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1. Simple Voltage Droop Control
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It is common for wind and solar plants to be modeled as a generator (bus 2 above) connected to
an equivalent step-up transformer (bus 2 — 3), in series with an equivalent feeder (bus 3 — 4) and
then a substation transformer (bus 4 — 1). One could imagine the generators connected at 0.5 kV,
a 13.8 kV feeder, and then a 13.8 to 115 kV transformer at the point of interconnection. In this
configuration, the plants are often not configured with a traditional “voltage setpoint”, but
instead follow a voltage droop control with control centered at the point of interconnection. The
voltage droop control is then specified by the user to follow a QV characteristic curve which is a
function of the RegBus voltage V;.., and the purpose of the curve is to enforce that the total

reactive flow going into the RegBus from the respective VoltageDroopControl is equal to this
value. The curve will have the following shape and is discussed in more detail later.

To model this in a set of power flow 0u(Vies)
equations, we must introduce a new type .
of equation. The equations at bus 1, 3,
and 4 would remain the same with typical
Q equations that take the summation of
reactive flows going into the bus and sum Qao

them to zero. The equation at bus 2 \_
however is replaced by a new equation Qmin

that specifies that the flow on the branch »Vreg

arriving bus 1 from bus 4 is equal to the View - Vaviow  Vavhign Vaign
QV-characteristic function.

Qbranch(vl'Anglell V4'Angle4) - Qv(Vl) =0

maxt

There are several wrinkles to this concept though that complicate the numerical implemention of
these equations in the power flow.

1. The function Q,, (V) is continuous, but the derivative of this function is discontinuous.
Discontinuous derivatives introduce numerical difficulties that are address by smoothing
this function at the corners. This is described in great detail in the next section.

2. Multiple generator buses can act together to perform this VoltageDroopControl. They
coordinate their control in the same way that remote voltage regulation sharing is done
for voltage control

3. Multiple VoltageDroopControl functions can be applied to the same regulated bus with
different sets of generators belonging to each VoltageDroopControl equation

4. Care must be taken when the regulated bus is connected by very low impedance
branches. This can create numerical troubles in the solution which must be taken into
account.

A completely generalized Voltage Droop Control is described in a subsequent section that
handles the wrinkles 2, 3, and 4 above.



2. Voltage Droop Control QV characteristic function

The voltage droop control QV characteristic functions are defined with 7 input variables. There
is a deadband region between V4, and Vgppign in Which the reactive output is Q4. Below this

deadband the reactive power linearly increases up to Q,,.. at a voltage of V,,,, and above the
deadband the reactive power linearly decreases down to Q.;,, at a voltage of Vy;gp,.
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Within PowerWorld Simulator, we constrain this function with a voltage tolerance (Tol) and also
the relationship of reactive values using the following code which ensures that the curve is a non-

increasing function of voltage, and also that it is not too steep a derivative!
// Enforce voltage thresholds that are too close to one another
If (vdbhigh - vdblow) < Tol then
VdbhighUsed = (Vdbhigh+Vdblow)/2

VdblowUsed (vVdbhigh+Vvdblow)/2
Else

VdbhighUsed = Vdbhigh

VdblowUsed = Vdblow
EndIf

IT (VdblowUsed — Vlow) < Tol then VlowUsed = VdblowUsed — Tol
Else VlowUsed = Vlow
IT (Vhigh — VdbhighUsed) < Tol then VhighUsed = VdbhighUsed + Tol
Else VhighUsed = Vhigh
// Enforce decreasing relationship between reactive powers
If Qmax < Qdb then QmaxUsed = Qdb
Else QmaxUsed = Qmax
If Qmin > Qdb then QminUsed = Qdb
Else QminUsed = Qmin
// The next code ensures that the slope isn’t too large
// PowerWorld internally has a tolerance ZBRThres which is 0.0002 by
// default how voltage control works around branches with X below this // This
is similar situation in which we want slope to not be too large
MaxSlope := 1/ZBRThreshold;
dQdVv := (QmaxUsed - Qdb)/(VdbLowUsed - VlIowUsed);
if dQdV > MaxSlope/Sbase then
VlowUsed := VdbLowUsed - Sbase/MaxSlope*(QmaxUsed - Qdb);
dQdVv := (QminUsed - Qdb)/(VdbhighUsed - VhighUsed);
if dQdV > MaxSlope/Sbase then
VhighUsed := VdbhighUsed - Sbase/MaxSlope*(QminUsed - Qdb);



Another problem with this function is that the transition points between sections of the curve

introduce a non-continous derivative for dif;’g which will create a problem in the iterative
solution of the power flow equations.
dQU 4
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These types of edge points are not a problem in transient stability simulation which include
curves like this because at each time point we simply evaluate the functions and use them to feed
into integrator blocks which smooth out the system response. In the power flow equations
however we are strictly enforcing all these equations simultaneously, so a discontuous derivative
like this will create a numerical problem in our solution algorithms.

To overcome this problem, we will modify our QV curve slightly by introducing a cubic spline
to smooth out these points. Thus the QV characteristic will instead look as below with the
corners “rounded” off a bit.

Qu(Vreg)
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This will result in the % cruve which has a region around each corner where the derivative

transitions between the values. This is depicted in the next picture.



dQ, 4
dVreg

0

Qmax - de

Viow = Vabiow

Qmin - de

Vhigh — Vabhign

#V;‘eg

Viow Vabiow  Vabnign Vhigh
The way we will determine this width of this transition region is as follows. For 2 line segments
in our QV characteristics we will fine a point on either side of the corner point and then define a
spline function that represents the curve between these two points which smooths out the
transition and matches both value and derivative at point A and B.

(Va' Qa) = (VO —dVg, Qo + an)
(V1, Q1) Vo, Qo)

(Vzr QZ)

dQy

___________________ (I/_o + dVp, Qo — dQp)
To derive these points and define a function, we first define a scaling for the Voltage and
Reactive Power around this corner as described in the next image.
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The scaling in the voltage axis is based on 10% of the minimum change in voltage across the two
line segments, but no smaller than a minimum tolerance Vg 41emin = 0.001. The scaling on the
Q axis is 10% of the total change across both line segments, but no smaller than a minimum
tolerance Qcqiemin = MV A Convergence Tolerance. In addition, we want points (x;, y,) and
(x4, y,) to be a distance of 1.0 away from the corner point (x,, y,) in the scaled coordinates, but
not more than 50% of the way down their respective line segments. To make sure they are not
50% of the way, a restriction in the choice of scaling is made such that the length of both line
segments in the scaled coordinates is at least 2.0.

Finally, we will use the geometry in the scaled coordinates to choose a function type between
points (x;,y,) and (x,,y,). If the angle difference (calculated in the scaled coordinates)
between the two line segments is less than 12 degrees (pi/15 radians), then instead of using a
circlular spline we will switch to a cubic spline. This is done because as the angle difference
gets smaller, the circular function results in a circle with an extremely large radius. Doing a little

geometry you will find that that R = abs(A,fglel_Anglez)). At angle difference 12 degrees this

2

arctan(

gives R = 9.58.

When using a circular spline, the function will following the circle equation of
2

|/ 2 Q
pu ) ( pu_ ) — p2
X + =R
<Vscale ¢ Qscale Ye

Solving this for @, as a function of V,,,, gives

v
qu = Qscate |Yc \/RZ - <V = - xc)

The + sign convention will depend on the relationship between the slopes of the lines. This will
be discussed in another section. But generally we will write our equation by adding another
parameter Sign instead as follows.

o, ( Veu
qu = Qscate [V + Sign |R* — (V - xc)
The derivative of this function is then given as

Sign( ou_ _ X )
deu — Qscale Vscale ¢
deu Vscale v 2
RZ _ (i _ xc>

scale

When using a cubic spline, we will use a function

Vou Vou ? Vou ’
qu = Qscate|a+ b (V - xshift) +c (V - xshift) +d (V - xshift)

scale scale scale
The derivative of this function will be

v Y i
qu _ Qscale [b + ZC( pu_ _ xshift) + 3d (ﬂ - xshift) l

VScale scale scale




2.1. Pseuedo-code to choose Vscale, Qscale and Function Type

Input to Psuedo-Code for building corner function
Va, VO, Vb
Qa, QO0, Qb
Output of this code will be
x1, x0, x2, yl1, yO, y2 : values in in scaled coordinates

Vscale, Qscale : scaling for V and Q axis

SplineFunction : either circle or cubic
Function

dva = V0-Va

dvb = Vb-VO

dQa = Qa-Qo0

dQb = Q0-Qb

if abs(dva) abs(dvb) then Vscale = 0.10*abs(dVa)
else Vscale = 0.10*abs(dVb)

if Vscale < 0.001 then Vscale = 0.001

Qscale := 0.10*( abs(dQa) + abs(dQb) )

if Qscale < MVATolerance then Qscale = MVATolerance

A

dya = dQa/Qscale
dyb = dQb/Qscale
dxa = dva/Vscale
dxb = dvb/Vscale
da = sqrt( sqr(dxa) + sqr(dya) )
db = sqgrt( sqgr(dxb) + sqr(dyb) )

if da < db then dMin := da
else dMin := db;
// We need the length in the transformed coordinates to be > 2.0
// otherwise point 1 or 2 will be more than 50% down segment
if dMin < 2 then begin

Qscale Qscale * dMin/2

Vscale = Vscale * dMin/2

da = da * 2/dMin

db = db * 2/dMin

dxa dxa * 2/dMin

dya = dya * 2/dMin

dxb = dxb * 2/dMin

dyb = dyb * 2/dMin
end;
PercA
PercB

1/da
1/db

Q0/Qscale
V0/Vscale
X0 - dxa*PercA
y0 — dya*PercA
X0 + dxb*PercB
y0 + dyb*PercB

<
=
L L T T | B 1

AngleA = arctan2(dya, dxa)

AngleB = arctan2(dyb, dxb)

if abs(AngleB — AngleA) > pi/1l5 // at 12 degrees, switch
then SplineType = Circle Equation // use a circle spline
else SplineType = Cubic Equation // use a cubic spline




2.2. Pseudo-code for Circular Spline Function

Input to Psuedo-Code for building corner function
theQscale, theVscale : store scaling
x1, x0, x2, yl, yO, y2 : values iIn in scaled coordinates
Create an object with the following parameters to represent the Circle

Qscale, Vscale : store scaling
Xc, yc, R2, Sign : values describe the circle in scaled coordinates
constructor TSplineSegmentCircle.CreateCurve(theVscale, theQscale, x1, yl, x0, y0, x2, y2
: double)
Var ml, m2 : double
begin
Qscale = theQscale
Vscale = theVscale
if y0 = yl then begin // 1-—————- 0
xc = x1 // \
yc = y2 - (X0-x2)/(y0-y2)*(x1-x2) // \
R2 = sqr(yl-yc) // \
Sign = +1 // 2
end
else if yO = y2 then begin // 1
XC = X2 // \
yc = yl - (x0-x1)/(y0-yl)*(x2-x1) // \
R2 = sqr(y2-yc) // \
Sign = -1 // O0------ 2
end
else if x0 = x1 then begin // 1
yc =yl /7 |
Xc = X2 - (y0-y2)/(x0-x2)*(yl-y2) /7 |
R2 = sqr(x1-xc) // O0-——-
Sign = -1 // \--——- 2
end
else if X0 = x2 then begin // 1-——-
yc = y2 // \--——- 0
xc = x1 - (yO0-y1)/(x0-x1)*(y2-yl) // |
R2 = sqr(x2-xc) // |
Sign = +1 // 2
end
else begin
ml = (y0-y1)/(x0-x1)
m2 = (y0-y2)/(x0-x2)
xc = (ml*(m2*y2 + x2) - m2*(ml*yl + x1))/(ml-m2)
yc = ((ml*yl + x1) - (m2*y2 + x2))/(ml-m2)
R2 = sqr(x1-xc) + sqr(yl-yc)
if ml < m2 then Sign = -1
else Sign = +1
end
end

Once the circular spline object is created functions for Output and Derivative would be written
with the following pseudo-code.

Function TSplineSegmentCircle.Output(x : double) : double
begin
X = x/Vscale
result = R2 - sgr(x - xc);
if result > 0 then result = yc + sign * sqgrt( result )
else result = yc // function should never be used in this range!
result := result*Qscale
end;

function TSplineSegmentCircle.Derivative(x : double) : double
begin

X = x/Vscale

result = R2 - sgr(x - xc)

if result > 0 then result = -Sign*(x - xc)/sqgrt( result )

else result = -1E6;
result = result*Qscale/Vscale
end;




2.3. Psuedo-code for Cubic Spline Function

Input to Psuedo-Code for building corner function
theQscale, theVscale : store scaling
x1, x0, x2, yl, yO, y2 : values iIn in scaled coordinates
Create an object with the following parameters to represent Cubic function
Qscale, Vscale : store scaling
Xshift, A, B, C, D : values describe the cubic in scaled coordinates

constructor TSplineSegmentCubic.CreateCurve(theVscale, theQscale, x1, yl, x0, y0, x2, y2
: double)
local variables

at, bt, ct, dt : double

ml, m2, x12 : double

mlm m2, ml_p m2, x1_m x2, yl m y2 : double

begin
Vscale := theVscale
Qscale := theQscale
Xshift = x1
X0 = x0 - XShift
X1 = x1 - XShift
X2 = x2 - XShift

// calculation assumes that the x values are increasing x1 < x0 < x2
ml = (yO-yl)/(x0-x1)
m2 = (y0-y2)/(x0-x2)

ml_p m2 = ml + m2
ml_mm2 =ml - m2
X1 _m_x2 = x1 - x2
yl my2 =yl -y2

// Calculate values on shifted coordinates around [(x1+x2)/2, yl]

at = (yl+y2)/2 - (x1_m_x2)*(ml_m_m2)/8

bt = 3/2*(yl_m y2)/(x1_m_x2) - (ml_p_m2)/4

ct = 1/2*(m1_m m2)/(x1_m_x2)

dt = (ml_p_m2)/sqr(x1_m x2) - 2*(yl_m_y2)/((x1_m_x2)*sqr(x1_m_x2))

// shift back to the coordinates of centered around original x1, yl
x12 = (x1+x2)/2

A = at - bt*x12 + ct*sqr(x12) - dt*x12*sqr(x12)
B = bt - 2*ct*x12 + 3*dt*sqr(x12)
C = ct - 3*dt*x12
D =dt
end

One the cubic spline object is created functions for Output and Derivative would be written with
the following pseudo-code.

function TSplineSegmentCubic.Output(X : double) : double
begin

X = X/Vscale-XShift

result = A + B*X + C*sqr(X) + D*X*Sqgr(X)

result = Qscale*result
end

function TSplineSegmentCubic.Derivative(X : double) : double
begin
X = X/Vscale - XShift

result = B + 2*C*X + 3*D*Sqr(X)
result = Qscale/Vscale*result
end




2.4. Circular Spline Derivation
We will have two possible circular splines depending on whether the first slope is larger or

smaller than the second slope.
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Given these constraints that points 1 and 2 are equidistant from point 0, we can calculate the
spline as follows.

Yo=Y1 and m, = Yo=Yz
Xo—X1 Xo—X2

We must solve for the intersection of the lines going toward (x,, y..).
The equation of the line from (x,, ,) to (xy,y1) is y = y; — —2

Define the following slopes: m; =

mq
X—X3

The equation of the line from (x., y.) to (x,,y,) isy =y, —

Xc—X2

This means that y, = y; — =Y Equate these and get
2

Xc™X1 __ XcTX2
1 = )2
y X xml X y my
c—X2 c—
—_ =4 —_
m; mq yz y:l
Xc Xc xz _ X%

———=+4y, =y +

m; mq m1

X1

xc(iz—il) =+Y, =W +_—_

mq
X2 X1

_ tmomyy,—momy1+myxX,—moXxy

mq—m;

_ my (x; + myy,) — my(xy + myy;)

xC
m; —m,;

With this value of X, substitude back into one of y, equations to solve for y..

271 Tnz m)_,
i1 1

_ _ mp; my
Ye =1 —
[ _ X2 X1
_ +y2 y1+m2 mq X1
Ye=Nn T T T D, m
my; mq/) * !
[y, —y. 52 %1 11
_ +y2 y1+m2 mq xl(mz ml)
Ye=V17 ED) w2
1 mpy miq 1 mz mjy
Xg—X1 X1-X7
_ _ [+y, -y +2=1 mg my
yC - yl (m1 mz)
L my
_ y1(my—my) _ m2(+y2—y1)+x2—x1]
Ye mp—m; mq—m;
— M1Y1—May1—MyY+Myy1—X2+X1
Ve p—
y, = My1Y1—May1—MyY+Myy; —X2+X1
¢ mq—m;
Je = (+x1+myy,) — (xz + myy,)
. =

m; —m,

11



Actually there are some degenerate cases here for a circular spline when the the slope values go
to either zero or infinite. Thus the total logic is as follows

Xe = X1
Ye =Y2— (ig:iz) (1 — x3)
R? = (y1 — ¥c)?
Sign = +1
Else If y, = y, then
Xe = X3
Ye =V1— (iz:;:) (2 — x1)
R? = (}’2 - yc)z
Sign = -1
Else If x, = x; then
Ye =1
Xe =Xy — (%) 1 —y2)
R? = (x1 — xc)z
Sign = -1
Else If x, = x, then
Ye = Y2
Xe = X1 — (ﬁ) 2 —y1)
R? = (xz - xc)z
Sign = +1
Else
my = Yo—YV1
Xo—X1
m, = Yo—Y2
Xo—X2
_ mq(Xz+myyz)—ma (X1 +myyq)
¢ mi—m,
_ (tx1+tmqy)—(x2+myy,)
Ye = —

R?* = (; —x)* + (11 — ¥o)?
If m; < m, Then Sign = —1
Else Sign = +1

Circular Spline Function and derivative are then
f(x) = ye + Signy R? — (x — x,)?

df(x)  —Sign(x —x.)
dx  JRT—(x—x,)?

12



2.5. Cubic Spline Derivation

We are given 3 points (xq,y1), (xo, Vo), and (x,, y,). These define two lines that join point 1 to

0 and point 0 to 2. We then want to calculate the cooefficients of the cubic function (a, b, c, and

d) such that at point 1 and point 2 the cubic function matches both the value and derivative of the
intersecting lines. This is depicted in the following figure.

dLine,
dx
Line; = myx + by

(X0, ¥0) dLine,
dx
Line, = myx + b,

(xllyl)
f(x) =a+ bx + cx? + dx3

df (x X,
f&) = bx + 2cx + 3dx? (%2 ¥2)
dx
The coefficients that match this results are as follows.
. _ (vo—y1)
| =2
_ Wo—)2
¢ M2 = (xp—x2)
o 4= y1+y2) _ (x1—x2)(m1-my)
2 8
. E — E(Jﬁ—yz) _ (mq1+my)
2 (xl—xz) 4
e Z= (mq-m3)
2(x1—x3)

o d= mitmy;  2(y1-y2)
(x1-2x2)2 (x1-x2)3

The derivation of this results is as follows. We can write 2 equations the require that the values
match and points 1 and 2 and two equations that require that the derivatives match at the points.
1. a+bxy+cx?+dxd =y,
2. a+bx,+cx:+dx3 =y,

3. b+ 2cx; + 3dx? =m1=%
0~ A1
4. b+ 2cx, +3dxs =m, = —Zo_zz
0~ A2

To simplify these equations, transform the coordinates to a modified set such that ¥; = —x,. Do

this by shifting the values left by (xl;r—xZ)
o ¥ =x — (x1+x2) =+ (x1—x32)
R .o ) N G )
¢ 2= X 2 2

13



Because we have only shifted left, the m,, m,, y; and y, values have not changed. We can then
write equations for our modified function £ and % in our shifted coordinated system as follows.
1. f(®)=d+bx +céx?+did =y,

2. f(X) = a+bx, + x5 +dx5 =y,
3. L2 ) = b+ 207, +3d% = m,
4. LD (7)) = b+ 208, + 3d73 = m,

(x1—x3)

To simplify the equations, in our shifted coordinates define k = + — which means that

X; = k and X, = —k. Thus we can write the constraint equations as
1. @+ bk +ck?+dk® =1y,
2. d@—bk+c¢k?—dk® =y,
3. b+2¢k+3dk?=m,
4. b—2¢k +3dk? =m,

To solve, perform the following algebraic steps.
ck? = (y1ty2)

1. a+ > (Equation 1 + Equation 2, then divide by 2)
2. b+dk?= % (Equation 1 — Equation 2, then divide by 2k)
3. &= (m14_km2) (Equation 3 — Equation 4, then divide by 4k)
4. b+ 3dk? = Tarme) (Equation 3 + Equation 4, then divide by 2)

Then do the following.
— (y1+y2)  k(myi—my)

1. a _ ? (Equations 1 —k?* Equation 3)

2. b= 3(yl;y2) — (mlzm"’) (3 * Equation 2 — Equation 4, then divide by 2)

3. ¢= % (Equation 3)

4. d = (mZ;TZ) — 0’1;2’2) (Equation 4 — Equation 2, Then divide by 2k?)
We now have our coefficients in terms of k, so substitute back in k = (xl;—xZ) to get

1 §= (yl;ryz) _ (xl—xz);ml—mz)

2. §=3220 g

3. =gy

4 = mutm) _ 20m-y))

(x1-x2)2 (x1-2x2)3

We now have a cubic function on our modified coordinates of the form
f(X) =a+ bx +cx*+dx3
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Now write this in terms of x instead by substituting ¥ = x — —(’“;’”)

(o) o sf- (5] oo () waf- (2]

Now transform this back to our original coordinates in x as follows.
- (X t+x X, +x X, +x\% -
f(x)=d+bx—b(12 2)+6x —26(12 2>x+6<12 2) + dx3

. X+ X o X N Ly xS
—3d2<1 2) Bd(l 2) _d(l 2)
N\ )T 2
Group terms

f(x) = + [a _ (x1+xz) (x1+x2) (xl:xz)a]
[b—z xﬁxz) 13 (x1+x2)]

+ [c —3d (xl;rxz)] x?
+[d]x?

Thus the coefficients in our original coordinates are as follows.

S e R ey el

X1+Xo

What happens if we assume that x, = . This means that x, — x; = —(xy — x3)
The coefficients that match this results are as follows.

_ Oo—y1) | Go=ya) _ _Go—y1) Do=y2) _ Go—y) |, Wo=y2) _ , (r1=y2)
M2 = e T o) | (B2y) | (R y,) T (LR2) T (B2) T “lax)
m, —m — oy Gomya) . Oo—y)  Go-ya) _ oy Bom¥a) o, @Yo=¥i—y2)
2= (x0—x1) (x0—x2) (xl;—xz—xl) (%—xz) ( x1;x2) (xlgxz) (x1—x2)

This means that the coefficients result in a quadratic equation instead
2yo—y1-y2)

.« 4= y1+y2) n (e1=x2)2=0 = _ On+y2) n (2y0—y1=¥2) _ (2¥o+y1+y2)
2 8 2 4 4
2(Y1-Y2)
E — E(.’Vl_i)/z) __xa—xp) y1-y2)
2 (x1—x2) 4 (x1—x2)
_z(zyo—yryz)
o (= Ca=xz)  _ _ (2Y0=¥1-Y2)
(2(961—)952) (xq=x2)?
Y1-Y2

d = —Fa=x2) _ 2(y1-y2) -0

°
(x1-2x2)2 (x1-x2)3
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3. Generalized Voltage Droop Control

anz

anZOffl

Ganone
an3

an30ff

Gq3none

qu4

Gabaofs

Loads
}—Shunts

Gq4none

qus

quSOffI

Ganone

Loads
9
}—Shunts qA"ic
: c9
RC7 qc90ff
—0Q; G
Loads qb9

}—Shunts
qu9off

qa9

Gchoff qa90ff

Gq8none
—
Gq9none
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All Red buses here are connected by
very low impeance branches ZBR. This
ZBR threshold is an input parameter
in software tools. In PowerWorld
Simulator, the default threshold is
0.0002

RegBus



Assume we have three VoltageDroopControl groups which all regulate the same bus (RegBus).
Classify the generators at each bus into one of three groups

e Part of VoltageDroopControl, AVR = YES (and presently not flagged as stuck at a
Minimum or Maximum Mvar output). Gya1, Ggaz: Ggas» Ggas Gqp1: Gapar Ggps: Ggpos
Ggc1r Ggeer Ggerr Ggesy Ggeo YEPresent generators that are part of the respective
VoltageDroopControl, and are also presently participating in AVR control.

e Part of VoltageDroopControl, AVR = NO (or presently flagged as stuck at a Minimum or
Maximum Mvar OUtpUt)- anloff) anZoff) an3off) an9off! quloff) qu4off) quSoff!
Gaboofsr Gacrorfr Gacoorfr Gacroffr Gaesorfr Gqeoofy TEPresent generators that are part of
the respective VoltageDroopControl, but are NOT presently participating AVR control
and thus will act as a fixed Mvar.

e Not part of VoItageDroopControI. qunonea Ganonea Gq3n0nea Gq4none' Ganone' Gq6none'
Gg7nones Ggsnone: Ggqonone rEPresent generators that are not on control and also NOT
assigned to be part of the VVoltageDroopControl regulating the RegBus.

The outputs of the generators are expressed as Ggq1, Gge1, Gger, €tC.. These are not part of the
power flow equations when the generators are operating between their minimum and maximum
Mvar outputs, but they will be used during the derivation of the equations below. We write them
as the variable G to distinguish them from the Q variables in the remainder of the section. All
the Q quantities below represent quantities that are a function of voltage and angle (flows on AC
branches, Load, Shunts values) and thus these Q variables are never solution variables, but
instead functions that require calculation and will effect the Jacobian matrix calculations.

Also, within the software, buses that are connected to one another by very small impedance
branches can cause numerical difficulty. If there is such a group of buses at the regulated bus
these will be grouped and equations slightly modified within this group of buses.

Each of the three VoltageDroopControls has a QV characteristic curve which is a function of the
RegBus voltage V.., and the purpose of the curve is to enforce that the total reactive flow going

into the RegBus from the respective VoltageDroopControl is equal to this value. The curve will
have the following shape and is discussed in more detail shortly.

Qv (Vreg)

A
Qmu.x

Qap

Qmiﬂ

Viow Vﬂthiow Vd bhigh Vhi_q h
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In this example, we have three such VoltageDroopcontrols and they will enforce the following
equations.

Qva(Vreg) = Qla + anl + anloff + an9 + an9off
Qub(Vreg) = Quo + Gap1 + Gaprors + Gapo + Gapoosf
ch(Vreg) = Qlc + Gqcl + Gqcloff + Gch + Gchoff

Q1a, Qip, and Q,. represent the summation of reactive power flow arriving at any bus within the
group of buses connected to the RegBus by very low impedance lines on all AC branches that
connect to the generators in the respective VVoltageDroopControl.

anli anloffa an91 an90ff' qul: quloffa qu9a qu9off' Gqcla Gqcloffa Gch' Gqc9off
represent the Mvar output at all generators assigned to a VVoltageDroopControl at any bus inside
the group of buses connected by very low impedance lines. We include the contributions of both
generator with AVR=YES and NO, so the generator must only be assigned to the Voltage Droop
Control.

Shortly we will also use the values Q4, Q,, Q3, Q4, Qs, Qq, Q-, Qg, and Q4 Which represent the
summation of branch flows leaving the respective bus summed with loads, shunts, DC lines, and
other non generator devices.

QZ = QZload + QZshunt + Z [Qdc device 2—k] + Z [Qbranch 2—k]

k=dc lines k=Nodes
adjacent adjacent
to2 to 2

The R,1, Raz, Ras, Raoy Rp1s Rpas Rys, Ryo, Re1, Regy Re7, Reg and R.q represent the remote
regulation factors used to represent how Mvars are shared between buses in each of the three
VoltageDroopControl objects. Normally these factors are input parameters from the user,
however they can also be specified to be equal to a generator Maximum Mvar output subtracted
from the Minimum Mvar output (when using respecive options). To make notation easier, we
will define the normalized factors in each group as follows.

K 1 — Ral K 2 — RaZ
a Rg1+Rg2+Ra3+Rg9 a Ra1+Rg2+Ra3+Rg9
R R
K — a3 K — ao
a3 Ra1+Ra§+Ra3+Ra9 a9 Ra1+Ra?2+Ra3+Rag
b1 b4
Ky, = K., =
1 b4
Rb1+Rb‘Il-2+Rb5+Rb9 Rb1+Rb;1,2+Rb5+Rb9
b5 b9
Kps = Kpo =
9
Rp1+Rpsa+Rps+Rpo Rp1+Rps+Rps+Rpo
K 1 — RC1 K 6 — RC6
c c
Rc1+Rc6+§c7+Rcs+Rc9 Rc1+Rc6+§c7+Rcs+Rc9 <
— c7 —_ c8 _ c9
KC7_R Reg+Re7+Rcg+R KC8_R Reg+Re7+Reg+R KC9_R Reg+Re7+Rcg+R
c1tRcetRc7tRegtRco c1tRcetRc7tRegtRco c1tRcetRc7tRegtRco

Also, these factors are calculated so that as generators at a bus hit their Mvar limits, then those
regulation factors are no longer included in the calculation of the K values.

To integrate these into the power flow equations, we will continue to use the same real power

equations at each node. The reactive/voltage equation at the RegBus and at each bus that has a
generator in any of the three VVoltageDroopControl will be replaced as follows.
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3.1. Regulated Bus Equation

At the RegBus, the equation is simply that the summation of the QV characteristics. This is
written as
+Qla + anl + anloff + an9 + an90ff
+Qpq + Qup + Que = | TCQw + Ggp1 + Gapiorr + Gapo + Ggpoorr
+Qlc + Gqcl + Gqcloff + Gqc9 + Gqc9off
Now, group terms slightly
+Qia + Qi + Q¢
+Quq + Qup + Que = | TGqar T Gqators + Gap1 t Gaprors + Gger + Gqerorr
+an9 + an9off + qu9 + qu9off + Gqc9 + Gqc9off

The individual generator Mvar outputs are not part of our solution variables. We can write those
as follows to get them in terms of either fixed generator Mvar outputs (G41noner Ggonone) @and the

summation variables discussed above (Q4, Q).
+an1 + anloff + qul + quloff + Gqcl + Gqcloff = +Q1 - qunone
+an9 + an90ff + qu9 + qu90ff + Gqc9 + Gchoff = +Q9 - Gq9none

Making these substitutions you get
+Qva + va + ch = +Qla + le + Qlc + Ql - qunone + Q9 - Gq9none

This gives us our mismatch equation of
+(_Ql + qunone) + (_Q9 + Gq9n0ne) + (Qva - Qla) + (va - le) + (ch - Qlc) =0

We also need to be careful when a situation occurs that ALL generators within the
VoltageDroopControl are hitting a Mvar limit. In that situation the value (+Q,, — Q;,) must be
replaced with the fixed Mvar output of the generators at the regulated bus which are in the
VoltageDroopControl “A”. Thus if the generators in VVoltageDroopControl A are all at Mvar
limits, then the equation becomes the following.

(_Ql + qunone) + (_QQ + Gq9none) + (anloff + an%ff) + (Qup — O01p) + (Qpe — Q1) =0

Actually, this concept extends more generally to a situation where a particular
VoltageDroopControl does not have ANY generators connects to the RegBus (or any of it’s low-
impedance connected neighbors). For example, if we assume that VVoltageDroopControl B and C
did not have ANY generation at either bus 1 or 9 in this example, then we can simply the
regulated bus equation to.

(_Ql + qunone) + (_Q9 + Gq9none) + (an - Qza) =0

If we assume that no generators in the this example are connected to either bus 1 or bus 9, then the
regulated bus equation defaults all the way back to its original equation of simply.

(_Ql + qunone) =0
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3.2. Remotely Regulating Bus Equation
At each remotely regulating generator bus, we have an equation to enforce the ratios of reactive
flows
_anz + Kqo (anz + an3 + anl + an9) =0

As mentioned earlier though, the generator Mvar outputs are not part of the power flow solution
variables, so we must write these in terms of the AC branch flow variables using the following
relationships. The relationship at the remotely regulating buses is simply the summations of all
devices at that bus except the generators on control.

anz =0Q; — anZoff - Ganone

an3 =3 — an3off - Gq3none
The relationship for any generators at the regulated bus (or those connected by very low
impedance branches) can be expressed using the QV characteristic with the summation of branch
flows coming in from the VoltageDroopControl subtracted.

anl + an9 = Quqg — Qia — Qaloff - Qa9off

Thus we can substitute in the Q to get

+Gqaz +Q2 — Ggazors ~ Ggznone
_anz + Ky +an3 =—Q,+ Ganone + anzaff + Ky +Q3 = an30ff = Gq3none =0

+an1 + an9 +Qva o Qla = anloff = an9off
Again, it means that there is a some nice structure because the value Q, is something that’s
already being calculated at all normal PQ buses anyway.

3.3. Remotely Regulated Bus connected to RegBus by low impedance
branches
There also need to be some special treatment of buses the are not the regulated bus, but are
within the group of buses connected to the RegBus by very low impedance lines (This is bus 9 in
this example). At this bus we must write a summation of generator balancing across the
VoltageDroopControls.
[ +Q2 - anZoff - Ganone
_ang + Ka9 +Q3 - an3off - Gq3none
+Qva - Qla - anloff - an‘)off
+Q/1- - qu/mff - Gq/l-none
_qug + Kbg +Q5 - quSoff - Ganone
+va - le - quloff - qu9off
+Q6 - Gqc6off - Gq6none
+Q7 - Gqc7off - Gq7none |

—Gy09 + K,
qc9 < +Q8 - Gqc80ff - Gq8none /

| +ch - Qlc - Gqcloff - Gqc9off
This then has a summation of (—ang — Ggpo — Gch) which needs to be replaced with.
(_an9 - qu9 - Gqc9) = _Q9 + Gq9none + Gga90ff + ng‘)off + ch‘)off

Thus the total equation at bus 9 can be written as.
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+Q2 - anZoff - Ganone

+Gga9off + Ka9 +Q3 - an3off - Gq3none
+Qva - Qla - anloff - an9off

+Q4 - qu4off - Gq4none

+ng9off + Kbg +Q5 - quSoff - Ganone
~Qo + Ggonone + +Qub — Qv — Ggviorr — Ggpooss

+Q6 - Gqc6off - Gq6none
+Q7 - Gqc7off - Gq7none

+G + K
geooff < +Q8 - Gchoff - Gq8none

+ch - Qlc - Gqcloff - Gqc90ff
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3.4. Summary of Q Equations

Thus in our example, we have the following Q equations at the respective buses

[1] (_Ql + qunone) + (_Q9 + Gq9none) + (Qva - Qla) + (va - le) + (ch -
+Q2 - anZoff - Ganone
[2] —0Q, + Ganone + anZoff + Ko +Q3 — an30ff - Gq3n0n€ =0
+Qva — Qua — anloff - an9off
+Q2 - anZoff - Ganone
[3] —Qs + Gganone T Ggazorr + Kaz +0Q3 — Ggazors — Gganone =0
+Qva - Qla - anloff - an9off
+Q4 - qu4off - Gq4none
[4] —Q, + Gq4none + qu4off + Kp4 +Qs — qu50ff - Ganone =0
+Qup — Qup — quloff - qu9off
+Q4 - qu4off - Gq4—none
[5] —0s + Ganone + quSoff + Kps +0s — qu50ff - Ganone =0
+va - le - quloff - qu9off
/ +Q6 - Gqc6off - Gq6none
+Q7 - Gqc7off - Gq7none
6] Qs+ G +G +K =0
[ ] Q6 génone qcé6off c6 +QS _ Gchoff _ Gq8none
+ch - Qlc - Gqcloff - Gqc9off
/ +Q6 - Gqc6off - Gq6none
+Q7 - Gqc7off - Gq7none
71-0,+G +G +K =0
[ ] Q7 g7none qc7off c7 | +Q8 _ Gqc80ff _ Gq8none
+ch - Qlc - Gqcloff - Gqc9off
/ +Q6 - Gqc6off - Gq6none \\
+Q7 - Gqc7off - Gq7none
8] —Qs +G +G +K =0
[ ] Q8 g8none qc8off c8 | +Q8 . Gqc80ff _ Gq8none |
+ch - Qlc - Gqcloff qc9off
+Q2 - anZoff q2none
+Gga9off + Ka9 +Q3 - an30ff q3none
+Qva - Qla - qaloff qa9off
+Q4 - qu4off q4none
+ng90ff + Kpg +Qs — quSoff q5none
[0 —Qo + Gq9none + +Qup — Qup — qbloff qb9off
/ +Q6 - Gqc6off q6none \
+Q7 - Gqc7off q7none
+G + K,
gesoff < +Q8 - qc80ff q8none |
+ch Qlc - Gqcloff qc9off
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The red portions of these equations are the same as the normal mismatch equations for a PQ bus
(ignoring generators), so we don’t need to do anything in the code but allow those to be
calculated. Then we simply add in the remaining portion in to the code and take appropriate
derivatives.

Also, if we’re using the option to keep all generators at the same point in their Mvar range, then
these equations should be modified to shift var output equations to start at their minimum output
and go up from there using modfied K factors which are proportional to the total (MvarMax —
MvarMin) of each generator instead.

[1] (_Ql + qunone) + (_Q9 + Gq9none) + (Qva Qla) + (va le) + (ch - Qlc) =0
+Q2 qaZOff - Ganone - anZmin
[2] —Q; + Gganone + Gazorr + Gaazmin + Kaz < +0Q3 = Ggazors — Ggznone = Ggazmin =0
+Qva Qla - qaloff - angoff - anlmin - an9min
< +Q2 qaZOff - Ganone - anZmin )
[38] —0Qs + Gq3none + an3off + anBmin + Ky +0Qs5 — qa30ff - Gq3n0n€ o an3min =0
+Qva Qla - qaloff - angoff - anlmin - an9min
+Q4 qb4off - Gq4none - qu4min
[4] -0+ Gganone T Gapaors + Gapamin + Kpa < +Qs — Gavsors — Ggsnone = Ggbsmin > =0
+va le qbloff - qugoff - qulmin o qu9min
+Q4 qb4off - Gq4none - qu4min
[5] —0Qs + Ggsnone + Gavsorr + Gavsmin + Kps < — Gabsorr — Ggsnone = Ggbsmin > =0
+va le qbloff - qugoff - qulmin o qu9min
/ +Qé qc6off - Gq6none o Gqc6min
+Q,—G -G =y e m—
6 00 o+ G G s | GG S|
+ch - Qlc - Gqcloff - Gqc‘)off - Gqclmin o Gqc9min
+Q6 - Gqcsoff - Gqénone - Gqcémin
+Q; — Gyerorr — G = —
[7] _Q7 + Gq7none + Gqc7off + Gqc7min + Kc7 _|_g; _ GZZ;:;; . GZ;:::E _— GZZ;::: =0
+ch - Qlc - Gqcloff - Gqc90ff - Gqclmin - Gqc9min
+Q6 - Gqcsoff - Gqénone - Gqcémin
+Q; — Gyerorr — G = —
[8] _Q8 + Ganone + Gchoff + Gqc7min + Kcs _|_g; _ GZZ;:;; . GZ;:::E _— GZZ;::: =0
+ch - Qlc - Gqcloff - Gqc90ff - Gqclmin - Gqc9min
+Q2 - anZ(sz - Ganone - anZmin ]
+Gga90ff + an9min + Kqo < +0Q3 — an30ff - Gq3n0n€ - anSmm )
+Qva - Qla - anloff - an9off - anlmin - qa9mm
+Q4 — Ggpaofs — Gqanone — Gabamin
61 0+ Gy +| 771 i (w 00 ansory oo it ) o
vb b qbloff gb9of f gblmin qbgmm
( +Qﬁ - Gqcﬁoff - Gqﬁnone - Gqc6mln \‘
+Q7 -G c7off — G 7none ~ G c7min
+chgoff + Ggeomin + Keo +Qg — nggo;; - GZSnDne - ZcSmm
\"'ch - Qlc - Gqcloff - Gchoff Gqclmm o chmm/
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3.5. Derivative Terms for Jacobian Matrix

The derivate of the Q equations is a straightforward, though adding many additional terms. It
makes each bus a function of the neightbors of all other buses in the same voltage droop control
as well as both terminals of any “arriving branch” in the voltage droop control.

[1] ( dQl) ( dQ9) + (dQva o dQla) + (dva o dle) + (dch o dQlc)
dx dx dx dx dx dx

sz dQ; dQs dQva dQq
2] -4k, (+ +28 4 Sha 2
dQS sz dQs dQva dQq
[31 - Kas (+ T TTar T Tax )
[4] —% + Ky (+@ 80 1 20w _ d00)
dx dx dx
d d d dQuy _ d
[5] QS + Kbs (_*_& + Qs + Q b le)
dx dx dx
d d d dQyc dQic
[6] Q6 6 (+ 06 + 07 + Q8 _l_ Q o Ql )
dx dx
dQ7 dQ6 dQ; , dQs de dQlc
[7] 7 (+ T ax dx T dx tax )
dQs dQ6 dQ7 , dQs de dQlc
[8] — S8 4 K (+ 520 4 T2 4 Sy S Sic)
d d dQpy d
+K o (+ L —Q —~ Q“‘)
dx dx
ng dQs | dQs dth __dQip
[9] -2+ +K”9( o T ax T dx )

d d d d daQ;.
+K59 ( 06 + & + & + Quc o QZL)J

dx dx . dx dx dx . . .
Also, you must be careful of the simple case where a single generator is remotely regulating a

bus such as in the following figure.

anz

2 3 4 1
Point of
@I% %IQI%%I Interconnection
—>
Qbranch
This means we have only one remotely regulating bus and the value of K,, = 1.0, which causes
the terms related to €2 10 cancel out, so we have only an equation that is a function of voltage

and Angle at bus 1 and 4,
[2] dQy(Vi,Angle;)  dQa1(Vi,Angley Vy,Angles)

dx dx
The problem with this is the Jacobian Matrix diagonal entries for the Q equation at bus 2 will be
zero which would require the implementation of row pivoting in the numerical matrix
calculations. In order to avoid this, in PowerWorld Simulator’s source code we slightly modify
that Jacobian matrix to include extra terms in this example that set the sensitivity as 100 times

smaller than the sensitivity of the Qbranch flow with respect to the regulated voltage.
dQEquationpgys, dQu1(Vq,Angleq,Vy,Angley)

= 0.01
av, avy
dQEquationgys» — 001 dQa1(Vq,Angleq,Vy,Angley)
dAngle, ) dAngle,

In the software it will be the summation of all Q,, sensitivities with respect to the bus
voltage/angle at bus in the group of buses in the ZBR bus.

This is 100 times smaller than the real entries needed there, so we would not expect there to be
any troubles
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3.6. How is Reactive Power Flow Equation being enforced at

Regulated Bus

It may seem like the Mvar balance equation at the RegBus itself is not being enforced by these
equations, but that is not correct. If you take the summation of all the Q-equations at the non-
RegBus buses and subtract the Q equation at the RegBus you get the following. We have broken
the parts of the equation at the RegBus (1) and the Bus 9 and moved them into other parts to
result in the total summation below which must sum to zero.

_QZ + Ganone + anZoff + anZmin + Kaz

+Qva - Qla - anloff - an90ff - anlmin -

_Q3 + Gq3none + an3off + an3min + Ka3 <
_Qva + Qla + Gga9off + anQmin + Ka9 (
_Q4 + Gq4none + qu4off + qu4min + Kb4

—Qup + Qu + Ggpoors + Gapomin + Kpo

—Qs + Ggsnone + Gapsorr + Gapsmin + Kps <

_Q6 + Gq6none + Gqcéoff + Gqc6min + Kc6
+ch -
_Q7 + Gq7none + Gqc7off + Gqc7min + K7
+ch -
_QS + Ganone + Gchoff + Gqc7min + KCS
+ch -
—Qy + Gq9none_ch + Qic + chgoff + Gchmin + K9
+ch -
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(Ql - qunone)

+Q2 - anZoff - Gq2none - anZmin
+Q3 - an3off - Gq3none - an3min

+Q2 - anZoff - Gq2none - anZmin
+Q3 - an3off - Gq3none - an3min

+Qva - Qla - anloff - an90ff - anlmin -

+QZ - anZoff - Ganone - anZmin
+Q3 - an30ff - Gq3n0ne - an3min

+Qva - Qla - anloff - an9off - anlmin -

+0Qs — qu40ff - Gq4none - qu4min
+Q5 - quSoff - Ganone - quSmin

+Qub — Qv — Gapiorr — Gavoorf — Gabimin —

+0Qs — qu40ff - Gq4none - qu4min
+Q5 - quSoff - Ganone - quSmin

+Qub — Qv — Gapiorr — Gavoorf — Gabimin —

+0Qs — qu40ff - Gq4none - qu4min
+Q5 - quSoff - Ganone - quSmin

+Qub — Qv — Gapiorr — Gavoorf — Gabimin —

+Q6 - Gqcsoff - Gqénone - Gqcsmin
+Q7 - Gqc7off - Gq7none - Gqc7min
+Q8 - Gchoff - Ganone - Gchmin

Qlc - Gqcloff - Gqc9off - Gqclmin -

+QG - Gqc6off - Gq6none - Gqc6min
+Q; — Gqc7off - Gq7none - Gqc7min
+QS - Gqc8off - Gq8none - Gqc8min

Qic — Gqcloff - GqC‘)Off - Gqclmin -

+Q6 - Gqcsoff - Gqénone - Gqcsmin
+Q7 - Gqc7off - Gq7none - Gqc7min
+Q8 - Gchoff - Ganone - Gchmin

Qlc - Gqcloff - Gqc9off - Gqclmin -

+Q6 - Gqcsoff - Gqénone - Gqcsmin
+Q7 - Gqc7off - Gq7none - Gqc7min
+Q8 - Gchoff - Ganone - Gchmin

Qlc - Gqcloff - Gqc9off - Gqclmin -

anQmin

anQmin

qugmin

qugmin

|
|
|
|
|

qugmin
Gqc9min
Gqc‘)min

Gqc9min

Gqc9min

+0Qq — Gq9none =0



Now make the following definitions.
+Q2 - anZoff - Gq2none - anZmin
QA = +Q3 - an30ff - Gq3none - an3min>
+Qva - Qla - an90ff - an9min
+Q4 - qu4off - Gq4none - qu4min
<+QS - quSoff - Ganone - quSmin)

Qs
+Qup — Qu — Ggpoofs — Ggpomin
/+Q6 - Gqcéoff - Gqénone - Gqcémin
Qc _ +Q7 - Gqc7off - Gq7none - Gqc7min
+Qs — Ggesoff — Ggsnone — Ggcsmin
k +Qye — Qic — Gyeoorr — Ggcomin )
We can then rewrite the entire summation as
(Ql - qunone)
_QA + (Kaz + Ka3 + Ka9)(+QA - anloff - anlmin)
—Qp + (Kps + Kps + Kpo) (+Qp — Ggpiorr — Gapimin)
—Q9 + Ggonone + Qo — Ggonone — V¢ + (Koo + Koy + Keg + Kc9)("‘Qc — Ggcioff — Gqclmin)
=0
The bus 9 values cancel out, and we can then flip the sign on the remaining equations and add
extra terms to get.

(—Q1 + Gginone)
+Qa — (+Qa — Ggarors — Ggarmin) + (+Qa — Ggarors — Ggarmin) — (Kaz + Kaz + Kao)(+Qa — Ggatorr — Ggamin)
+0Q5 — (+Q5 — Ggbioff — Ggpimin) + (+Q8 — Gaprors — Gapimin) — Kpa + Kps + Kpo) (+Qs — Ggpiors — Gapimin)

+Qc — (+Qc — Ggerorr — Ggeimin) + (+Qc = Gaerorr — Gaermin) — (Kes + Koz + Keg + Keo) (+Qc — Gaerors — Ggeimin)
=0
This then can be written as.

(_Ql + qunone)
+("i'anloff + anlmin) + (1 - (Kaz + Ka3 + Ka9))(+QA - anloff - anlmin)
+(+qu10ff + qulmin) + (1 - (Kb4 + KbS + Kb‘)))("'QB - quloff - qulmin)

+(+Gqcloff + Gqclmin) + (1 - (Kc6 + Kc7 + Kc8 + Kc9))(+QC - Gqcloff - Gqclmin)
=0
At this point, remember that the summation of the K-factors for each VVoltageDroopControl sums
to 1.0 by definition, thus we can write this as
(_Ql + qunone)
+an10ff + anlmin + Ka1(+QA - anloff - anlmin)
+qu10ff + qulmin + Kbl(‘l'QB - quloff - qulmin)
+Gqc10ff + Gqclmin + Kc1(+QC - Gqcloff - Gqclmin)
=0
Then realize that the Mvar sharing equations mean that
° anl - anlmin + Ka1(+QA - anloff - anlmin)
e qul = qulmin + Kb1(+QB - quloff - qulmin)
e Gqcl = Gqclmin + Kcl("’QC - Gqcloff - Gqclmin)
This means that we can rewrite our equations summation as
_Ql + qunone + anloff + anl + quloff + qul + Gqcloff + Gqcl =0

That summation is the Mvar mismatch equation at the RegBus. Thus it is being enforced
because all the summation of all the other equations result it in being enforced.
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3.7. Calculate of Generator Mvar after solution
The previous equations will work for solving for the voltages and angles in the case, but we then
have to think about how to calculate the generator Mvar outputs (G,,1) after the solution is
obtained. For generators at the remotely regulating buses this is simply done by summing up the
branch flows and applying the equation.
Ggaz = Q2 — Ggazorf — Ggaznone

For any generators located at the regulated bus however, we must calculate them using the
following equation.

anl + an9 = Qva - Qla - anloff - an9off
Then allocate inthe G,41 + G449 according to their K factors across all other generators that are
connected to a bus within the very low impedance group as follows.

al

anl = anlmin + K.+K (Qva - Qla - anloff - an90ff - anlmin)
al a9

a9

an9 = an9min + K. +K (Qva - Qla - anloff - an9off - anlmin)
al a9

Finally, all these equations give the total Mvar for generators at a bus with AVR=YES and those
NOT stuck at a limit. The Mvars must then be allocated in the proportion specified by their K
factors across all other generators at the bus.
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