories

- P0: No Contingency, Normal System
- P1, P2: Single-Element Contingency
- P3: Generator Outage, followed by System Adjustments, followed by loss of another single element
- P4, P5: Multiple-Element Contingency
- P6: Transmission Outage, followed by System Adjustments, followed by loss of another single element
- P7: Multiple-Element Contingency (Common Structure)

Definitions

- Base Case: The power system in its normal steady-state, operation, with all elements in service that are expected to be in service.
- Primary Contingency: An loss of one or more system elements that occurs first. A Primary Contingency may be a planned or unplanned event.
- Secondary Contingency: An contingency that occurs after the Primary Contingency. This is usually an unplanned event.

System Adjustments

- TPL-001-1 allows "planned System adjustments such as Transmission configuration changes and re-dispatch of generation... if such adjustments are executable within the time duration applicable to the Facility Ratings"
- Interruption of Firm Transmission Service and Loss of Non-Consequential Load are allowed for some events
- System Adjustments are sometimes termed Remedial Action Schemes (RAS) or Special Protection Schemes (SPS)

Definitions

- N-1-1 Contingency: A sequence of events consisting of the initial loss of a single generator or transmission component (Primary Contingency), followed by system adjustments, followed by another loss of a single generator or transmission component (Secondary Contingency).
- Model Criteria: An evaluation of system conditions in Simulator, that if met, would cause a conditional system adjustment to occur.

"N-1-1" Contingencies

- TPL-001-1 category P3 and P6 outages could be classified "N-1-1" contingencies
 - A system element is forced out of service
 - Adjustments are made if necessary for security of the N-1 condition
 - A second system element is forced out of service

PowerWorld Simulator Contingency Modeling

- Many combinations of actions and elements, e.g.
 - Open a line
 - Change generator output
 - Partially curtail a load
- Unconditional or conditional actions, which occur only when specified system criteria are met

 Very detailed modeling of System Adjustments is possible

N-1-1 Analysis Process

B7 Case: Normal System Operation

B7 Case: Primary Contingencies

 Without System Adjustments, case has several branch overloads during various Primary Contingencies

	Label	Skip	Processed	Solved	Violations	Max Branch %	Min Volt	Max Volt	Max Interface %
1	Primary: Line 1-2	NO	YES	YES	1	131.1			
2	Primary: Line 1-3	NO	YES	YES	1	128.7			
3	Primary: Line 2-3	NO	YES	YES	0				
4	Primary: Line 2-4	NO	YES	YES	0				
5	Primary: Line 2-5	NO	YES	YES	0				
6	Primary: Line 2-6	NO	YES	YES	0				
7	Primary: Line 3-4	NO	YES	YES	0				
8	Primary: Line 4-5	NO	YES	YES	0				
9	Primary: Line 5-7	NO	YES	YES	1	106.3			
10	Primary: Line 6-7a	NO	YES	YES	0				
11	Primary: Line 6-7b	NO	YES	YES	0				
12	Primary: Gen1	NO	YES	YES	0				
13	Primary: Gen2	NO	YES	YES	1	110.9			
14	Primary: Gen4	NO	YES	YES	0				
15	Primary: Gen6	NO	YES	YES	1	122.5			
16	Primary: Gen7	NO	YES	YES	2	128.2			

System Adjustments

- If effective System Adjustments are known, incorporate them into contingency definitions
- Simulator's tools may be used to help design System Adjustments if they are not known:
 - Sensitivity Analysis
 - Line Loading Replicator
 - OPF: apply to post-contingent system when system adjustments are permitted post-contingency
 - SCOPF: apply to pre-contingent system when system adjustments are not permitted postcontingency

TLR Sensitivities: Single Element

- For contingencies with a single overload, solve contingency of interest
- Use TLR Sensitivities and Custom Expressions to estimate the impact of adjusting generators and loads in relieving the overload

TLR Sensitivities: Multiple Element

Line Loading Replicator

Overloaded line and estimated MW flow to meet MVA limit

Injection group containing all possible System Adjustment controls (gens and/or loads)

Suggested changes for achieving desired loading

OPF: System Adjustments After Contingency

Primary Contingency: Loss of Line between buses 5 and 7

OPF Results

 Drop generator at bus 4, increase generator at bus 6

OPF Results: Difference Flows

Modeling System Adjustments

- Contingency Block for Remedial Action Scheme
- Block may be applied to multiple contingencies that cause similar overloading on line 2-5
- Optionally assign Model Criteria to block elements or entire block to apply the RAS only at certain loading conditions

Primary Contingency with System Adjustments

Secondary Contingencies

- Solve a Primary Contingency and set as reference
- Run the contingency analysis on the set of Secondary Contingencies
- Repeat OPF or SCOPF processes for secondary contingencies that result in overloads

SCOPF where System Adjustments are not Permitted After Contingency

• SCOPF
difference
case (relative
to Base Case)

 Load must be shed at bus 5 for system to be secure for the secondary contingencies

System Adjustments Revised

 Revised RAS to apply to Primary Contingency so that Secondary Contingencies are secure with no further System Adjustments

Generator and Load Models

- Use OPF with Minimum Control Change objective function to assign uniform cost per MW to adjust any OPF control
- However, it may be desirable to assign a higher cost to load controls than to generation controls
 - In this way, load shedding may also be considered, but would only be applied if generator actions are ineffective or extreme
 - Use OPF with Minimum Cost objective function, and assign "V-shaped" marginal cost curves to generators and appropriate benefit curves to loads

Generator Cost Curve

- Slope of curve is "cost" to adjust generator output by 1 MW
- Set breakpoint to the current operating point
- Easy to implement with Auxiliary File

Generator Cost Curve Auxiliary File

 Cost to move all generators is set to \$10 per MW

Load Benefit Models

- Maximum load is set to nominal value
- Load benefit is much higher than cost to redispatch generation

Combining Two Lists of Contingencies

 Use "Join Active" Contingencies" feature to combine list of primary and secondary contingencies into a complete N-1-1 set

More Information

- White paper and sample power flow case and contingencies
 - http://www.powerworld.com/Resources/TransmissionPlanning.asp