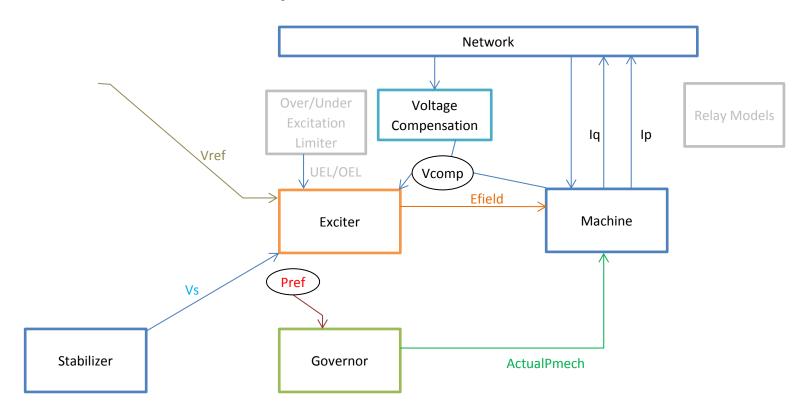
Coordinated Initialization of the Load Distribution Equivalent, Load Characteristic, and Load Distributed Generation Models

NERC Load Modeling Task Force January 12, 2016

Jamie Weber, Ph.D. Director of Software Development

weber@powerworld.com 217 384 6330 ext 13

Coordinated Initialization of Generator Models

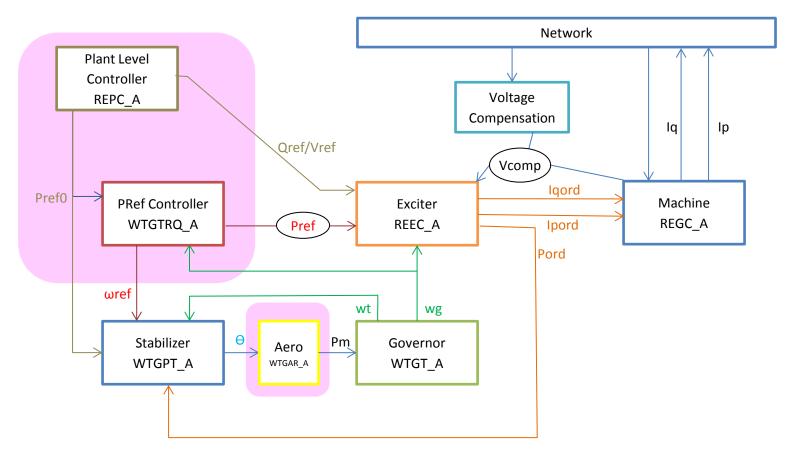


- Generators have included a modular structure for several decades (1970s and onward)
- Synchronous generators needed up to 8 separate modules with coordinated initialization
 - Machine (Generator/Converter Model)
 - Exciter (P and Q controller)
 - Governor (Drive Train)
 - Stabilizer (Pitch Control)
 - Under Excitation Limiter
 - Over Excitation Limiter
 - Compensator Model
 - Relay Model

©2016 PowerWorld Corporation

8 Synchronous Generator Modules

• We have always done this with Generators



Generator Modules Continue to Grow

- In past several years even more modules have been added
 - Aerodynamic Model (Type 3 Wind)
 - Pref Controller (Type 3 wind and LCFB1)
 - Plant Controller (renewable models)
 - AGC Controller (Implemented in Version 19 of PowerWorld Simulator)

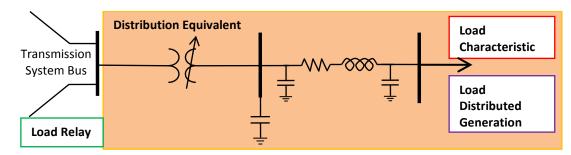
Type 3 Wind Turbine model added 3 new modules

• Pref Controller, Plant Controller, Aero

Load Models have not kept up

- Load Models have been stuck with only two modules
 - Load characteristic
 - Load relay
- The MOTORW model introduced in PSLF in the 1990s was a step in the right direction
 - MOTORW included a parameter indicating what percentage of the load was a motor
 - This meant we now had 3 modules
 - Dynamic Model
 - Algebraic Model
 - Relay Model
 - No longer required you to split the power flow load record to permit a load model split
- Relay model is always simple, but so is MOTORW
 - Does not require any coordination in the initialization of the models. Algebraic and Dynamic model just get split

Initial Implementation of Distribution Equivalent



- Composite load model (CMPLDW) was designed within the WECC LMTF in the mid 2000s
 - The distribution equivalent is stuck inside the load characteristic
 - Has meant that new load models are gravitating toward being smashed into the CMPLDW framework
- Load Distributed Generation (Roof-top Solar for example)
 - WECC LMTF is now pushing us toward getting the Load Distributed Generation model out of the CMPLDW

It is Time to Modularize: Just like Generators

- Natural for a load record to have 4 modules associated with transient stability
 - Load Characteristic (can also split algebraic/dynamic)
 - Relay Model
 - Distribution Equivalent
 - Added in PowerWorld Simulator Version 17 in January 2013
 - Load Distributed Generation Model
 - Added in PowerWorld Simulator Version 19 in November 2015

Initialization of this model must be fully documented though

Load Record: Distributed Generation

- Discussed in WECC LMTF for a few years and decision was made in 2014 to model with three new user input fields with each Load Record
 - Dist MW Input: the user entered MWs of distributed generation at the load
 - Dist Mvar Input: the user entered Mvars of distributed generation at the load
 - Dist Status: The status of the distributed generation (Open or Closed)
- Available in PowerWorld Simulator 19 now

	Number of Bus		Area Name of Load	Zone Name of Load	ID	Status	MW	Mvar	MVA	S MW	S Mvar	Dist Status		Dist Mvar Input	Dist MW	Dist Mvar	Net Mvar	Net MW
1	2	Two	Тор	1	1	Closed	80.00	20.00	82.46	80.00	20.00	Closed	40.00	0.00	40.000	0.000	20.000	40.000
2	3	Three	Тор	1	1	Closed	220.00	40.00	223.61	220.00	40.00	Open	110.00	0.00	0.000	0.000	40.000	220.000
3	4	Four	Тор	1	1	Closed	160.00	30.00	162.79	160.00	30.00	Closed	80.00	0.00	80.000	0.000	30.000	80.000
4	5	Five	Тор	1	1	Closed	260.00	40.00	263.06	260.00	40.00	Open	130.00	0.00	0.000	0.000	40.000	260.000
5	6	Six	Left	1	1	Closed	400.00	0.00	400.00	400.00	0.00	Closed	200.00	0.00	200.000	0.000	0.000	200.000
6	7	Seven	Right	1	1	Closed	400.00	0.00	400.00	400.00	0.00	Closed	200.00	0.00	200.000	0.000	0.000	200.000

Other Load Record Fields

- **Dist MW**, **Dist Mvar**: this is the actual MWs being seen by the power flow solution
 - This will be 0.0 if **DistStatus** = Open
 - This will be reduced if the voltage falls below the minimum voltage for constant power load
- Net MW: this is equal to the subtraction of the fields MW – Dist MW

	Number of Bus	Name of Bus	Area Name of Load	Zone Name of Load	ID	Status	MW	Mvar	MVA	S MW	S Mvar	Dist Status	-	Dist Mvar Input	Dist MW	Dist Mvar	Net Mvar	Net MW
1	2	Two	Тор	1	1	Closed	80.00	20.00	82.46	80.00	20.00	Closed	40.00	0.00	40.000	0.000	20.000	40.000
2	3	Three	Тор	1	1	Closed	220.00	40.00	223.61	220.00	40.00	Open	110.00	0.00	0.000	0.000	40.000	220.000
3	4	Four	Тор	1	1	Closed	160.00	30.00	162.79	160.00	30.00	Closed	80.00	0.00	80.000	0.000	30.000	80.000
4	5	Five	Тор	1	1	Closed	260.00	40.00	263.06	260.00	40.00	Open	130.00	0.00	0.000	0.000	40.000	260.000
5	6	Six	Left	1	1	Closed	400.00	0.00	400.00	400.00	0.00	Closed	200.00	0.00	200.000	0.000	0.000	200.000
6	7	Seven	Right	1	1	Closed	400.00	0.00	400.00	400.00	0.00	Closed	200.00	0.00	200.000	0.000	0.000	200.000

©2016 PowerWorld Corporation

Treatment of Distributed Generation in Power Flow

- Summary Information with Areas, Zones, Substations, etc...
 - Dist MW is separate summation from Load MW

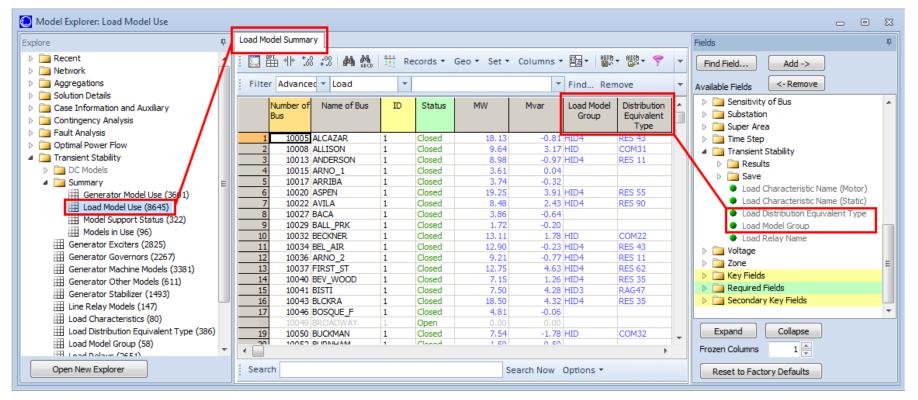
	Area Num	Area Name	AGC Status	Gen MW	Load MW	Dist MW	Shunt MW	Tot Sched MW	Int MW	ACE MW	Lambda	Loss MW /
1	1	Тор	ED	367.42	720.00	120.000		0.00	-359.54	-359.54	0.00	6.96
2	2	Left	ED	199.52	400.00	200.000		0.00	-200.82	-200.82	0.00	0.34
3	3	Right	ED	400.99	400.00	200.000		0.00	0.36	0.36	0.00	0.64

- Injection Group Treatment
 - Injected MW = Gen MW Load MW Dist Gen MW
- Contingency Actions
 - "Set, Change, Move" actions only act on Load portion
 - Open and Close actions also open the distributed gen

Load Distribution Equivalent

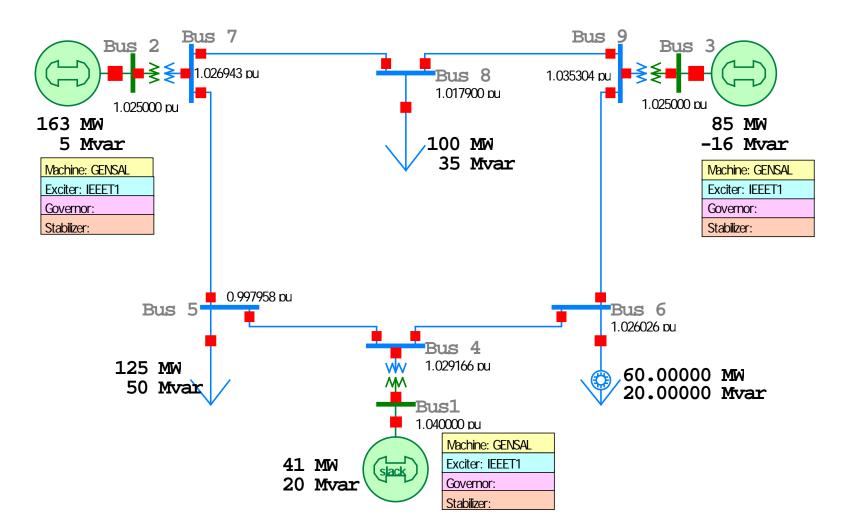
- Supplementary model that defines an equivalent of the distribution system's transformer, capacitors, and feeder
- Created independently of the load characteristic models
- Can be used with any load characteristic model
- Design assumes small number of Load Distribution Equivalent Types with many different loads assigned to each

Load Distribution Equivalent

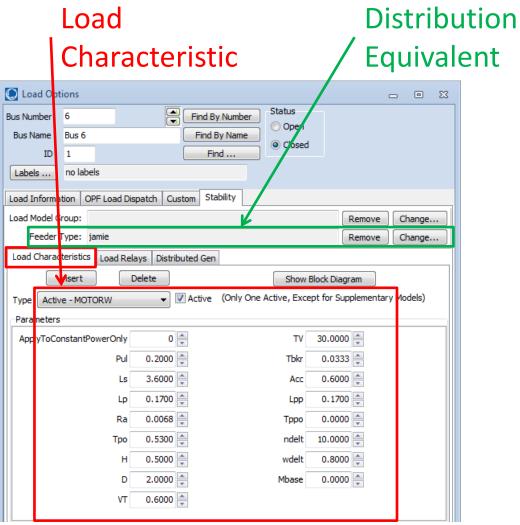

• First 17 parameters of the CMPLDW load characteristic model along with MVA base

() N	/loc	lel Exp	lorer: L	oad Distrib.	ution E	qui	/alent Ty	pe													_		23
Ţ	Di	stribut	ion Equi	valent Type																			
Explore	1		'™. ∛ŀ<	+.0 .00 .00 +.0		F	Records	• Set	• Co	lumns	; • 🖻	- 1	080 -	AUXB 2007	• 🏨	▼ SORT 124 f	(x) ▼ 🗄	∎∣o)ptio	ns 🔻			
:	1	Filter					•	Find.	Rer	nove	Quick	Filter											
			Name	Long Name	Mbase	Bss	Rfdr	Xfdr	Fb	Xxf	Tfixhs	Tfixls	LTC	Tmin	Tmax	step	Vmin	Vmax	Tdel	Tdelstep	Rcmp	Xcmp	-
		1	AUX	AUX	0	0	0	0.01	1	0.08	1	1	0	0.9	1.1	0.00625	1.025	1.04	0	0	0	0	
		2	COM	Commercial	0	0	0.0216	0.027	0.75	0	1	1	0	1	1	0.001	1	1	0	0	0	0	
		3	COM 2	Commercial	0	0	0.036	0.045	0.78	0.08	1	1	1	0.9	1.1	0.00625	1.025	1.04	- 30	5	0	0	
		- 4	COM 3	Commercial	0	0	0.0328	0.041	0.75	0.08	1	1	0	0.9	1.1	0.00625	1	1.02	- 30	5	0	0	
		5	COM 4	Commercial	0	0	0.036	0.045	0.76	0.08	1	1	1	0.9	1.1	0.00625	1.025	1.04	- 30	5	0	0	
		6	COM 5	Commercial	0	0	0.0224	0.028	0.76	0	1	1	0	1	1	0.001	1	1	0	0	0	0	
		7		Commercial	0	0	0.0232	0.029	0.74	0	1	1	0	1	1	0.001	1	1	0	0	0	0	-
				a	-	- ^	0.0000	0.044	0.75		1					0.00000	4 005	1.01		-		-	
		Searc	h								Searc	h Nov	v O	ptior)	ns 🔻								

Assigning Load Distribution Equivalent Models

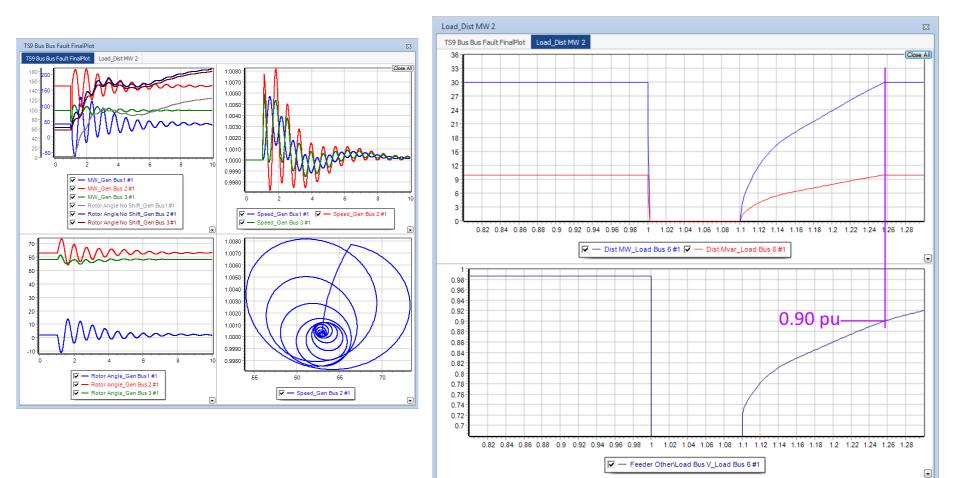


Each Load record is assigned to a Distribution Equivalent



©2016 PowerWorld Corporation

What does this look like?

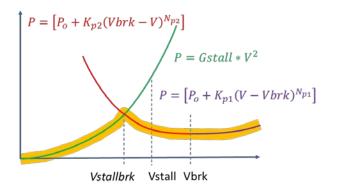

Load Record has Modules

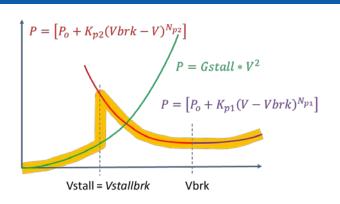
_	
Dist	ributed
Con	oration
Gen	eration
Load Informa	ation OPF Load Dispatch Custom Stability
Load Model (
	Type: jamie
Load Chara	cterist cs Load Relays Distributed Gen
	Inser Delete
Type Activ	ve - DGPV V Active (Only
Parameters	S
Imax	1.2000 🚔 Ft3 999.0000 🚔
VtO	0.7000 Frflag 1.0000
Vt1	0.9000
Vt2	1.1000
Vt3	1.2000
Vrflag	1.0000
Ft0	0.0000
Ft1	0.0000
Ft2	999.0000
Show	I Torque Speed Dialog

©2016 PowerWorld Corporation

Plot of Results: Right plot shows Distributed Gen

Initialization



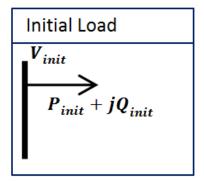

- When using a software model the fundamental details of the model should be known to the user
 - Equipment affects everyone as it is connected to a grid
 - Others need to model your equipment
 - This often means pseudo-code is needed
- Describing how a model is initialized is part of this
 - Software vendor secret: the hardest thing to do with transient stability models is to initialize them
 - Also some arbitrary decisions are sometimes made about a model during initialization → need pseudo-code
- Before we discuss coordinated initialization of these models → consider initialization of
 - Single Phase Air Conditioner \rightarrow LD1PAC
 - Induction Motors \rightarrow MOTORW, CIM5, MOTOR1, etc..

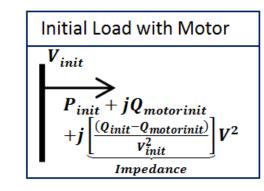
LD1PAC Model: Algebraic Performance Model

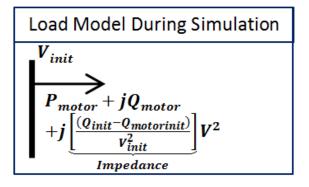
- LD1PAC follows algebraic P/Q Curves
 - If V > Vbrk then
 - $P = \left[P_o + K_{p1}(V Vbrk)^{N_{p1}}\right] \left[1 + CmpKpf * \Delta f\right]$
 - $Q = \left[Q_o + K_{q1}(V Vbrk)^{N_{q1}}\right] \left[1 + CmpKqf * \Delta f\right]$
 - If V < Vbrk and V > Vstallbrk then
 - $P = \left[P_o + K_{p2}(Vbrk V)^{N_{p2}}\right]\left[1 + CmpKpf * \Delta f\right]$
 - $Q = \left[Q_o + K_{q2}(Vbrk V)^{N_{q2}}\right]\left[1 + CmpKqf * \Delta f\right]$
 - If V < Vstallbrk then</p>
 - $P = Gstall * V^2$
 - $Q = Bstall * V^2$
- Important somewhat arbitrary decision
 - What is Vstallbrk ? Must fully document this stuff!

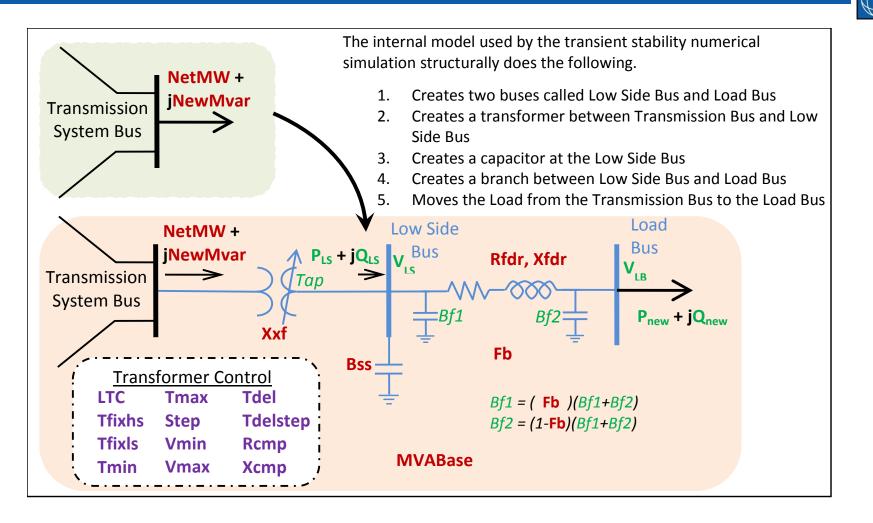
P_o , Q_o , and Vstallbrk

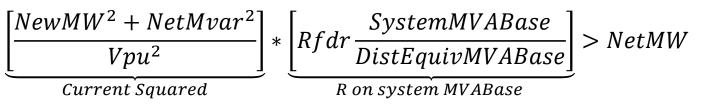
- $P_o = P_{init} K_{p1}(V_{init} Vbrk)^{N_{p1}}$
- *Vstallbrk* = intersection of the power stall curve and the power curve defined by Kp2 and Np2.
 - PowerWorld determines this to a tolerance of 0.0001 per unit voltage.
 - If this intersection is calculated as higher than *Vstall*, then instead set *Vstallbrk* = *Vstall* (this should be a very rare occurrence as it can result in strange results)


•
$$Q_o = P_{init}\left(\frac{\sqrt{1-CompPF^2}}{CompPF}\right) - K_{p1}(1.0 - Vbrk)^{N_{p1}}$$


 As long as the motor is not stalled (Below Vstall for more than Tstall seconds), then the algebraic P and Q values following this yellow highlighted curves


Induction Motor Initialization


- Mvar of an induction motor at initialization (steady state) is <u>dependent</u> on the terminal voltage and MW of the motor.
- There will be a mismatch between
 - Motor Mvar
 - Load Flow Record Initial Mvar
- Handled by including a shunt admittance as part of the load model to match the initial condition
 - These will be called ExtraMvars in this document


Coordinated Initialization with Distribution Equivalent

Important: Input Data Validation Check

- The **NetMW** and **NetMvar** of the load can potentially exceed the maximum power transfer of the Distribution Equivalent
 - Calculation of DistEquivMVABase
 - MVABase > 0 means DistEquivMVABase = MVABase
 - MVABase < 0 means DistEquivMVABase = Abs(NetMW/MVABase)
 - MVABase = 0 means DistEquivMVABase = NetMW/0.8
 - Notice that MVABase is a function of **NetMW** for MVABase <=0
- Problem for loads with extremely poor power factor
 - What if load is 1.2 MW and 30 Mvar? Impedances are based on base proportional to 1.2, but 30 Mvars across this may be too much.
- Software Solution: Add a validation error
 - Check if Estimate of Real Power I²R losses exceeds the NetMW
 - Clearly bad input data if

Important: Related Validation Check

- A lot of these weird validation errors actually occur with extremely small loads
 - How about MW = 0.001 and Mvar = 0.020
 - This kind of thing happens a lot when you get a realtime state estimation case → just noise from measurements and the state estimator solution
- PowerWorld Simulator has a hard-coded threshold
 - Any MW Load < 0.001 per unit (0.1 MW for 100 MVABase system) is never modeled with anything but an algebraic load model
 - Silly to model motors this small anyway
 - You will see warning messages inside Simulator indicating this is occurring

Initialization Process

- Goal of Initialization is to calculate Tap, Bf1, Bf2, VLS, PLS, QLS, VLB, Pnew, and Qnew.
 (Also might change Bss, Rfdr, and Xfdr)
- If you want the same results you need to define the rules precisely
 - It is quite likely that multiple values of Tap will get you inside the Vmin and Vmax range specified in the distribution equivalent
 - How you split Bf1, Bf2, and Bss might change results
 - How to reduce the Rfdr and Xfdr when the load bus voltage falls below 0.95 matters
- Define "precisely" → means psuedo-code

Initialization Steps 1 – 2: Impedance Base Conversion

- Step 1: Calculation of DistEquivMVABase
 - MVABase > 0 means DistEquivMVABase = MVABase
 - MVABase < 0 means DistEquivMVABase = Abs(NetMW/MVABase)</p>
 - MVABase = 0 means DistEquivMVABase = Abs(NetMW/0.8)
 - Note: This is a function of NetMW, so that means MW DistMW of the distributed generation
- Step 2: Impedance parameters are given on this DistEquivMVABase base, so convert them to the SystemMVABase
 - Xxf = Xxf * SystemMVABase/ DistEquivMVABase.
 Rfdr = Rfdr * SystemMVABase/ DistEquivMVABase.
 Xfdr = Xfdr * SystemMVABase/ DistEquivMVABase.
 Rcmp = Rcmp * SystemMVABase/ DistEquivMVABase.
 Xcmp = Xcmp * SystemMVABase/ DistEquivMVABase.
 Bss = Bss / SystemMVABase* DistEquivMVABase.

Initialization Steps 3 – 4: Transformer Setup

- Step 3: Convert Transformer Tap values and impedances to the SystemMVABase
 - Variable tab is on the low side bus
 - $Xxf = Xxf * (Tfixhs)^2$
 - Step = Step/Tfixhs
 - Tmin = (Tmin + Tfixls 1)/Tfixhs
 - Tmax = (Tmax + Tfixls 1)/Tfixhs
- Step 4: Set tap ratio (Tap) needed.
 - Sending end flow is Net values so (Load DistGen)
 - Calculate exact tap ratio needed to give Low Side Bus Voltage of (Vmin + Vmax)/2 (arbitrary decision)
 - See Section 3.2.1 of companion PDF document for exact equations
 - Round to nearest discrete step and enforce Tmin and Tmax

There are likely a few Tap values which get you inside Vmin and Vmax

©2016 PowerWorld Corporation

Initialization Steps 5 – 7:

- Step 5: Calculate the Low Side Bus Voltage (VLS) and the Low Side Bus P and Q flow <u>exactly</u> (PLS, QLS)
 - See Section 3.2.2 of companion PDF document for exact equations
- Step 6: Initialize Bf1 and Bf2 to zero
- Step 7: If VLS < 0.95 then automatically set Rfdr and Xfdr to minimum value
 - Rfdr = 0.0000001 per unit
 - Xfdr = 0.00001 per unit
- This is where things get complicated
 - Calculation Load Bus Voltage (VLB) depends on Bf1
 - As mentioned in induction motor initialization, there are ExtraVars that come from that initialization which depends on VLB
 - The distribution equivalent model specifies that these ExtraVars be split between the from and to end of the feeder according to Fb input option
 - Bf1 = (Fb)(Bf1 + Bf2)
 - Bf2 = (1-Fb)(Bf1 + Bf2)
 - But Bf1 is used to calculate VLB

If Fb = 0, things are a LOT easier!

©2016 PowerWorld Corporation

Initialization Steps 8 – 9

- Step 8: Using present values of Bf1 and Bf2, estimate both the Load Bus Voltage (VLB) and the flow reaching the Load Bus (Pnew, Qnew)
 - See Section 3.2.2 of companion PDF document for exact equations
- Step 9: If magnitude of VLB < 0.95 then the feeder impedances are reduced by a factor such that VLB = 0.95 (exactly) and update Pnew, Qnew
 - See Section 3.2.3 of companion PDF document for exact equations

Initialization Steps 10 – 11

- Step 10: Using Values of VLB, Pnew, Qnew initialize the dynamic load characteristic models
 - If Distributed Generation Model is present, then the Load Characteristic Models will use (Pnew + DistMW) and (Qnew + DistMvar)
 - Part of Load Characteristic initialization will result in ExtraMvars
- Step 11: If we have reduced **Rfdr** and **Xfdr** to minimum value already, then Exit Initialization and leave ExtraMvars with Load Bus

Initialization Steps 12 ExtraMvars \rightarrow Bf1, Bf2

- Step 12: Allocate ExtraMvars to Bf1 and Bf2
 - If (ExtraMvars < 1E-4 per unit) OR (Fb < 0.001), then stick them all at the Load Bus
 - Bf2 = Bf2 + ExtraMvars/(VLB²)
 - *ExitShortly* = True
 - Else
 - Bf1 = Bf1 + Fb*ExtraMvars/(VLS²)
 - *Bf2* = *Bf2* + (1 **Fb**)*ExtraMvars/(VLB²)
 - *ExitShortly* = False

Initialization Steps 13: Coordinate Bf1, Bf2 with Bss

- Step 13: If *Bf1* and *Bf2* are negative and **Bss** > 0 then reduce **Bss** toward zero to cancel out *Bf1* and *Bf2*.
 - ExitShortly = False
 - Bf1var = Bf1 * VLS²
 - $Bf2var = Bf2 * VLB^2$
 - Bssvar = Bss * VLS²
 - If abs(Bf1var + Bf2Var) > Bssvar then
 - tempVar = BssVar
 - **Bss** = 0
 - If **Fb** = 1 then
 - tempVar = abs(Bf1Var)
 - Bss = Bss tempVar / VLS²
 - Else
 - tempVar = abs(Bf2var) / (1 Fb)
 - Bss = Bss tempVar / VLS²
 - $Bf1 = Bf1 + Fb * tempVar / VLS^2$
 - $Bf2 = Bf2 + (1 Fb) * tempVar / VLS^{2}$

©2016 PowerWorld Corporation

// Set Bss=0 and reduce magnitude of Bf1 and Bf2

// Reduce Bss by Bf1Var and
 reallocate Mvars to Bf1 and Bf2

// attempt to push Bf2 toward zero

Initialization Steps 14: Finish Off

• Step 14:

If (ExitShortly) then Exit Initialization
 Else go back to Step 8 and repeat

Summary

- Transparency of stability models is vital if you want to share models
 - Need good documentation
 - Often need some psuedo-code as block diagrams aren't enough
 - Various ways to implement non-windup PI limits
 - Algebraic models get weird (Bf1, Bf2, Bss coordination of distribution equivalent)
 - Calculation of Vstallbrk on LD1PAC
- Good examples of how to share model specifications
 - H6B governor model from John Undrill and implemented in PSLF https://www.wecc.biz/Reliability/H6b-Governor-Model-Specification.pdf
 - I implemented this in PowerWorld Simulator in February 2014 very quickly because documentation was excellent
 - Psuedo-code was important because of unique non-windup PI limit
 - Colstrip Acceleration Trend Relay from Jamie Weber implemented in PowerWorld Simulator

http://www.powerworld.com/WebHelp/Content/TransientModels_PDF/ Generator/Others/Relay%20Model%20ATRRELAY.pdf

- Generic Wind and Solar Models
 - However, input units on which MVABase is still not clear on a few of these models...
 - Psuedo-code would have made that more clear

Tap Calculation Equation (Section 3.2.1 of PDF)

 $P_{km} + jQ_{km}$

 V_k, δ_k

• Initial condition and the input parameters P_{km} , Q_{km} , V_k , and X_{xf} .

• We use
$$V_m = \frac{V_{min} + V_{max}}{2}$$

• PDF document shows derivation of required *Tap*.

•
$$Tap = \sqrt{\frac{(V_k V_m)^2}{(Q_{km} X_{xf} - V_k^2)^2 + (X_{xf} P_{km})^2}}$$

 V_m, δ_m

1:Tap

Calculation of Far Bus Complex Voltage and PQ Flows (Section 3.2.2)

General Network as Follows

$$P_{km} + jQ_{km} = R + jX = 1:1 \qquad P_{mk} + jQ_{mk}$$

$$V_{k}, \delta_{k} = \frac{R}{M} = \frac{R}{M} = \frac{R}{M} = \frac{-X}{R^{2} + X^{2}} + B_{1} \qquad g_{km} = g_{mk} = \frac{-R}{R^{2} + X^{2})t}$$

$$g_{mm} = \frac{R}{R^{2} + X^{2})t^{2}} \qquad b_{mm} = \frac{-X}{R^{2} + X^{2})t^{2}} + B_{2} \qquad b_{km} = b_{mk} = \frac{X}{R^{2} + X^{2})t}$$
Calculate Complex Vm

$$\begin{bmatrix} e_{k}g_{km} + f_{k}b_{km} & | & -e_{k}b_{km} + f_{k}g_{km} \\ f_{k}g_{km} - e_{k}b_{km} & | & -f_{k}b_{km} - e_{k}g_{km} \end{bmatrix} \begin{bmatrix} e_{m} \\ f_{m} \end{bmatrix} = \begin{bmatrix} P_{km} - e_{k}^{2}g_{kk} - f_{k}^{2}g_{kk} \\ Q_{km} + f_{k}^{2}b_{kk} + e_{k}^{2}b_{kk} \end{bmatrix}$$
Calculate far end flows

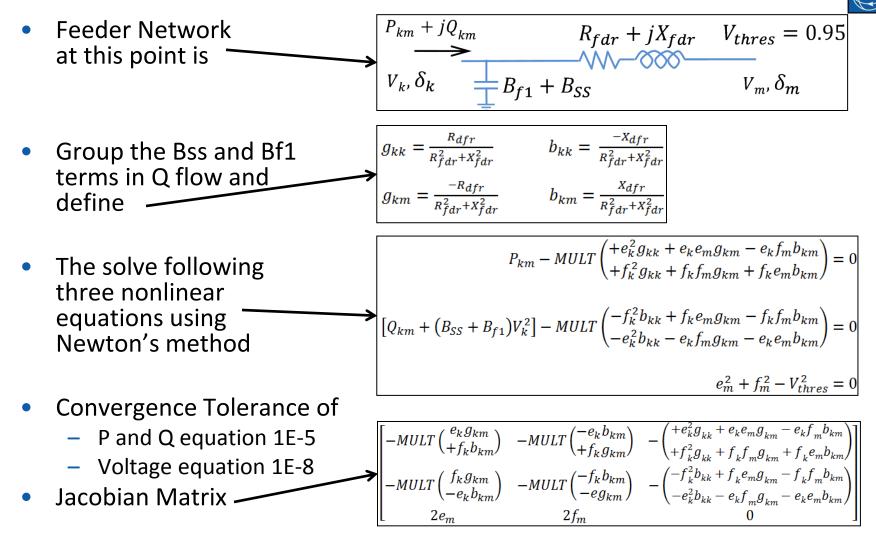
$$P_{mk} = \pm e_{k}^{2}g_{mm} \pm e_{m}e_{k}g_{mk} = e_{m}f_{k}b_{mk} \pm f_{k}^{2}g_{mm} \pm f_{m}f_{k}g_{mk} \pm f_{m}e_{k}b_{mk}$$

 $P_{mk} = +e_m^2 g_{mm} + e_m e_k g_{mk} - e_m f_k b_{mk} + f_m^2 g_{mm} + f_m f_k g_{mk} + f_m e_k b_{mk}$ $Q_{mk} = -f_{km}^2 b_{mm} + f_m e_k g_{mk} - f_m f_k b_{mk} - e_m^2 b_{mm} - e_m f_k g_{mk} - e_m e_k b_{mk}$

Section 3.2.2 Admittance Values Transformer and Feeder Branch

For our Transformer branch the admittance parameters are as follows.

$$g_{kk} = 0 \qquad b_{kk} = -\frac{1}{X_{xf}} \qquad g_{km} = g_{mk} = 0$$


$$g_{mm} = 0 \qquad b_{mm} = -\frac{1}{X_{xf}Tap^2} \qquad b_{km} = b_{mk} = \frac{1}{X_{xf}Tap}$$

For our Feeder branch the admittance parameters are as follows.

(Note: the capacitors are lumped into the feeder admittances for calculation purposes here.)

$$g_{kk} = \frac{R_{dfr}}{R_{fdr}^2 + X_{fdr}^2} \qquad b_{kk} = \frac{-X_{dfr}}{R_{fdr}^2 + X_{fdr}^2} + B_{f1} + B_{ss} \qquad g_{km} = g_{mk} = \frac{-R_{dfr}}{R_{fdr}^2 + X_{fdr}^2} g_{mm} = \frac{R_{dfr}}{R_{fdr}^2 + X_{fdr}^2} \qquad b_{mm} = \frac{-X_{dfr}}{R_{fdr}^2 + X_{fdr}^2} + B_{f2} \qquad b_{km} = b_{mk} = \frac{X_{dfr}}{R_{fdr}^2 + X_{fdr}^2}$$

Calculation of Far Bus Values with a Voltage Constraint

©2016 PowerWorld Corporation